Adaptive Streaming of Stored Video in a TCP-Friendly Context:
Multiple Versions or Multiple Layers?

Philippe de Cuetos, Despina Saparilla, Keith W. Ross
Institut EURECOM
2229, route des Crétes
06904 Sophia Antipolis, France
{decuetos, saparill, ross}@eurecom.fr

Abstract

Video transmission over the current best-effort Internet should be made fair to com-
peting TCP traffic. Because the available bandwidth to a TCP-friendly stream changes
significantly over medium and long time scales, it is desirable to adapt the streaming rate
of the video to the current bandwidth conditions. We consider two adaptive streaming
schemes for stored video. The first scheme switches among multiple encoded versions, with
each version encoded at a different rate. The second scheme adds and drops encoding
layers. To compare the two schemes, we develop streaming control policies for each scheme
and evaluate their performance using trace-driven simulation. Our results show that when
analogous streaming policies are used, switching versions outperforms adding/dropping
layers because of the overhead associated with layering. However, the enhanced flexibility
of layering can compensate the performance degradation due to the layering overhead.

1 Introduction

As multimedia applications become widespread on the Internet, the problem of streaming
stored multimedia over the best-effort Internet while remaining fair to competing TCP traffic
has become increasingly important. The need to be fair to competing TCP traffic has lead to
the notion of TCP-friendly streams [4, 2, 6, 8]. The available bandwidth to a TCP-friendly
scheme varies significantly over both medium and long time scales [10]. For streaming stored
video, it is therefore useful to consider schemes that adapt video quality as a function of the
available bandwidth. At the same time, the scheme should not lead to frequent changes in
perceived video quality, in order to maximize overall viewer satisfaction [7].

There are three popular techniques for adapting stored video to time-varying available
bandwidth: on-the-fly encoding, adding/dropping layers, and switching among multiple en-
coded versions. On-the-fly encoding is CPU intensive and thus generally regarded as unsuit-
able for streaming stored video. In this paper we focus on the remaining two techniques, i.e.,
“adding/dropping layers” and “switching versions”.

Adding/dropping layers has been proposed by many researchers as an effective scheme
that provides both rate adaptation and error resilience in video communications [5, 3, 1, 9].
In the adding/dropping layers scheme, the video stream is partitioned into several layers. It is
composed of a base layer, which contains the most essential information for the reconstruction
of the video, and results in low but generally acceptable quality, and one or several enhance-
ment layers that contain additional information and deliver a higher quality video. The video

streaming application can add or drop the higher quality layers to adjust the transmission rate
to the available bandwidth. A key characteristic of layered encoding is that in order to decode
the higher quality layers, all lower quality layers should also be available at the decoder.

Although adding/dropping layers is an effective video transmission technique, it has cer-
tain drawbacks. Layered encoding increases the complexity of the video coding significantly
and results in inferior coding efliciency than non-layered compression. Layering introduces a
coding overhead at the source coder and the transport layer, which depends on several factors,
including the particular layering structure employed, the bit rate of the video stream, and the
spatial and temporal resolution of the source [1]. Nevertheless, when the base layer is deliv-
ered with higher reliability [14] (by combining layered encoding with transport prioritization
mechanisms, such as FEC), adding/dropping layers offers a higher resilience to transmission
errors relative to a non-layered scheme.

Switching versions, is widely used in the industry. For switching versions, the video is
compressed at different rates (and therefore different quality levels), and each version is stored
and available at the server. The server detects changes in available bandwidth and switches
among the versions to adapt the transmission rate (and hence quality level) to the available
bandwidth. Although non-layered compression into multiple versions increases the storage
requirements at the server, it is simpler and results in higher video quality when compared to
layered encoding, under a constant-bit-rate constraint [1].

