The Index Poisoning Attack
in P2P File Sharing Systems

Jian Liang
Department of Computer and
Information Science
Polytechnic University
Brooklyn, NY 11201
Email: jliang@cis.poly.edu

Abstract— P2P file-sharing systems have indexes, which users
search to find locations of desired titles. In the index poisoning
attack, the attacker inserts massive numbers of bogus records
into the index for a set of targeted titles. As a result, when a
user searches for a targeted title, the index returns bogus results,
such as bogus file identifiers, bogus IP addresses, or bogus port
numbers. In this paper we first show that both structured and
unstructured P2P file-sharing systems are highly vulnerable to
the index poisoning attack. We then develop a novel and efficient
methodology for estimating index poisoning levels and pollution
levels in file-sharing systems. The methodology is efficient in
that involves neither the downloading nor the analysis of binary
content files. We deploy data-harvesting platforms for FastTrack,
an unstructured file-sharing system, and Overnet, a DHT-based
file-sharing system. Applying our methodology to harvested data,
we find that index poisoning is pervasive in both systems. We
also outline a distributed blacklisting procedure for countering
the index poisoning and pollution attacks.

I. INTRODUCTION

By many measures, P2P file sharing continues to be one of
the most important applications in the Internet today. There
are currently more than 8 million users simultaneously con-
nected to either FastTrack/Kazaa, eDonkey2000 and eMule,
with many additional users sharing files with BitTorrent. The
content being shared includes MP3 songs, entire albums,
television shows, entire movies, documents, images, software,
and games. In 2004, in a tier-1 ISP, P2P file sharing accounted
for more than 60% of traffic in the USA and more than 80%
of the traffic in Asia [1].

Because of the potential of huge losses, the “copyright
industry” (including the music, film, television, gaming, and
book publishing industries) is aggressively attempting to cur-
tail the unauthorized distribution of content in P2P file shar-
ing systems. Along with judicial and legislative efforts, the
copyright industry is sabotaging many of the more popular
file sharing systems. An Infocom 2005 paper [2] exposed
and investigated the pollution attack in the FastTrack file-
sharing network (see also [15] [13]). In the pollution attack, the
attacker corrupts the targeted content, rendering it unusable,
and then makes this polluted content available for sharing
in large volumes. Unable to distinguish polluted files from
unpolluted files, unsuspecting users download the polluted files
into their own file-sharing folders, from which other users may

Naoum Naoumov
Department of Computer and
Information Science
Polytechnic University
Brooklyn, NY 11201
Email: naoum@cis.poly.edu

Keith W. Ross
Department of Computer and
Information Science
Polytechnic University
Brooklyn, NY 11201
Email: ross@poly.edu
Phone: 1-718-260-3859

then later download the polluted files. In this manner, polluted
files spread through the file-sharing system. In the Spring of
2004, pollution was highly prevalent in the FastTrack system,
with as many as 50% to 80% of the copies of popular titles
being polluted [2].

In the current paper we expose and investigate a different
— and even more insidious — attack, which we refer to as the
index poisoning attack. As we shall show in this paper, both
structured (that is, DHT-based) and unstructured file-sharing
systems are highly vulnerable to, and currently under attack
from, index poisoning. To describe this attack, recall that
most P2P file sharing systems have indexes, allowing users to
discover locations (IP addresses and port numbers) of desired
content. Depending on the file sharing system, the index may
be centralized (as it was in Napster), distributed over a fraction
of the file-sharing nodes (as in FastTrack), or distributed over
all (or a large fraction) of the nodes (as in Overnet and other
DHT-based systems).

The index poisoning attack is done by inserting massive
numbers of bogus records into the index. Records can be
poisoned in many ways, but one common method is to use
randomly chosen file identifiers (that is, content hashes) which
do not correspond to any existing files in the file-sharing
system. When a user attempts to download a file with a
randomly generated identifier, the file sharing system fails to
locate associated actual file and displays in the GUI “more
sources needed” or “looking”. The file-sharing system typi-
cally continues to search for the non-existent file. In response
to “more sources needed,’ the user may attempt to download
the title with a different identifier (seemingly from a different
location), which may again result in “more sources needed”.
If the attacker succeeds in massively poisoning the index for
the title, the user may try tens of identifiers without locating
a copy of the desired title. If the user doesn’t locate a file in
its attempts, it will typically abandon the search.

A drawback of the pollution attack is that it requires
significant bandwidth and server resources to be successful.
In particular, in the early stages of the attack, when the title is
just released, the attacker needs to make available corrupted
copies of the title from many sources, all with high-bandwidth
connections (in order to entice the user to download from the

attacker); the attack servers must also respond to a flood of
requests and perform expensive uploads. One of the “beauties”
of the index poisoning attack is that it requires substantially
less bandwidth and server resources. Specifically, with index
poisoning, the attacker does not need to transfer files; instead
it simply deposits large numbers of bogus text records in the
index. Thousands of bogus records per title, all with different
identifiers, can be deposited into the index from a single attack
node. Currently, the copyright industry is deploying in concert
the index poisoning and the pollution attacks.

