
Secure and Resilient Peer-to-Peer E-Mail: Design and Implementation

Jussi Kangasharju
Telecooperation Group

Dept. of Computer Science
TU Darmstadt

Darmstadt, Germany

Keith W. Ross
Dept. of Computer and

Information Science
Polytechnic University

Brooklyn, NY

David A. Turner
Dept. of Computer Science

CSU San Bernardino
San Bernardino, CA

Abstract

E-mail is a mission-critical communication function for
virtually all institutions. Modern e-mail employs a server-
centric design, in which the user is critically dependent on
her mail server. In this paper we present a peer-to-peer
(P2P) email architecture that eliminates the need to rely on
a single server and boosts the resilience of email against
any kinds of attacks. Our architecture also provides con-
fidential communications for all users. We present how
the basic mechanisms of sending and reading email are
implemented in our architecture. We also consider addi-
tional schemes to improve anonymity in our architecture.
We present our prototype implementation and discuss the
future of P2P communication architectures.

1. Introduction

E-mail is a mission-critical communication function for
virtually all institutions, including corporations, universi-
ties, armies, and families. Given the paramount importance
of e-mail in modern society, it is disturbing how vulnera-
ble the e-mail user can be to attacks and failures. Indeed,
modern e-mail employs a server-centric design, in which
the user is critically dependent on her mail server, which
receives, stores, and provides access to the user’s inbox. If
this mail server is down – due to, for example, inadvertent
faults, disasters, physical or cyber attacks – the user can nei-
ther receive nor access her messages.

Many mail service providers – including Hotmail, Ya-
hoo, and Critical Path – have patched the dependability
problem by creating mail-server clusters. The cluster is not
only responsible for receiving, storing and delivering many
users’ messages, but it also replicates messages across the
different servers in the cluster. Thus, if one of the mail
servers becomes unavailable, the cluster can continue to re-
ceive, store, and deliver messages. However, this patch only
provides a marginal improvement in resilience, as it does

not address scenarios in which the entire cluster is taken
out, such as when the cluster is behind an access link that
is severed or flooded with denial-of-service traffic, or when
the building housing the cluster is physically destroyed. Al-
though it is possible to distribute the cluster (even across
continents), operating such a cluster is also extremely ex-
pensive. Our architecture does not incur any additional
costs since it uses resources (disk space, processing capac-
ity) that already exist on the computers of the users.

In addition to providing insufficient resilience, today’s
server-centric approach suffers from a number other prob-
lems [9, 10], including storage stress due to attachments
with multiple recipients; and server processing stress, re-
quiring mail server providers to deploy hundreds of ma-
chines in their clusters. Even on a smaller scale, such as
in a university, the mail servers have become a severe bot-
tleneck because the mail servers are responsible for filtering
out spam and checking messages for viruses.

In this paper we describe an architecture, and a corre-
sponding prototype that we have built, for serverless P2P
e-mail. Our P2P e-mail application runs directly over a
distributed hash table (DHT) substrate, such as CAN [5],
Chord [8], Pastry [6], or Tapestry [11]. Although our archi-
tecture requires a DHT substrate, it can use any DHT sub-
strate that provides a key-to-node mapping. Furthermore,
our architecture does not use an intermediate persistent file-
system layer such as CFS [1], PAST [7] or OceanStore [3].
The architecture is resilient to faults, disasters, and attacks,
can diminish server storage and processing stress, and pro-
vides better security and privacy than ordinary e-mail.

This paper is organized as follows. Section 2 presents the
architectural components of our system. Section 3 presents
the details of P2P e-mail delivery and Section 4presents
a reliability analysis. In Section 5 we consider interoper-
ability with standard email protocols. Section 6 presents
our prototype implementation of the P2P email architec-
ture. Section 7 discusses the future of P2P email systems.
Finally, Section 8 concludes the paper.

2. Architectural Preliminaries

As a first step, we have designed a simple store and for-
ward e-mail delivery system. In our design, we leave the
preservation and management of retrieved e-mail messages
to the user agent (UA), whether this be done in local storage
or in a distributed file system. We have chosen this design
to increase the ease of adoption by individual e-mail users
and by e-mail service providers.