In this paper we compare adding/dropping layers with switching versions for streaming
stored video while being TCP-friendly. We first present our model and the performance
metrics we use to compare the two schemes. We then design streaming control policies for
adding/dropping layers, and for switching versions. The heuristic streaming policies developed
for each scheme are analogous, in order to permit a fair comparison of the two schemes. We
compare the adaptive streaming schemes in simulation experiments in which we vary critical
conditions, such as (i) the average available bandwidth, and (ii) the percent bit-rate of over-
head that is associated with layered video. Our simulations experiments use TCP throughput
traces collected from Internet experiments. In the following section we briefly describe the
collected throughput traces.

2 TCP-Friendly Internet Bandwidth

To compare the two streaming schemes, adding/dropping layers and switching versions, we need
to obtain TCP-friendly traces. Several TCP-friendly rate adjustment protocols have recently
been developed by researchers [6, 12, 13, 8, 11]. The rate adjustment protocols reported in
the literature have different limitations, depending on the TCP characterization on which they
are based, and achieve TCP friendliness only under specific types of scenarios. For example,
some of the proposed protocols are not TCP-friendly at loss rates higher than 5% [8, 11].
Some of the protocols are specific to multicast applications and rely on data layering [12, 13].
We do not use any of the TCP-friendly rate adjustment schemes in the literature to generate
TCP-friendly traces. Instead, it is natural to suppose that the perceived rate fluctuations
of a TCP-friendly scheme exhibit similar behavior as the fluctuations of TCP throughput
over medium (seconds) and long (minutes) time scales. To obtain TCP-friendly bandwidth
conditions we collect throughput traces from TCP connections on the Internet.

We traced a number of unidirectional TCP bulk data transfers between three pairs of hosts,
located in Finland, France and the United States. From the experiments, we collected several

Trace | Sre- date Throughput (Mbps)
Dest. Peak | Mean o
Al US-FR | 29-06-99 15:00 | 2.41 | 0.70 | 0.43
A2 US-FR | 29-06-99 16:00 | 3.89 1.10 | 0.82

Table 1: Summary of 1-hour long traces.

1-hour long instantaneous throughput traces for TCP flows during four consecutive days at
different times of the day. In this work we present results obtained using only two of the
collected traces due to space limitations. Table 1 summarizes statistics for the two traces, and
Figure 1 shows the average throughput of these traces over time scales of 10 and 100 seconds.
As shown in the figure, both traces exhibit a high degree of variability and burstiness over
both time scales. A more detailed description of the throughput measurements and collected
traces can be found in [10].

3 Video Streaming Model and Assumptions

We develop a fluid transmission model to analyze the video streaming problem. We denote by
X (t) the TCP-friendly bandwidth that is available to the streaming application at time ¢. For
X (t) we use Internet traces, with each trace being averaged over 1-second intervals. Our model
allows for an initial playback delay, denoted by A, which is set to four seconds in all numerical
work. We assume that the delay between the server and the client is zero; this assumption is
reasonable, given that round trip times are relatively small, and often an order of magnitude
smaller than the initial playback delay. We also suppose that the source host always sends data
at rate X (t), and all data sent into the network will eventually be consumed at the receiver
(i.e., the server only transmits data that will meet their deadline for consumption). Thus,
packet loss from the video stream occurs only due to buffer starvation. Finally, we suppose
that the prefetch buffer at the client is not restricted in size (this assumption is motivated by
disk sizes in modern PCs).

For simplicity, we suppose that the video is CBR-~encoded. In the multiple versions scheme,
we consider two non-layered versions each encoded at a different rate and each stored at the
server. We denote the encoded rate of the low-bit rate version by r; bits per second, and
the encoded rate of the high bit-rate version by ry bits per second. We will refer to the low
bit-rate version as version v; and to the high bit-rate version as version vy. In the layered
video scheme, we suppose that the base layer can be decoded independently to generate a
comparable video quality to the the low bit-rate version v;. We also suppose that there is
also a single enhancement layer, which when decoded with the base layer, delivers a quality
comparable to version vy. We let r, and r. denote the rates of the base and enhancement
layers, respectively.