The paper investigates the poisoning attack in two file
sharing systems, Overnet and FastTrack. These two file sys-
tems have very different architectural designs. An integral
component of the popular eDonkey2000 file sharing system,
Overnet is a DHT-based file-sharing system. In Overnet, both
keywords and files are hashed, and the resulting records are
placed in nodes with ids that are “close” to the hashes.
Thus the index is distributed over all of the Overnet nodes.
Employed by Kazaa, Grokster and iMesh, FastTrack is a two-
tier unstructured file-sharing system whose index is distributed
over a relatively small fraction of the nodes, called supernodes.

The contributions of this paper are as follows:

o We show that P2P file-sharing systems are highly vul-
nerable to the index poisoning attack. We investigate the
attack’s intricacies for Overnet and FastTrack.

o We develop a novel and efficient methodology for esti-
mating both index poisoning levels and pollution levels
in generic file-sharing system. This methodology is effi-
cient in that it involves neither the downloading nor the
analysis of binary content files. The methodology instead
gathers metadata from the file-sharing indexes. Once the
metadata is gathered, we input the metadata into a simple
off-line algorithm to estimate the poison and pollution
levels.

« We develop and deploy measurement platforms that allow
us to gather the requisite metadata in Overnet and Fast-
Track. To gather the metadata, we use a node-insertion
approach for Overnettion approach for Overnet and a
crawling approach for FastTrack. We show that index
poisoning is currently pervasive in both Overnet and
FastTrack.

o We examine methods for countering the index poisoning
attack. We outline a promising distributed blacklisting
scheme.

« For the index poisoning attack, we compare the required
resources for structured and unstructured P2P file-sharing
systems. Furthermore, we discuss a powerful distributed
denial-of-service attack that can be created by index
poisoning a DHT-based file sharing system. In particular,
we have discovered that Overnet can be exploited for such
an attack.

The contribution of the current paper is significantly differ-
ent from that of the Infocom 2005 paper [2]. The Infocom
2005 paper measured only the FastTrack network and, in
particular, only investigated the pollution attack in the Fast-

Track network. That measurement study took place in 2004,
when index poisoning was not pervasive. Furthermore, the
methodology for pollution estimation, presented in [2], was
inefficient in that it required a large number of binary files
to be downloaded and analyzed for each investigated title.
Thus, the current contribution goes well beyond the Infocom
2005 paper in that it investigates index poisoning as well as
pollution, for Overnet as well FastTrack, provides a novel and
efficient methodology for estimating poisoning and pollution
levels, and addresses blacklisting mechanisms to counter the
index poisoning attack.

This paper is organized as follows. Section 2 introduces
terminology and provides and overview of the index poisoning
attack. Section 3 details the index poisoning attack in Fast-
Track and Overnet. Section 4 presents our methodology for
accurately estimating poisoning and pollution levels. Section
5 presents our measurement results. Section 6 describes a
distributed blacklisting scheme for countering the index poi-
soning and pollution attacks. In Section 7, we briefly cover a
number or related issues, including a discussion of how index
poisoning can make a DHT the source of a massive DDoS
attack. We also cover related work in Section 7. We conclude
in Section 8.

II. OVERVIEW OF INDEX POISONING
A. P2P Terminology

To explain the index poisoning attack, we first need to
introduce some terminology. In this paper we investigate
attacks against the distribution of songs and videos in P2P
file-sharing systems. We shall refer to a specific song or video
as a title. A given title can have many different versions. These
versions primarily result from the presence of a large number
of rippers/encoders, each of which can produce a slightly
different version of the same title. Furthermore, many file types
include metadata embedded in the file (such as the ID3 tags in
MP3 files), so that additional file versions are created when this
metadata is modified. For a popular title, a file-sharing system
may contain thousands of different versions. Each version has
an identifier, which is typically a hash of the version.

Users download different versions of titles from each other,
thereby creating multiple copies of identical versions in the
P2P file sharing system. At any given time, a P2P file-sharing
system may make available thousands of copies of the same
version of a particular title. Each participating node advertises
to the distributed index information about the copies it is
sharing. For a given file, this advertised information (which
may span multiple messages) includes the version identifier
(typically the hash of the file), the location of the file (IP
address and port number), and keywords associated with the
file.

When a user wants to query for a specific title, the user
performs a keyword search, using keywords that relate to the
title, such as artist name and song/movie title. The keywords
are sent within a query to the distributed index. Depending
on the file-sharing system, a subset of the index may be
examined. The index responds if it has knowledge about copies

matching the keywords. The responses include metadata for
the matching copy, the IP address and port number for where
the version resides, and the version identifier. Depending
on the P2P system that information might be available at
once (e.g. unstructured systems store and retrieve metadata
and location information together), or separately. (DHT-based
systems store metadata and location information at different
nodes and require multiple messages to obtain the two sets of
information.)