In order to study the feasibility and requirements of a
P2P email system, we have kept the features of our archi-
tecture to a bare minimum. This architecture is not meant
to replace the current server-based email architecture; in-
stead our goal is to identify the key requirements of such an
architecture.

2.1. Basic Components

Our system requires the external services of a DHT sub-
strate. A DHT substrate consists of a large number of com-
puters (hundreds to millions), called nodes or peers. Each
node has a nodeID in the DHT space, which is the set of
all binary strings of some fixed length along with a metric.
We assume that the DHT substrate provides applications the
following lookup service: The application supplies an ar-
bitrary key (an element in the DHT space) and a variable k,
and the lookup service returns to the application the k active
nodes in the DHT that are the closest to the key1.

The system is comprised of system nodes (also called
nodes) and UAs. The system nodes are the computers in a
DHT substrate. The role of the system nodes is to provide
persistence for messages that are in transit from sender to
recipient. The UAs are the mail reader programs that are
run by the users. The UAs access the e-mail system through
the system nodes. A UA may or may not be running on a
system node (that is, a node in the DHT substrate); in the
case when it is not, the UA must have the IP address of at
least one of the system nodes to access system functionality.

Each user, such as Alice, has an e-mail address, which
Alice can publish and which other users can send e-mail
to. We also require the external services of a certificate au-
thority, which creates e-mail address certificates that bind
e-mail addresses to public keys. Alice’s public key is con-
tained in the certificate and we assume that Alice has access
to her private key on her local computer in a trusted manner.

Alice has an incoming inbox, which is associated with
her e-mail address. Alice’s inbox only stores notifications of
unread messages; the e-mail message bodies themselves are
stored separately under their own unique identifiers. Fig-
ure 1 shows an overview of the inbox and messages. Our
initial architecture is similar to the traditional POP-based

1Pastry and Tapestry provide this functionality; Chord and CAN would
need to be extended to get k closest nodes.

Folder

Message

Message

Message

New Msg

New Msg
Inbox

Folder

Alice’s Computer

Peer C

Peer B

Peer A

Figure 1. Overview of architecture. Peer A
stores Alice’s inbox and peers B and C store
new message bodies.

Object Identifier
Inbox E-mail address
E-mail address cer-
tificate

E-mail address and
”-certificate”

Message body Message ID header

Table 1. Objects and their identifiers

email architecture, that is, Alice keeps track of the messages
she has read on her computer. The same computer also
stores information about all folders (except inbox). When
Alice reads her new messages she downloads them to her
computer and deletes to message bodies on the peers. (It is
possible to leave them on the peers, but as we present later,
our architecture does not guarantee their persistence.)

Thus, our P2P e-mail system uses the DHT substrate to
store three types of objects: e-mail address certificates, e-
mail message bodies, and inboxes. Table 1 lists these ob-
jects along with their respective identifiers. All UAs and
system nodes use the same hash function to map an object’s
identifier to a key, which is an element in the DHT space.

2.2. Service Primitives

Our P2P e-mail system has five service primitives that
can be invoked on individual nodes: store, fetch, delete,
append-inbox and read-inbox. User agents call these ser-
vice primitives to perform the higher-level system functions
of sending, retrieving, and deleting e-mails. UAs invoke
these services on individual nodes in the DHT substrate;
thus, to invoke the service on a particular node, the UA must
know the IP address of the node. We assume that the IP ad-
dress is returned by the lookup service when the UA queries
it.