3.1 Comparison of Rates

To fairly compare the two streaming approaches, we need to define the relationship between
rates of the layers and those of the two versions. Layered encoding results in a lower compres-
sion gain than non-layered coding. For example, a study of MPEG-2 scalability structures [1]
has shown that in all cases, layered coding has a coding penalty, which reduces the overall view-
ing quality when compared to non-layered coding, under a constant-bit-rate constraint. The

6 US to FR —— 29/06 15:00

4X10 ‘ ‘ ‘ 10’ US to FR —- 29/06 15:00
25
3,
Al
815
1l
0.5f
0 ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 % 1000 2000 3000 4000
sec sec
x10° UStoFR--29/06 16:00 s UStoFR —- 29/06 16:00
4 T T T 3x 10 ‘ ‘ ‘
2.5
3 l
\' | r‘ 2
" n]
82] 815
il ‘ ” ‘\u {M '
sl ol wl 1|
| I
|“I r‘ W‘!; H‘ ”" iE “IM! ” | 0.5¢
0 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 % 1000 2000 3000 4000
sec sec

Figure 1: Average throughput over time scales of 10 and 100 seconds for traces Al and A2.

coding penalty of layering depends on several factors, including the particular scalability tech-
nique used. The study of MPEG-2 scalability structures in [1] showed that data partitioning
has the smallest coding overhead and spatial scalability the largest.

In this study we adapt a simple approach, which nevertheless allows for a realistic compar-
ison of the two streaming schemes. We denote the overall percent coding overhead of layering
by H. As explained in [14], the overhead introduced by layering can be due to source coding or
transport. In data partitioning, for instance, the coding overhead is due to additional headers
in the enhancement layer stream needed for synchronization with the base layer stream. In
SNR scalability, the enhancement layer is a re-quantization of the base layer at a finer reso-
lution, so that both layers include some information about all DCT coeflicients. We assume
that the bit-rate coding overhead is associated with the enhancement layer. We identify the
following relationships for rates ry, re, and rq, r9 :

ro+re=(1+H) -r; and ry=r1. (1)

In our numerical work H is a parameter that we vary between 1 and 10%. We believe that this

upper limit on H is conservatively chosen. (Some justification for the selection of the above
bounds for H can be found in [1]).

3.2 Performance metrics

We compare the performance of the two adaptive streaming schemes based on three metrics:

e Fraction of high-qualily viewing time. We denote by {5 the fraction of time that the best
quality of the encoded video can be viewed at the client. In the case of layered video,
ty is the fraction of time both layers are delivered and decoded together. In the case of
multiple versions, ¢ is the fraction of time that version vy is rendered to the client.

e Fraction of time the decoder can not display the video. We denote by t; the fraction of
time during which the decoder can not render a part of the video of either quality to
the receiver. In the case of layered video, t; is the fraction of time that the base-layer
prefetch buffer is starved. In the case of switching versions, ¢4 is the fraction of time that
neither vy nor vy data is available for consumption.

o Quality fluctuations. We denote by S the total number of times that the video quality
changes at the decoder. In the case of layered video, there are quality fluctuations when
the enhancement layer is dropped or added, or when the enhancement layer prefetch
buffer at the client is starved. In the case of multiple versions, S is the total number
of switches among the two versions during the viewing duration of the video, that is
switching from version vy to vg, and vice versa.

4 Streaming Control Policies

In this section we develop control policies for adding/dropping layers and for switching among
versions. A control policy determines when to add and drop the enhancement layer, as well as
how to allocate bandwidth among the layers (when both layers are being streamed). Results
in [9] have shown that control policies based on the content of the prefetch buffers at the client
attain good performance in a TCP-friendly context. Some simple threshold control policies
were introduced in [10] for layered encoded videos. In this paper we design equivalent control
policies for adding/dropping layers and for switching versions, so that we can fairly compare
the two adaptive streaming schemes.