A P2P node will typically have two port numbers. One
port number is used for sending and receiving messages,
such as search queries and replies. The other port number is
used for uploading files. We refer to these two port numbers
as the messaging port number and service port number,
respectively.

B. The Index Poisoning Attack

In a typical file-sharing system today, when an index
receives an advertisement for a copy, the index does not
authenticate the advertisement; specifically, it does not verify
that the copy is truly available at the advertised location (an IP
address and port number). In the index poisoning attack, the
attacker falsely advertises copies of the targeted titles. These
false advertisements can be:

« random version identifiers that do not correspond to any
existing versions;
o IP addresses that do not correspond to any nodes partic-
ipating in the file-sharing system;
e or unavailable service port numbers at participating
nodes.
Today, most of the poisoning is due to advertisements with
random identifiers; henceforth, for the sake of clarity, we
describe the attack in that context.
When a user attempts to download an advertised copy with
a non-existent identifier, the file-sharing system fails to locate
the copy and typically responds with “more sources needed”
or “looking”. For the index poisoning attack, the attacker’s
goal is to trick the user into repeatedly selecting advertised
copies with a non-existent identifiers. To achieve this goal,
the attacker advertises a large number of copies with distinct,
random identifiers, thereby densely populating the lines in
the GUI with poisoned, non-existent copies. Additionally, the
attacker may mix in polluted versions, allowing the user from
time-to-time to discover and download an existing version,
only to find that it is corrupted. Henceforth, we use the
terminology decoy attack to refer to the index poisoning
attack or the pollution attack (or a combination of the two
attacks).

C. NATs and P2P

In order to properly measure the extent of ongoing poi-
soning and pollution attacks, it is important to understand
how NATs impact P2P file sharing. A significant fraction of
P2P nodes reside behind NATs. Our measurement work has
found that the fraction of nodes behind NATs ranges from 1/3
to 1/2 depending on the file-sharing system and the time of

day. One of the problems with NATs is that it is difficult to
initiate a TCP connection to a node behind a NAT (unless
the NAT for that node has been manually configured or if
a workaround scheme is employed [16]). Most file-sharing
systems — including Overnet and FastTrack — do not permit
file transfers between two NATed peers.

In order to reach both NATed and unNATed users, a
pollution attacker will need to be unNATed. For these rea-
sons, pollution attack nodes are typically unNATed. For the
poisoning attack, even though the attack nodes do not transfer
files, there are advantages for being unNATed in FastTrack.
We have observed that poisoning attack nodes are unNATed
for both FastTrack and Overnet. It should be noted, however,
that throughout this paper we never assume that the decoy
attackers are unNATed. Our methodology applies when the
decoy attackers have all or some of their servers behind NATs.

D. Definition of Poisoning and Pollution Levels

One of the contributions of this paper is an efficient method-
ology for estimating poisoning and pollution levels of titles in
file sharing systems. Now we more precisely define the terms
“poison level” and pollution level” for a title. We do this
for both versions and copies. In any P2P file-sharing system,
as nodes connect and disconnect, copy advertisements are
published and de-published (or timed out) in the distributed
index. Suppose the investigation period is the time interval
(t,t + A) where A is on the order of hours. Fix a particular
title, 7.

Let V be the set of all versions advertised over this period
for the title 7. Each advertised version is either a poisoned
version (that is, non-existent), a polluted version (existent
but intentionally corrupted) or a clean version. Denote by
V1, Vo and V3 for the sets of poisoned, polluted, and clean
advertised versions. We define the version poison level to
be the fraction of poisoned versions advertised during the
investigation interval, that is, LY = [V1|/|V|. Similarly, the
version pollution level and version clean level are defined to
be LY = |Va|/|V| and LY = |V3]/|V|, respectively.

We now define the copy poison level and copy pollution
level, which we more simply refer to as the poison level and
pollution level. For each version v € V, let C,, be the set of
all distinct copies advertised during the investigation interval
for the version v. Then the poison level L;, pollution level
Lo, and clean level L3 are defined as:

, Co
L= eV Gl
> e [Col
III. THE INDEX POISONING ATTACK IN FASTTRACK AND
OVERNET

The paper investigates the poisoning attack in two file shar-
ing systems, FastTrack and Overnet. These two file systems
have very different architectural designs: FastTrack uses an
unstructured, two-tier architecture; Overnet uses a structured
Distributed Hash Table (DHT) architecture.

A. Overview of FastTrack

With more than two million simultaneous active nodes
(in June 2005), FastTrack remains one of the largest P2P
file sharing systems. It is used by several FastTrack clients
including Kazaa, kazaa-lite, Grokster, and iMesh.