In order to avoid complex synchronization procedures,
we require no coordination between the system nodes – the
UAs are responsible for replicating data across the system
nodes. We stress that our architecture does not require any

consistency mechanisms for the stored objects, since we do
not need the ability to modify the objects. We now describe
the five service primitives.
Store service primitive

The store function is used to store e-mail message bod-
ies and e-mail address certificates. The store function takes
as arguments an object, the object’s identifier, and a set of
e-mail address certificates for the users who have permis-
sion to delete the object. In the case that the object is an
e-mail message body, the object identifier is the RFC 2822
message ID, and the certificate set contains the certificates
of each recipient. In the case that the object is an e-mail
address certificate, the object identifier is an e-mail address
appended with ”-certificate,” and the certificate list will con-
tain the certificate itself to enable the owner of a certificate
to remove it from storage.

As we will describe more fully in a subsequent section, a
UA uses the store primitive to store an e-mail message body
in the k nodes responsible for the message body. When a
UA creates a message, it hashes the message ID to obtain a
key. The UA then uses the DHT lookup service to obtain the
IP addresses of k nodes that are closest to the key. The UA
then sends a copy of the e-mail message body to each of the
k nodes, asking each one to use its store service primitive,
and providing each one with the message body, the message
ID, and the set of e-mail address certificates.
Delete service primitive

The delete function is used by a requester to reclaim stor-
age space in an individual node by removing unneeded ob-
jects from its storage. The delete function takes an object
identifier and a requester’s e-mail address as its arguments.
When the receiving node gets a request to delete an object,
it locates the requester’s certificate in the object’s certificate
list, and uses it to authenticate the requester. After authen-
tication, the receiving node removes the requester’s certifi-
cate from the object’s certificate set. If the resulting certifi-
cate set is empty, the object is discarded. If the certificate
set is not empty, the receiving system node maintains the
object. This procedure enables e-mails with multiple recip-
ients to consume the same amount of storage resources as
e-mails with a single recipient.

We note that the UA’s list of k nodes closest to the key
for a message body may include some nodes that do not
contain the message body. This will be the case when new
nodes join the network with nodeIDs that are close to the
key. The UA may attempt to reach older nodes by widening
its search to include more than k nodes. Otherwise, garbage
collection procedures performed by individual nodes will
eventually remove the message from storage.
Fetch service primitive

The fetch function is used to retrieve stored objects. The
fetch operation takes the object identifier. The operation
returns the object, be it an encrypted message body, or an

email address certificate.
Append-Inbox service primitive

The append-inbox function is used by a sender to append
email message headers to a recipient inbox, which is a con-
tainer of message notifications for the recipient. Because
multiple nodes are used to maintain instances of this inbox,
the inboxes will not necessarily be consistent, because of
unsynchronized message delivery from multiple senders to
a single recipient, along with the possibility of one or more
inbox nodes arriving or departing the DHT substrate. Our
architecture does not require that the inboxes remain con-
sistent; instead we will combine the (possibly) different in-
boxes while reading them (see Section 3.2 for details). The
append function takes as arguments an e-mail address and
the encrypted email message headers. The e-mail address
identifies the recipient of the email, and the email message
headers are encrypted with the recipient’s public key.
Read-Inbox service primitive

A UA calls the read-inbox function on a node when it
wants to retrieve message notifications placed into its user’s
inbox. The function takes an e-mail address and returns
(and deletes) the message notifications stored in the node.
The node will permit this operation only to UAs that can
authenticate themselves as the owner of the email address.

Note that although the append-inbox and read-inbox
primitives cause changes to the stored objects, they do not
require any coordination between system nodes. Each sys-
tem node which receives one of these primitives needs only
to enforce local consistency, i.e., each system node can de-
cide its own order of competing append-inbox and read-
inbox calls. The UA will later resolve the (possible) dif-
ferences between different system nodes.

2.3. Garbage collection

A node may perform garbage collection in the normal
course of events, or in response to a storage request for
an object of size that exceeds currently available resources.
The node maintains a list of its stored objects sorted by key.
For each item on the list, the node checks to see if it is still
one of the k closest nodes to the object on the end of the list.
If it isn’t, then this object can be removed from its store.
This procedure is continued until there is enough available
storage for the new object. If the procedure terminates with-
out reclaiming sufficient additional storage, it reports this
failure to the requesting UA.