4.1 Adding/dropping layers

We begin by describing the control policy for adding/dropping layers. At any time instant,
the server must determine how to allocate bandwidth among the layers. We first define some
useful notation for describing the bandwidth allocation problem. We denote m;(t) and 7. (¢)
the fraction of X (¢) that is allocated to the base layer and the enhancement layer at time ¢,
respectively. We denote by Y;(¢) and Y,(¢) the contents of the base and enhancement layer
prefetch buffers at the client at time ¢, respectively. As shown in Figure 2, at time ¢ the
base-layer prefetch buffer is fed at rate m(¢) X (¢) and, when nonempty is drained at rate r.
An analogous statement is true for the enhancement layer. We suppose that the server can
estimate the amount of data in the client prefetch buffers using regular receiver reports (e.g.,
RTP/RTCP reports).

Based on the prefetch buffer contents at the client and on available bandwidth conditions,
the server decides at each time instant whether to add/drop the enhancement layer. The
goal of our control policy is to maintain continuous viewing of the base layer (i.e. avoid
buffer starvation) while at the same time maximize the overall playback quality by rendering

Y

y

Y, (t) Ty

Y
Y

Ye(t)

Te

client prefetch buffers

Figure 2: System of client prefetch buffers in layered streaming model.

> 0(1 - aX2e) and (1 - &) Xavg(t) 2 re

/\

State 1
7!'5(75) =1

State 2
7Tb(7f) =&

%) ¢ o1 — g Xesly op %) o A
Ty Ty Ty

Figure 3: State transition diagram of a streaming control policy for adding/dropping layers.

the enhancement layer for long periods. Figure 3 shows a state transition diagram for the
adding/dropping layers policy. The server begins by streaming only the base layer; in state 1,
all available bandwidth is allocated to the base layer, i.e., m;(t) = 1. When the enhancement
layer is added, the server begins sending data from both layers and the process transitions to
state 2. In state 2, available bandwidth is allocated among the layers in proportion to each
layer’s consumption rate, i.e., m(t) = & where & = rb:fre.

Two conditions control the transition from state 1 to state 2. The first condition requires
that when the server adds the enhancement layer, the amount of buffered base layer data at
the client is enough to avoid future buffer starvation. In particular the server will add the
enhancement layer at time s if the following holds:

Yi(s) - Xava(s)

22 >c(1-a
Ty T'p

) (2)

In the above expression, Xayg(s) is the most recent estimate of average available bandwidth.
This estimate is obtained using a Weighted Exponential Moving Average (WEMA) of all
previous bandwidth observations at the server. C'is a constant denoting the prediction interval
over which the estimate of average bandwidth is considered useful. Condition (2) requires that
the amount of buffered base layer data at time s is enough to avoid starvation, given that
average available bandwidth during the next C seconds equals the most recent bandwidth
estimate X,yg(5), and that a fraction é& of the available bandwidth will henceforth be allocated
to the base layer. The second condition for adding the enhancement layer at time s requires
that the transmission rate of enhancement layer data at time s (and during the prediction
interval) exceeds the consumption rate, i.e., (1 — &) - Xavg(s) > r.. This condition aims at
avoiding rapid quality fluctuations caused by frequently starving the enhancement layer buffer.
The server will add the enhancement layer at time s only if both conditions hold.

The server drops the enhancement layer when the likelihood of base layer buffer starvation
becomes high. To avoid starvation of the base layer buffer, the server drops the enhancement

N | Y 5 o - Xavg(t)) and Xavg(t) > ra

T1 T2 - T2 -

State 1
stream v

State 2
stream vo

Ylgt)_l_ Ya(t) <C’(1—Xa"5(t)) or Yi(t) + Yo (t) <A
1 T9 T1 T2

T2

Figure 4: State transition diagram of a streaming control policy for switching versions

layer at time s if (2) does not hold. The server will also drop the enhancement layer, regardless
of the estimated bandwidth conditions, if the amount of buffered data drops below the amount
needed to mitigate jitter and short time scale bandwidth variations, i.e. if Y;(¢) < ry- A, where
A is the initial playback delay in seconds.