FastTrack is decentralized and unstructured (that is, no
DHT). FastTrack has two classes of nodes, Ordinary Nodes
(ONs) and SuperNodes (SNs). SNs have greater responsibili-
ties and are typically more powerful than the ONs with respect
to availability, Internet connection bandwidth and processing
power. When an ON launches the FastTrack application,
the ON establishes a TCP connection with a SN, thereby
becoming a “child” of that SN. For each file it is sharing, the
ON then provides to the SN the file’s version identifier and
metadata. This allows the SN to maintain a local index which
includes identifiers, metadata (including title), and locations
for all the files its children are sharing along with locations.
Importantly, when a ON disconnects, its SN removes it from
its index. Each SN also maintains long-lived TCP connections
with other SNs, creating an overlay network among the SNis.

When a user wants to find files, the user’s ON sends a query
with keywords over the TCP connection to its SN. The SN may
forward this query to one or more of its neighbors. If a SN
finds a match in its local index, the SN returns a reply, which
follows the reverse path in the overlay. A reply may contain
multiple advertised copies. For each advertised copy in the
reply, the reply contains the version identifier, the location of
the copy (IP address and service port number) and metadata.
The GUI displays one result per line for each unique identifier
received.

B. Index Poisoning in FastTrack

For FastTrack, the index poisoning attack is to insert bogus
records into the indexes of the SNs. To pollute a SN node
index, the attack node must create and maintain a TCP
connection to the SN, and publish either bogus identifiers (not
corresponding to any existent copies), bogus IP addresses or
bogus port numbers.

For FastTrack, the index poisoning attack requires ongoing
TCP connections to each targeted SN. FastTrack has roughly
20,000 supernodes in operation [3]. The more SNs that an
attacker index poisons, the more successful the attack. A single
attack node can maintain TCP connections with hundreds
of SNs, and over each of these connections it can advertise
thousands of bogus versions for one or more titles.

C. Overview of Overnet

Overnet is part of eDonkey2000, which is one of the more
popular file sharing systems today [1]. Overnet is one of the
largest deployed DHTs today, with about one million nodes
participating in the overlay at any one time, according to
statics reported in eDonkey2000 GUI. eMule, an open-source
“cousin” of eDonkey2000, also has a DHT-based network with
a large number of users.

Overnet is based on the Kademlia DHT [14]. All partici-
pating nodes have equal roles and no hierarchy exists. When

a client joins Overnet, it joins with a 128-bit ID. Presented
with any 128-bit key, the Kademlia DHT finds the nodes that
have the closest IDs to the key. To locate the closest nodes,
Overnet uses UDP messages and iterative searches. Thus, to
find the closest node to a key, the querying client will send
UDP messages to a sequence of nodes, with each node in the
sequence having an ID that is closer to the key.

When a node joins Overnet, it advertises information about
the files it is sharing. Specifically, for each file it is sharing,
after hashing the file to obtain the version identifier, the joining
node sends into the DHT a message with the file location
(IP and port) with the identifier as the key. This message is
routed iteratively to the nodes that are close to the identifier
in the ID space. When these nodes receive the message, they
update their local indexes with a record <key, value>, where
key is the version identifier and value is the joining node’s
identifier, IP address, and port number. Furthermore, for each
file it is sharing, the joining node extracts keywords from the
file’s metadata and hashes each keyword into a 128-bit key.
For each such keyword, the joining node advertises a record
<key, value>, where key is the hash of the keyword and value
is the version identifier. That record also contains the metadata
information for the file, such as artist, title, album, file size,
etc. Thus, the records in the Overnet index are distributed
across all of the Overnet nodes with a two-phase publishing
mechanism.

When a user queries for a title, the following steps are taken:

1) The client hashes each keyword (with more than a few
characters) provided by the user.

2) For each hashed keyword, the client iteratively searches
the DHT, with the key being the hashed keyword.
When a query reaches a node that has records for the
keyword, the node sends to the client all of the version
identifiers for which it has corresponding records (along
with the associated title names and other metadata).
The requesting node thus receives several sets of iden-
tifiers, one set for each keyword. The client filters the
responses, keeping only those title names that match all
the keywords. The GUI then displays all of the filtered
responses, with each version on a different line.

3) The user selects a version for downloading. The client
iteratively queries the DHT, with the key being the
version identifier. When a query reaches a node that has
records for the version identifier, the node sends to the
client the the locations of the copies of the versions.

4) The client then attempts to transfer the title from those
locations.

D. Index Poisoning in Overnet

The attacker first determines keywords from the title and
hashes the keywords. The attacker then poisons with one of
two approaches:

1) The attacker generates a random identifier, not derived
from the hash of some file. The attacker publishes <key,
value> pairs, where key is the hash of a keyword and
value is the random identifier. When a user searches

for the keyword, the user’s client receives the bogus
identifier. If the user selects the bogus identifier, the
DHT displays “looking” and searches indefinitely for
the identifier.