If we order the list of stored objects according to their
access times, we can use the Least Recently Used (LRU)
replacement policy. This avoids removing objects which are
still needed since it would first target objects which have
not been accessed recently. Note that even with the LRU
replacement policy, the node would still verify whether it is
part of the k closest nodes to the object. If that is the case,

then the object would not be subject to removal.
It is, in principle, possible that the system runs out of

storage space. This is unlikely, though, since it would re-
quire that users send enough mails to fill the system nodes,
but that they never read their mails (which normally triggers
deletion).

3. P2P E-mail Mechanics

The e-mail system is built on top of an overlay network
comprised of semi-reliable nodes. For this reason, data is
replicated across a sufficient number of nodes to guaran-
tee persistence. The user agents handle replication of data
through the service primitives that are exposed by the sys-
tem nodes. In the following sections, we explain how relia-
bility and privacy are accomplished.

3.1. E-mail message creation

To understand how the system delivers email, we de-
scribe the sequence of events that occur when Alice sends
Bob an email message. We refer to Alice’s user agent as A.

1. A appends Bob’s email address with ”-certificate,” and
maps this to a key. A uses the lookup service to obtain
the list of k nodes closest to the key, and fetches Bob’s
certificate from one of these nodes. A authenticates the
certificate, and extracts Bob’s public key.

2. A generates a session key, and uses it to encrypt the
e-mail message body.

3. A generates an RFC 822 message ID that will be used
to identify the message body.

4. A maps the message ID to a key. A uses the lookup
service to obtain the k nodes closest to the key, and
invokes the store operation on each of them, using the
message ID as identifier, and the encrypted message
body as object.

5. A constructs the e-mail message headers (which in-
clude the session key, the message ID header, and a
digest of the message), and encrypts them with Bob’s
public key. A maps Bob’s e-mail address to a key.
A obtains from the lookup service the k nodes clos-
est to the key, and invokes the append-inbox function
on each of them with Bob’s e-mail address and the en-
crypted message headers.

3.2. Reading and flushing the inbox

When Bob wants to read his new messages, his user
agent B obtains the k nodes closest to Bob’s e-mail address,

which are the nodes to which senders are appending mes-
sage notifications. Because there is a chance that the in-
boxes stored across these nodes are inconsistent, B invokes
the read-inbox operation on all k nodes, and forms the su-
perset of message notifications returned from all k nodes.
Each node will delete the message notifications once it has
sent them to the user agent, and so the user agent becomes
wholly responsible for maintaining the persistence of these
e-mail message notifications. B decrypts the message head-
ers using Bob’s private key.

3.3. Retrieving a message

When Bob wants to read a particular e-mail, the user
agent obtains the k nodes closest to the key of the message
ID. The user agent invokes the fetch operation on one of the
nodes, and verifies that the message body is valid by com-
paring a digest of the retrieved object with a digest that the
sender placed in the message headers. If the message body
is not on the node, or if the message digest is not valid, the
user agent invokes the fetch operation on one of the other
nodes, and repeats until it obtains a satisfactory result.

Once the message body object has been obtained, the
user agent decrypts the object with the session key that the
sender placed in the message headers. The user agent in-
vokes the delete operation on all k peers to remove its cer-
tificate from the list of certificates attached to the message
body. If Bob’s certificate is the last on the list, the node will
remove the object from storage.

Because the message headers have left peer storage,
there is little motivation for user agents to leave message
bodies in peer storage, other than to avoid the consumption
of local storage. For this reason, user agents are expected
to perform message deletion immediately following mes-
sage retrieval. (As Figure 1 shows, it is possible to let the
messages remain on the peers, but unless they are accessed
regularly, they are likely to be evicted through garbage col-
lection. This discourages using the email storage as a dis-
tributed storage system for files.)

3.4. Virus Checks and Spam Filtering

One important feature of our architecture is that it allows
for complex spam processing and checking without over-
loading a mail server. Because the messages are encrypted,
any filtering or virus checking can only take place when the
message is decrypted at the UA. Hence, we propose to in-
clude these functions as an integral part of the UA.