A key issue in the design of the adaptation mechanism for adding/dropping layers is de-
termining which portion of the enhancement layer to transmit once the layer has been added.
In our first implementation of adding/dropping layers, the server transmits the enhancement
layer data with the same playback deadline as the base-layer currently being transmitted. In
other words, the base and enhanced portions of each future frame are transmitted together.
As a result, already prefetched base-layer data are consumed without enhancement.

4.2 Switching versions

We next develop a streaming control policy for switching versions. We denote the prefetch
buffer contents in version v; at time ¢ by Yj(¢). Similarly, we denote the prefetch buffer
contents in version vy at time ¢ by Y3(¢). As we shall see, to minimize the risk of buffer
starvation, the server should not stream highest vo, unless a reserve of future data exists in
either of the two versions. We again suppose that the amount of buffered data at the client
can be estimated at the server using regular receiver reports.

Figure 4 shows the state transition diagram for the switching versions policy. The server
begins by streaming version v; at the available bandwidth rate. After the initial playback
delay, the client begins to consume buffered data from version v;. Whenever X (¢) exceeds rq,
future portions of version v; are prefetched into client storage. The amount of data buffered
at the client in version vy indicates whether available bandwidth conditions allow streaming
a higher-quality version. In a similar way as in the heuristic for adding/dropping layers, the
server switches to version vy if two conditions hold. The first condition requires that the total
amount of buffered data at the client is enough to avoid buffer starvation during the next C
seconds. In particular, the server switches to vy at time s if:

Yils) | %olo) 5 g _ Xawsls)

1 r T2

)- (3)

The second condition for switching to vy at time s requires that Xaug(s) > re. Similar to
the adding/dropping layers heuristic, this condition minimizes the quality fluctuations caused
by frequently switching among the versions. The server continues streaming vy until, the
likelihood of starvation becomes high, or until the amount of data buffered at the client falls
below the required initial build-up. The server switches back to vy if (3) does not hold, or

-~

if er—(ls) + YQT,—(;) < A. To permit the fair comparison of adding/dropping layers and switching
versions, X,,,4(s) is computed using the same estimation procedure (i.e. WEMA) as in the
case of layers.

Similar to our implementation of adding/dropping layers, the server transmits data from v,
beginning with the first video frame that has not yet been buffered in vy. Already prefetched
data from vy are decoded and displayed in their entirety before the consumption of version v

data begins.

4.3 Enhancing adding/dropping layers

In our proposed mechanism for adding/dropping layers in Section 4.1, the server streams both
layers synchronously, i.e., streams the base and enhanced streams pertaining to the same por-
tion of the video at the same moment. This implementation does not fully take advantage
of the flexibility offered by layering. Indeed, when conditions are favorable enough to stream
the enhancement layer, the server can enhance the base layer stream already prefetched in
the client buffer, instead of simply enhancing the part of the base layer currently being sent.
By transmitting the enhancement-layer data with the earliest playback deadline, the play-
back quality at the client can be enhanced immediately. We refer to this variation of the
adding/dropping layers control policy as the immediate enhancement mechanism.

Immediate enhancement of the playback quality in the switching versions scheme can also
be implemented. The server can switch to version vy by transmitting the vy data with the
earliest playback deadline. We note, however, that in the case of versions, the immediate
enhancement mechanism results in a waste of bandwidth; a portion of the prefetched vy data
remains unused.

5 Numerical Results

We compare adding/dropping layers and switching versions in simulation experiments. The
simulations implement the streaming control policies described in the previous section, and
use the TCP traces described in Section 2 to simulate available bandwidth.

Table 2 summarizes results obtained with trace Al. The two schemes are compared based
on the three performance metrics discussed in Section 3.2 when the percent bit-rate overhead
associated with layering, H, varies between 1 and 10%. Metrics ¢, tg and S are studied for
different video consumption rates. Although, the video consumption rate is approximately
constant for a certain quality video, we choose to vary the consumption rate in order to study
the behavior of our heuristic policies under several bandwidth conditions. Parameter r,, is the
ratio of the highest quality video consumption rate (i.e. r + r. for the case of layers, and ry
for the case of versions) over the average trace bandwidth (i.e. 0.7 Mbps for trace Al). In
Table 2, Layers-imm and Versions-imm represent the immediate enhancement mechanisms,
for adding/dropping layers and switching versions respectively.