2) The attacker first publishes <key, value> pairs, where
the key is a keyword hash and value is a version
identifier. The attacker then sends a second publish
message for <key, location> where the key is the same
version identifier inserted in the previous step, but the
location is bogus (for example, non-present IP address).

Although both of these approaches are feasible, the first ap-
proach is clearly simpler. Our measurement work (see Section
5) has determined that attackers are currently using the first
approach.

Because Overnet uses UDP for messaging, including for
the publish messages, the attacking node does not need to
maintain any TCP connections to index pollute a particular
title. The attacker node simply needs to determine the DHT
nodes responsible for the keywords. Once having determined
those nodes, the attacker can send publish messages directly
to those nodes. For each keyword in the title, the attacker
can advertise hundreds or even thousand of identifiers. To
maintain this bogus information in the index, the attacker
must periodically refresh the poisoned information. DHTs, in
general, are highly vulnerable to the index poisoning attack for
targeted titles, unless appropriate counter measures are taken.
There is also some “natural” poisoning in a DHT because the
indexes contain “soft state” and are maintained with refresh
messages.

IV. METHODOLOGY

To estimate poisoning and pollution levels, the “straight-
forward” approach is to query the file-sharing system, sam-
ple copy advertisements, attempt to download versions from
those advertisements, and then attempt to determine if the
downloaded versions are clean or polluted. This approach
has several flaws. First, it is difficult to develop a reliable
automated procedure to determine if a version is polluted or
not. The paper [2] presented an automated procedure that had
relatively small false positive and false negative probabilities.
Since that study, attackers have begun to corrupt files in a
variety of different ways, rendering automated detection more
difficult if not impossible. The alternative to an automated
procedure is to manually listen to (or watch) the versions.
Such a manual procedure consumes hundreds of hours of
human resources per title. Second, in addition to the human
resources, this approach requires the downloading and storage
of a large number of versions, consuming large amounts of
bandwidth and storage resources. In particular, hours or even
days can be required per title to download a sufficient number
of versions to get an accurate estimate of pollution levels.
Third, if a download attempt fails, the approach may falsely
declare the copy advertisement as poisoned, when in actuality
the sources with the version may have full request queues.

Our methodology, which does not involve the downloading
of any files, has the following steps:

1) Over the measurement period, track the advertised
copies. For each advertised copy, we record the ver-
sion identifier along with the node that published the
message. We refer to this step as harvesting. From the
harvested data, create a list of the advertised versions,
and for each advertised version a list of the distinct
advertised copies. This step needs to be customized for
each file-sharing system.

2) Determine from the harvested data which advertised
versions are poisoned, which are polluted, and which
are clean. This step is generic to many P2P file sharing
systems and involves a crucial substep in determining the
sources that are responsible for poisoning and polluting
the system.

3) Determine the poison and pollution levels, for both
versions and copies, based on the equations given in
Section 2.

We now elaborate on each of these three steps. Let 7 denote
the set titles under investigation.

A. Harvesting in FastTrack

In the first step we need to determine the distinct advertised
copies for each of the investigated titles. In [2] we described
our FastTrack Network crawling platform. In this paper, we
use that crawler to obtain the following information for each
title investigated over the measurement period: the set of
version identifiers; for each identifier, a list of advertised
copies, and for each copy on the list, the source IP address
and the service port number. If the source is behind a NAT,
then this harvested source IP address will be the node’s
private IP address. Because many NATed nodes have the
same IP address, we have to take special care to distinguish
the different nodes and properly count the distinct advertised
copies. Very few FastTrack nodes use the default service port
[3] and the majority choose service port numbers at random.
Thus, we can distinguish between distinct copy advertisements
by using the tuple (IP address, service port number), even
when nodes are behind NATSs.

For the investigated titles, we selected 10 songs from the
iTunes top-100 list in April of 2005 [6]. We harvested the
copy information for these 10 titles for a 1-hour period in
April 2005.

B. Harvesting in Overnet

Whereas in FastTrack we harvest by crawling the network,
in Overnet we harvest by inserting our own Overnet nodes
into the DHT. For each title, we extract one of the keywords
from the title’s name and hash it. For each hashed keyword,
we insert our own Overnet node with node ID configured to
be the 128-bit value of the hashed keyword. In this manner,
users that advertise a copy for the title will send a publish
message to our inserted node. The inserted node thus collects
advertisements for the title over the measurement period. Each
advertisement is encapsulated in a UDP datagram and includes
the the name of the title, the identifier (content hash) for the
version, as well as other information such as duration, size, etc.

Fraction of copies

0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of users

(a) FastTrack
Fig. 1.