The UA periodically updates its virus definitions from a
known source, such as the web site of the manufacturer of
the anti-virus software. Before showing the message to the
user, the UA will check it for viruses and if any are found,
the message is quarantined.

Spam filtering can function the same way, by down-
loading a list of known spammers from some well-known
source. Alternatively, a user can require all messages to be
signed by the sender and allowing only authorized senders
to send messages. (This would require some additional
mechanism for people who are not on the whitelist to be
able to send email, such as a confirmation message.)

Currently filtering and virus checks are typically per-
formed by the mail server of the user, in order to guar-
antee the same service for all users. This additional pro-
cessing can, however, put a considerable strain on the mail
server. Our architecture offloads this processing on the
peers. If this functionality is provided as an integral part
of the mailreader and it automatically updates itself as pre-
sented above, we believe that the users will enjoy the same
level of filtering and virus checking.

4. Persistence of Data

Stored objects may become unavailable because of nodes
going up and down or joining the network, or through
garbage collection. In this section, we will investigate the
effects of node dynamics on the persistence of objects.

Suppose the whole network comprises of I nodes, and
that a message (or inbox or email address certificate) is
replicated on k nodes. Suppose that a node may be down
at any given time with probability p.2 Furthermore, sup-
pose that N nodes join the network between the creation of
the message and the time the user reads it. We also assume
that nodes are uniformly distributed in the DHT space.

The message may be lost if one of three things happen.
First, all the k nodes with the message may be down when
the user reads the message. Second, k nodes that were down
when the message was created were actually the k closest
nodes and they are up when the message is read. Third,
k of the N new nodes are closer to the ID of the message
than any of the k nodes (i.e., the new nodes become the
new k closest nodes). Note that second and third cases can
be solved by extending the search beyond k nodes. The
probability of the first case happening is equivalent to

pl1 = (1 − p)k. (1)

At any given time, (1 − p)I nodes on average are down.
For simplicity, we assume this to be an integer and then the
probability of the second case happening is

pl2 =
(1−p)I∑

i=k

(
(1 − p)I

i

) (
p(1 − p)

I

)i

(2)

2For simplicity, we have assumed nodes to be homogeneous. In the
real world node up probabilities would be heterogeneous and our analysis
would give results for the average case.

I
102 103 104

pl3 ≈ 10−10 10−15 10−20

p pl1 ≈ pl2 ≈ (for given I and p)
0.99 10−10 0 10−15 10−15

0.9 10−8 10−8 10−8 10−8

0.5 0.03 10−4 10−4 10−4

0.3 0.17 10−3 10−3 10−3

Table 2. Probability of loss. Orders of magni-
tude for pl1 is on the left and for pl3 at the top.
The inner cells give the order of magnitude of
pl2

In other words, at least k nodes were down and when
they came up, they turned out to be closer than any of the
old nodes. The probability of the third case happening is

pl3 =
N∑

i=k

(
N

i

)
1

(I + 1)i
(3)

Table 2 shows approximate values of (1), (2), and (3)
for k = 5 and different values of p and I . As we can see,
pl1 typically dominates over the other two cases. The loss
could also happen because of a combination of all the three
causes, but the probability of this would still be mainly de-
termined by pl1 . In the following, we will only consider the
possibility of the k nodes being down.

Given the above definitions, when a user reads her mes-
sage, the probability of success is

ps = 1 − pl1 = 1 − (1 − p)k. (4)

From a user’s point of view, a successful action requires
several operations to succeed. For example, to read new
messages, the user needs to be able to retrieve her inbox
and also the new message. Hence, we need two successful
operations in a row to complete the user’s action. Like-
wise for sending a message, where the sender needs to re-
trieve the recipient’s email address certificate and append
the message headers to the inbox. Deleting does not require
any successful operations, since the garbage collection will
eventually remove the message from storage. In the follow-
ing, we consider that we require two successful operations
to complete a user’s action successfully. Note that a failure
here only means a temporary failure; the UA can repeat the
operations later, until they succeed.