The results shown in the first two rows of Table 2 indicate that the performance of
adding/dropping layers and switching versions are identical when H = 0%. This can con-
firm that the adaptation mechanisms used in the two schemes are equivalent. When H = 1%,
the performance of adding/dropping layers deteriorates as bandwidth conditions become less
favorable (i.e. for r, = 1.0 and r,, = 1.3). In general, higher coding overhead results in further
performance degradation of the adding/dropping layers scheme. The fraction of high quality
viewing time {5, is lower in the case of layers than in the case of versions, when H = 10% under
all r,, values. The fluctuations in quality (5) generally increase with H, although S remains

Scheme r, = 0.7 r, = 1.0 r, = 1.3
ty | tq | S th tq | S ty | tgq | S
| Versions | 98.42% [0% | 1|85.12% | 0% | 1|52.68% | 0% | 7|
Layers H = 0% 98.42% | 0% | 1| 85.12% | 0% | 1| 52.68% 0% | 7
Layers H = 1% 98.42% | 0% | 1| 81.92% | 0% | 3 48.1% 0% | 7
Layers H = 5% 98.22% | 0% | 1| 77.23% | 0% | 3| 49.15% | 0% | 9
Layers H = 10% 95.92% | 0% | 3| 72.82% | 0% | 1| 43.23% 0% | 10
Layers-imm H = 0% 99.03% | 0% | 3 | 85.45% | 0% | 19 | 53.61% | 0% | 37
Layers-imm H = 1% 98.97% | 0% | 3| 83.68% | 0% | 21 | 51.01% | 0% | 41
Layers-imm H =5% | 98.72% | 0% | 3 | 79.93% | 0% | 21 | 49.15% | 0% | 49
Layers-imm H = 10% | 97.25% | 0% | 5 | 75.99% | 0% | 23 | 44.38% 0% | 55
[Versions-imm | 97.64% | 0% | 3| 76.42% [0% [13 | 34.41% [2.2% | 26 |

Table 2: Results for trace Al

Scheme r, = 0.7 r, = 1.0 r, = 1.3
th tq | S th | tq | S th tq |
| Versions 94.31% [0% | 5[57.66% | 0% | 5]43.78% [04% | 5 |

Layers-imm H = 0% 95.56% | 0% | 9| 62.36% | 0% | 21 | 44.41% | 0.4% | 19
Layers-imm H = 1% | 95.06% | 0% | 11 | 62.07% | 0% | 21 | 43.94% | 0.4% | 21
Layers-imm H = 5% 91.71% | 0% | 17 | 60.34% | 0% | 25 | 41.27% | 0.4% | 25
Layers-imm H = 10% | 88.22% | 0% | 27 | 57.23% | 0% | 25 | 38.67% | 0.4% | 31

Table 3: Results for trace A2

reasonably low in all cases. Finally, we note that {; is in all cases equal to 0, indicating that
the video is delivered to the client without interruption.

We next consider the performance of adding/dropping layers and switching versions when
the immediate enhancement mechanism in employed. Results in Table 2 indicate that with no
overhead (H = 0%), adding/dropping layers performs slightly better than switching versions.
When r, = 0.7, adding/dropping layers with immediate enhancement attains higher ¢, than
switching versions (regardless of whether immediate enhancement is employed in the case of
versions), for coding overhead values as high as 5%. Under more adverse bandwidth conditions
(i.e. r, = 1.0 and r,, = 1.3), the immediate enhancement mechanism in the case of layers does
not offer sufflicient improvement in performance in the presence of coding overhead. When
bandwidth conditions are scarce, the amount of data buffered at the client at any time is
small. As a result the immediate enhancement scheme is overly aggressive, resulting in high S
and no significant improvement in ¢.