The UDP datagram header provides the source IP address and
the source (messaging) port number. If the source is behind a
NAT, then we still receive the public IP address and public port
number. We then keep a record of all the distinct copies that are
advertised to the inserted node. In Overnet, we consider two
advertised copies to be the same if they have been advertised
with the same source IP addresses and source port numbers;
otherwise, we consider the advertised copies as distinct. Note
that if multiple users are advertising distinct copies of the
same version from behind a NAT, our procedure will correctly
identify the advertisements for distinct copies, as the users
will have different public port numbers. (We could have also
identified unique Overnet nodes with Overnet node IDs as in
[17]. However, because it is easy to generate arbitrary Overnet
IDs, we elected to use IP addresses and port numbers instead.)
For the investigated titles, we selected 10 songs from the
iTunes top-100 list in June of 2005 [6]. These selected titles
are distinct from those selected for the FastTrack experiments
because of the dynamic nature of popular music charts. We
harvested the copy information for these 10 titles for a 1.5-
hour period in June 2005. We chose the time period to reflect
the rate that Overnet clients use to refresh their shared files.

C. Classifying the Versions

After harvesting the requisite data, the next step is to
determine which versions are poisoned, which are polluted,
and which are clean. We now present a novel methodology
that can be applied to any P2P file-sharing system. Throughout
the remainder of the paper, we define a user to be the tuple (IP
address, service port number) for FastTrack and (IP address,
messaging port number) for Overnet.

We begin with the following observation: For many of the
investigated titles, among the users that have at least one
version of the title, the large majority of users advertise at
most a few versions of the title and a relatively small number
of users advertise a large number of versions of the title.
Figures 1(a) and 1(b) support this claim for FastTrack and
Overnet, respectively. In these figures, for each title, we re-
order the users according to the number of copies of the title

Fraction of copies

0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of users

(b) Overnet

Cumulative fraction of copies from ranked users.

they advertise. The user with the most copies is ordered first.
With this ordering (which is different for each title), Figure
1 plots the CDF of the fraction of copies with respect to the
fraction of users. If all users were sharing the same number of
copies, then this curve would be a straight line running from
point (0,0) to (1,1). For FastTrack, we see that many curves
quickly rise, with 5% of the users advertising more than 85%
of the copies. Similarly, for Overnet, for many of the titles,
the large majority of the users advertise few versions whereas
a small minority advertise a large number of versions.

Having made this observation, we now state our methodol-
ogy, which can be broadly applied to most P2P file-sharing
systems. The first step is to determine the users that are
advertising relatively large numbers of versions of the same
title. To this end, let U be the set of user that have advertised
at least one version of one of the investigated titles. For each
u €U, let VuT denote the number versions of title 7" that user
u is advertising. Let

VX — max V.1
TeT

be the maximum number versions across all titles that user u
is advertising.

Let m™#* be the mean of the V,"** values across all users,

that is,)
mmax _ Vmax
o 2=V
ueu

Let K be a fixed constant. We then say that user u € U is
a heavy user if V;"%* > Km™®; otherwise, we say u is a
light user. Let 7 be the set of heavy users and £L =U —H
be the set of light users. Because the users in 7 advertise
a relatively large numbers of copies for at least one of the
investigated titles, we naturally suspect them of being the
decoyers. However, we do not make this assumption in the
following analysis.

Now recall that V is the set of all advertised versions.
Denote Vp for the set of versions that have been advertised by
users in ‘H (advertised by the heavy users). Denote Vy, for the
versions that have been advertised by the users in £ (advertised

the light users). Some versions may be advertised by both
heavy and light users. Let Vx = Vg NV, Vi = Vg — Vx,
and V7 =V — Vx. Observe that Vx is the set of versions
that have been advertised by both the heavy and light users;
V3, is the set of versions that have been advertised by the
heavy users but not by the light users; and V] is the set of
versions that have been advertised by the light users but not
by the heavy users. Note that the sets V3, Vx, V] form a
partition of the set all advertised versions V.

Our claim is that the vast majority of the advertised ver-
sions in V7; are poisoned versions, the vast majority of the
advertised versions in Vx are polluted versions, and the vast
majority of the advertised versions in V] are clean versions.
The intuition behind this claim is as follows. We suspect the
users in H to be decoyers and the users in £ to be regular
users. If a version has been advertised by a regular user but
not by a decoyer, then the version is likely to be clean; if a
version has been advertised by both a decoyer and a regular
user, the version is likely polluted (as it has spread from the
decoyers to the set of regular users); finally, if the version is
advertised by a decoyer but not be an regular user, the version
is almost certainly poisoned.

To evaluate this heuristic, we carry out the following exper-
iment:

1) Query for the title and obtain an advertised identifier v
for the title.

2) For Overnet, we query again with the identifier v. If
no reply is returned, we conclude that the version is
poisoned.