We define pt as the probability of success we want our
email application to provide to users. That is, we want that
any action taken by any user succeeds with probability p t.
By varying pt we can provide different levels of quality of
service to the users.

Let pt be our target level of quality of service and let n
be the number of operations we need to complete an action.
Then

pt = pn
s = (1 − (1 − p)k)n (5)

Solving for k we get

k =
log(1 − n

√
pt)

log(1 − p)
(6)

This is the number of copies we should create to provide
the desired level of quality of service (pt) given the up prob-
ability of the nodes (p). In Figure 2 we shows what value
of k gives us the desired pt for three values of n = 2, 100,
and 10000. We show values of pt from 99% up to 99.999%.
Although an overall target probability of 99% is likely to be
too low for important applications (1 action in 100 cannot
be immediately satisfied), it gives us insight how much we
need to increase k to get an “extra nine” in pt.

Figure 2(a) shows the basic case of completing one ac-
tion. As we can see, when p is relatively high, p > 0.75,
we need roughly 1 or 2 more copies to get an extra nine,
and when nodes are mostly down, p = 0.3, then we need
roughly 5–7 additional copies for the same performance in-
crease.

Figures 2(b) and 2(c) show the behavior of (6) for higher
values of n. When n is 100, this is equivalent to sending
an email to 50 recipients and n = 10000 corresponds to
5000 recipients (e.g., a mailing list). As we can see, for
higher values of p, the required increase in k is quite small,
only a few copies more are needed to complete 5000 actions
successfully. For lower values of p, the additional number
of copies is higher, as is to be expected.

Interestingly, the number of additional copies to get an
extra nine is roughly constant, even when we need to com-
plete a large number of actions.

In the real world, a node would not know the value of p,
hence it must adaptively decide on a correct value of k. A
node (or UA) can determine this by storing small files in the
system and later trying to retrieve them. Depending on the
level of success, the node can determine what the average p
is and, consequently, what value of k is suitable.

5. Interoperability Issues

In this section we will consider issues which arise when
our architecture is used in combination with the legacy
email architecture and its protocols.

Consider a university which has decided to replace its
mail system in favor of our architecture. First, they will
need to install our P2P email application on the computers
they want to use for this system. Note that the number of

participating computers does not need to be large and can
be grown dynamically, even while the system is running.

In order to communicate with the outside world, both for
incoming and outgoing mail, we designate a gateway. Note
that any peer in the system could be the gateway and there
could be any number of such gateways. The only require-
ments for a gateway are that it can be contacted by both the
peers inside the campus as well as anyone outside the cam-
pus. For outgoing mail, the sending peer can act as gate-
way. From the point of view of users outside the campus,
the gateway is identical to the old mail server.

Furthermore, we need a mechanism for users on-campus
to determine which addresses are local and which are not.
Mail to local addresses should be delivered with the P2P
email system and mail to remote addresses is to be sent to
the gateway. This could be determined, for example, from
the domain-part of the destination address.

For incoming mail, off-campus users need a way of de-
termining the address of the gateway. Currently this is
achieved through the MX-records in the Domain Name Sys-
tem (DNS) [4]. If the university maintains its current mail
server as the gateway, then no changes are needed. Because
the mail server would only act as gateway, i.e., only take
mail from outside senders and distribute it in the P2P email
system, the load on this server would be low. Alternatively,
the university could specify several peers from campus as
its MX-hosts. For interoperability with the legacy mail sys-
tem, it is vital that outside users can get the address of a
gateway by performing an MX-query in the DNS.

Hence, for SMTP interoperability, the only requirement
is that the gateway implements SMTP, both for incoming
and outgoing mails, and that the address of the gateway can
be obtained with an MX-query.

Our P2P email application uses its own HTTP-based
commands for reading mails (see Section 6) which is not
compatible with either POP or IMAP. Using a gateway
which translates these protocols into our protocol, it would
be possible to use any mailreader for reading email in our
architecture. However, because we encrypt the inboxes, it
may be difficult to use a standard mailreader, since they
cannot handle this; encrypted messages are typically not a
problem for most modern mailreaders. We do not expect
this to be a problem initially, since a user is required to use
the same computer for reading mails; this computer will
have the P2P email application installed. Interoperability
with POP and IMAP is mostly important for mobile users
and we discuss this issue in Section 7.