Our results also demonstrate the inefficiency of employing the immediate enhancement
mechanism in the case of versions. Employing the mechanism actually results in both lower ¢}
and higher S. As discussed earlier in Section 4.3, immediate improvement in playback quality
results in a waste of bandwidth in the case of versions. The utilization of available resources
is less eflicient resulting in decreased overall performance.

Table 3 shows results obtained with trace A2. We observe that the adding/dropping layers
scheme employing the immediate enhancement mechanism can result in higher ¢;, than switch-

ing versions, even in the presence of coding overhead. This is true for coding overheads up
to 1% when r, = 0.7 or r, = 1.3, and up to 5% when r, = 1.0. Again, for all values of r,,
increased performance in terms of ¢, is attained at the expense of quality fluctuations.

6 Conclusion

In this paper we have designed equivalent streaming policies for adding/dropping layers and
for switching among versions, in order to compare the two adaptation schemes under different
critical conditions. Our results showed that our heuristics for both schemes successfully adapt
the streaming to exploit the available TCP-friendly bandwidth. But, in the simplest implemen-
tation, the overhead introduced by layering makes switching versions always perform better
than adding/dropping layers. However, when using the immediate enhancement implementa-
tion for adding/dropping layers, and depending on the particular bandwidth behavior, neither
scheme seems to dominate : the enhanced flexibility provided by layering can compensate the
loss in high quality viewing time that comes from the layering overhead, but at the expense of
more fluctuations in quality. Since adding/dropping layers seems more proper to caching than
switching versions, we advocate to use adding/dropping layers rather than switching versions.
In future research, we intend to compare precisely the performance of both methods in the
context of caching.

References

[1] R. Aravind, M. R. Civanlar, and A. R. Reibman. Packet Loss Resilience of MPEG-2 Scalable Video Coding Algo-
rithms. IEEFE Trans. Circuits and Systems for Video Technology, 6:426-435, October 1996.

[2] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. on
Networking, 7(4):458-472, Aug. 1999.

[3] X. et al. Li. Layered Video Multicast with Retransmission (LVMR): Evaluation of Error Recovery Schemes. In
G. Parulkar, editor, NOSSDAV ’97. Springer, Berlin, May 1997.

[4] J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-Based Flow Control. Technical report, Jan. 1997.

[5] S.McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. In Proc. ACM SIGCOMM, Stanford,
CA, Aug. 1996.

[6] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based tcp-friendly rate control protocol. In IEEE
NOSSDAV’99, Basking Ridge, NJ, June 1999.

[7] R. Rejaie, D. Estrin, and M. Handley. Quality Adaptation for Congestion Controlled Video Playback over the
Internet. In Proc. of ACM SIGCOMM ’99, Cambridge, Sept. 1999.

[8] R.Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End Rate-Based Congestion Control Mechanism for Realtime
Streams in the Internet. In Proc. of IEEE INFOCOM, New York, Mar. 1999.

[9] D. Saparilla and K. W. Ross. Optimal Streaming of Layered Video. In Proceedings of IEEE Infocom, Tel Aviv,
Israel, March 2000.

[10] D. Saparilla and K. W. Ross. Streaming Stored Continuous Media over Fair-Share Bandwidth. In Proceedings of
NOSSDAV 00, Chapel Hill, North Carolina, June 2000.

[11] D. Sisalem and H. Schulzrinne. The Loss-Delay Based Adjustment Alogrithm: A TCP-Friendly Adaptation Scheme.
In NOSSDAV, 1998.

[12] T. Turletti, S. Parisis, and J. Bolot. Experiments with a layered transmission scheme over the Internet. Technical
Report RR-3296, INRIA, France, 1997.

[13] L. Vicisano, L. Rizzo, and Crowcroft J. TCP-like congestion control for layered multicast data transfer. In INFOCOM,
1998.

14 . Wang an . Zhu. Error Control and Concealment for Video Communications: eview. In Proc. of the ,
Y. W, d Q. Zhu. E C l and C 1 for Video C icati A Revi In P f the IEEE
volume 86, pages 974 — 997. May 1998.

10