3) For FastTrack, from the first query we have obtained
at least one advertised location (IP address and port
number) for v. We then attempt to download from that
location. If we fail to establish a connection and get
a TCP RST segment, then we conclude that v is a
poisoned version. Otherwise, we download a copy of
v

4) If we have downloaded a copy of v, we check to see if
it is polluted, as described below.

5) We also check to see which of the sets V3, Vx, V] the
version belongs to.

Table I provides the results for FastTrack. ;From the 44,929
versions we obtained via the queries, 8,450 belong to Vx,
33,186 belong to V7, and 3,293 belong to V7. For each
available version, we examined the binary content to determine
whether the the version is polluted or not. This can be a
time-consuming task, requiring exorbitant human resources.
To reduce the human intervention, we did the following
preprocessing to reduce the number of versions to be listened
to manually:

1) Recalculated the hash value of the complete file to
check that it matched its declared identifier. If not, we
concluded that the version was polluted.

2) Compressed the file using the gzip tool. Since mp3
and wma files are already highly compressed, if the
compression ratio was high, we concluded that the file

of Versions # of Success | Accuracy
Vx 8,450 8,400 (polluted) 99.4%
Vi 33,186 | 32,021 (unavailable) 96.5%
Vi 3,293 3,097 (clean) 94.1%

TABLE I
EVALUATION OF THE VERSION CLASSIFICATION SCHEME.

was polluted.

3) Attempted to decode the file to check if the file is
decodable (ffmpeg project [7]). If not, we concluded that
the file is polluted.

A relatively small number of versions passed all three of these
tests. We manually listened to each of the remaining versions
to determine whether it was polluted or not.

Table I shows that 99.4% of the versions in Vx were
actually polluted, 96.5% of the versions in V7}; were actually
poisoned, and 94.1% of the versions in V] were actually clean.
Overall, the scheme correctly classifies more than 96% of the
versions, validating our claim. Because this experiment is very
intensive in human resources, it was only done for FastTrack.
Henceforth, we refer to heavy users as decoyers and light users
as regular users.

D. Poisoning and Pollution Levels

(From our validated claim, it follows that version poison,
version pollution, and version clean levels can be accurately
approximated by LY = |[Vi;|/|V|, LY = [Vx]|/|V|, and
LY =|V;|/|V|, respectively. Similarly, the copy poison level
L, copy pollution level Lo, and copy clean level L3 can be
accurately approximated by:

LTl
D SRITH

ZUEVX |C'“|
e

> ve [Col

and

L _ Sl
D ST

Note that all the sets V, V3, Vx, Vi, and C,, v € V em-
ployed in these estimates are obtained directly from harvested
metadata; binary files are not used to create the estimates.

V. MEASUREMENT RESULTS
A. Data Set

Table II summarizes a one-hour raw data set collected by the
FastTrack crawler in April 2005. Depending on the title, the
number of users sharing the title ranged from about 5,000 to
38,000, the number of advertised copies ranged from about
55,000 to 300,000, and the number of advertised versions
ranged from about 15,000 to 160,000. The number of copies
per user ranged between 1.93 for title T3 to 38.97 for T7.
A large number of average copies per user suggests some
level of decoying, since under normal conditions a user would
only have few versions of the same title (maybe different
recordings), and in most cases just one.

Titles | # of users | # of copy | # of versions | # of public IP
Tl 11,151 12,4349 44,317 7,725
T2 38,189 99,771 22,290 20,997
T3 28,366 54,903 23,080 19,749
T4 13,827 123,925 42,771 9,756
T5 20,557 195,967 66,628 14,178
T6 21,529 197,613 67,095 14,511
T7 7,938 309,409 162,999 5,601
T8 16,247 231,051 102,933 11,140
T9 10,878 25,881 14,738 7,785
T10 5,083 168,714 55,967 3533

TABLE II

RAW DATA FOR TEN TITLES FROM FASTTRACK

Titles | # of users | # of copy | # of versions | # of public IP
Tl 378 4,159 3,901 375
T2 2,010 2,531 730 1,979
T3 1,184 3,084 1,115 1,172
T4 535 4,633 4,290 531
T5 1,372 4,280 2,891 1,359
T6 2,133 5,265 3,171 2,100
T7 2,213 5,159 3,085 2,191
T8 884 5,024 4,219 870
T9 1,485 4,342 2,907 1,469
T10 2,038 2,398 337 2,020