6. Implementation

In this section we will describe our prototype implemen-
tation of our P2P email architecture. Our implementation
is programmed in Java and it currently implements all the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Individual peer up probability, p

N
um

be
r

of
 c

op
ie

s
ne

ed
ed

, r
p

t
 = 99%

p
t
 = 99.9%

p
t
 = 99.99%

p
t
 = 99.999%

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

Zoom

(a) n = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Individual peer up probability, p

N
um

be
r

of
 c

op
ie

s
ne

ed
ed

, r

p
t
 = 99%

p
t
 = 99.9%

p
t
 = 99.99%

p
t
 = 99.999%

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

Zoom

(b) n = 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Individual peer up probability, p

N
um

be
r

of
 c

op
ie

s
ne

ed
ed

, r

p
t
 = 99%

p
t
 = 99.9%

p
t
 = 99.99%

p
t
 = 99.999%

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

Zoom

(c) n = 10000

Figure 2. Number of copies needed

basic functionality described above. The application is di-
vided into two parts, UA and system node.

The UA application provides an interface for the user
to read and write mails. When the user retrieves new mail
(initiated by clicking on a button), the UA application de-
termines the k peers responsible for the user’s inbox (using
a simple P2P substrate), downloads the inbox from one or
more of the peers (see below for details on how many peers
we contact), clears the inboxes, and finally builds the su-
perset of all new messages locally. Note that the download-
ing and clearing are performed atomically; the atomicity is
enforced by the peers holding the copies of the inbox by
queuing any new notifications that arrive during that time.

Each peer running the system node application listens for
incoming requests from the UAs. The system nodes also
store objects on their local storage and return these objects
when UAs request them. Currently the system nodes do not
implement any garbage collection.

When retrieving or storing objects, we have two addi-
tional parameters that control the extent of the replication
and search, namely maxOps and maxConnections. The
parameter maxOps determines how many times the opera-
tion will be performed and maxConnections determines
how many peers may, at maximum, be contacted. For ex-
ample, if we are reading the inbox and maxOps is 2 and
maxConnections is 5, then we will read the inbox from
2 peers and we will attempt to contact at maximum 5 peers
for retrieving the 2 required copies of inbox. We are investi-
gating the effects of these two parameters to determine how
a future P2P filesystem should be tuned in order to provide
our email application the best possible service.

The message format for the requests and replies (retriev-
ing or storing objects) is HTTP/1.1 [2]. We chose to use
HTTP as the protocol because of the availability of exist-
ing tools for speeding up the development. Table 3 shows
the mapping between the service primitives and the corre-
sponding HTTP requests and their parameters.

We are currently testing our prototype in various situa-
tions to determine the best values for the different param-

Primitive HTTP request
Store PUT
Delete DELETE
Fetch GET
Append-Inbox PUT and Pragma: append-inbox
Read-Inbox GET and Pragma: read-inbox

Table 3. Service primitives and correspond-
ing HTTP requests

eters. We are also looking into implementing garbage col-
lection in the system nodes and improving the persistence
of the stored objects (see Section 4). In the future we hope
to make the email application available for download.

7. Future of P2P Email

In this section we will discuss further work in the area of
P2P email and discuss the future of such systems in general.

Our architecture is only meant as a first step to building a
more complete P2P email architecture. Our goal is to iden-
tify key features and requirements of a P2P email architec-
ture. In our basic architecture, these requirements are, per-
haps surprisingly, low. We only need support from a DHT
substrate and the possibility to store objects on the peers.
However, as far as the storage is concerned, we do not re-
quire any strong consistency features, since we do not need
to modify the stored objects. Any message that is stored
on the peers does not change until the recipient reads it and
deletes the stored object. Through local garbage collection
we can eliminate objects that are lingering around in the
storage (for example because the node was down when the
message was deleted). Likewise for inboxes, we only ap-
pend new message headers and clear the inboxes fully when
messages are read. If there are any inconsistencies in the
contents of the inboxes, these are resolved by creating the
superset of the downloaded inboxes. Should the user desire

a more permanent storage, she can have her UA make sure
that the objects (most notably her certificate) is available
from the k closest nodes, as described in Section 4.

In contrast to a traditional server-centric email archi-
tecture, our initial P2P architecture has two shortcomings.
It does not provide persistent message storage and it con-
strains the user to access her mails from the same computer.
The first one can be remedied by having the UA enforce a
replication policy which guarantees that any stored message
would always be available from the k closest nodes; this
would be relatively simple to achieve. The second one, pro-
viding access on the move, is harder to resolve. Naturally,
we can store the information about folders, read messages,
and mail filters in a file which is stored on the peers and en-
force a replication policy to guarantee its availability. This
would be trivial to implement and as such, providing access
on the move is a non issue. However, because a user needs
access to her private key very often (for decrypting emails
sent to her, for example), she will need to be able to access it
on the move in a trusted manner. This requires either some
trusted hardware (e.g., a smartcard) or requires that the user
always absolutely trust the computer she is using. We are
currently looking into different possibilities for providing
this trusted access.

Because the storage provided by the peers is highly un-
reliable, we will need to create several copies of each stored
object, on the order of 10 to 20 copies at least. In a cen-
tralized server-based architecture, we would need much less
storage space to provide the same level of service. However,
our architecture does not require any additional resources,
since is uses the disk space that is already installed on the
peers. This means that our email architecture incurs no ex-
tra cost as opposed to setting up a costly mail server.

Although we have concentrated on email in this paper,
our architecture could just as easily be used for any kind of
user-to-user communication, such as instant messaging. A
P2P architecture could be an ideal vehicle for bringing these
different forms of communication together.

Another interesting aspect of P2P communication archi-
tectures is their resilience against attacks. A single mail
server makes for an easy target, but if the mail is delivered
through a P2P architecture, comprising of millions of peers,
communications can be guaranteed in any conditions. A
P2P email architecture could also serve as a backup system
for the standard mail server and would provide continuity
of service. Even the simple architecture presented in this
paper would provide sufficient service to ensure business
continuity should the primary mail server fail.

8. Conclusion

In this paper we have presented an architecture for im-
plementing an email service on a DHT-based P2P network.

Our architecture eliminates the single-point of failure of
modern mail servers and reduces stress on the mail servers.
It can also guarantee the anonymity of the senders and re-
cipients. This email architecture is meant as a first step to-
wards understanding how complex applications can be built
on top of unreliable P2P networks. We have also presented
a prototype implementation of our email architecture.

References

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In ACM
SOSP, Banff, Canada, Oct. 2001.

[2] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertext Trans-
fer Protocol – HTTP/1.1, June 1999.

[3] J. Kubiatowicz et al.OceanStore: An architecture for global-
scale persistent storage. In Proceedings of ASPLOS, Boston,
MA, Nov. 2000.

[4] P. V. Mockapetris. RFC 1035: Domain names — implemen-
tation and specification, Nov. 1987.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of SIGCOMM, San Diego, CA, Aug. 27–31, 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms, Heidelberg, Germany, Nov. 2001.

[7] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In ACM SOSP, Banff, Canada, Oct. 2001.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of SIGCOMM, San
Diego, CA, Aug. 27–31, 2001.

[9] D. A. Turner and K. W. Ross. Continuous media e-mail on
the internet: Infrastructure inadequacies and a sender-side
solution. IEEE Network, 14(4):30–37, July/Aug. 2000.

[10] D. A. Turner and K. W. Ross. A comprehensive architecture
for continuous media email. IEEE Multimedia, 8(2):88–98,
Apr./June 2001.

[11] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB//CSD-01-1141, University
of California, Berkeley, Apr. 2000.