TABLE III

RAW DATA FOR TEN TITLES FROM OVERNET

Table III presents summarizes our Overnet raw data. De-
pending on the title, the number of users sharing the title
ranged from about 400 to 2,200, the number of advertised
copies that we identified range from about 2,400 to 5,300,
and the number of versions ranged from about 300 to 4,300.
The almost 10-fold difference is due to (i) a smaller number
of users in Overnet; and (i4) different design architecture.
In an ideal DHT each node is responsible for part of the
key space. A massive DHT based system, however, requires
more relaxed rules. As described in [14] a node is to publish
information for a key at a number of other nodes that are
“close” to the keyword hash. However, the closeness criterion
is determined by the implementation. While crawling Overnet
we have found that as many as 1,600 nodes reply with
metadata information for the same keyword. Moreover, when
publishing the information about its content, the Overnet client
only sends publish messages to a few nodes. Thus, the index
for a single keyword is distributed around a large part of the
DHT and not just around few nodes. As described in Section
IV, to harvest data in Overnet, we inserted Overnet nodes.
In an ideal DHT our inserted nodes would have captured
all the publish messages for titles containing the targeted
keywords, since their IDs were exactly equal to the hash values
of those keys. However, because the Overnet implementation
spreads the advertisements over many nodes, our inserted
nodes capture only a fraction of the advertisements. Thus the
poisoning and pollution level results presented for Overnet
only provide rough estimates.

B. Decoyer Detection

Applying the methodology of Section IV to the ten titles
under investigation, we identified 8,683 decoy users (that is,
heavy users) from 624 IPs in FastTrack and 27 decoy users

of IPs | # of users | # of copies | # of versions

Decoyer 624 8,683 1,183,622 443,102

Ordinary 82,015 117,673 347,939 167,103
TABLE IV

THE CHARACTERISTICS OF DECOYERS AND REGULAR USERS OVER THE
TEN TITLES FROM FASTTRACK NETWORK

of IPs | # of users | # of copies | # of versions

Decoyer 26 27 23,771 22,678

Ordinary 12,135 12,545 17,104 3,907
TABLE V

THE CHARACTERISTICS OF DECOYERS AND REGULAR USERS OVER THE
TEN TITLES FROM OVERNET NETWORK

from 26 IPs in Overnet. We found no NATed decoy users
in this measurement. The FastTrack decoyers simultaneously
emulate 13.9 client instances per IP on average, compared
to 1.43 instances per IP for regular users. The explanation of
these client-to-IP ratios is that to reach more users, the decoyer
needs to create more clients from every IP source to compete
with the massive regular user space. In FastTrack, the average
number of copies per user for a decoyer is 136.3, much higher
than 2.9 for regular users. Decoyers are less than 7% of all
users but they provide over 77% of all copies and 72% of
all versions. Although on a smaller scale, our Overnet results
show a similar trend with about 23,771 copies and 22,678
versions provided by decoyers and only 17,104 copies and
3,907 versions provided by regular users.

Figure 2 presents the copy poison, pollution, and clean
levels, based on our methodology, for the ten titles for both
FastTrack and Overnet. First consider the FastTrack network.
Two titles, T3 and T9, are relatively clean, with practically
no pollution and less than 25% poisoning. Because there are
several independent companies (working for the copyright
industry), each with its own decoy technique and strategy, it is
not surprising that some titles suffer only from poisoning and
not from pollution. The remaining eight titles under investi-
gation for FastTrack are under heavy poisoning and pollution
attacks. The total decoy percentage (poison percentage plus
pollution percentage) ranges from 65% to as high as 95%.
Our results in Overnet indicate extensive poisoning and little
pollution. Two of the investigated titles (T2 and T10) are found
to be clean, whereas the remaining titles have poisoning levels
ranging from 50% to as much as 90%.

Figure 3 presents the version poisoning, pollution, and
clean levels. We see that, in both networks, for most of the
investigated titles, the majority of the versions are poisoned.
An exception again are the relatively clean titles T2 and T9 in
FastTrack and T2 and T10 in Overnet. The poisoning levels
in both networks are comparable with about 70% to 90% of
the targeted titles being poisoned. Why are the version poison
levels generally much higher than the copy poison levels for
the targeted titles? The explanation is twofold:

o The decoyers create massive numbers of polluted ver-
sions, which explains the large fraction of poisoned
versions in these systems. But copies of these poisoned

Clean ezzzz
Polluted mwwm
Poisoned s

Fraction

(a) FastTrack

Clean rzzzz
Polluted mwwm
Poisoned s

Fraction

10 11

(b) Overnet

Fig. 2. Estimates of poison/pollution/clean levels by copies for 10 titles

Polluted sz
Poisoned s

Fraction

(a) FastTrack

Fig. 3.
Title | Poisoned | Polluted Clean
Tl 1.86 45.38 107.4
T2 3.77 228.25 42.23
T3 1.40 6.67 106.12
T4 1.78 68.53 50.16
TS 1.76 71.16 229.45
T6 1.43 74.90 222.7
T7 1.44 65.95 69
T8 1.26 64.84 204.1
T9 1.22 n/a 20.39
T10 2.05 67.73 n/a
TABLE VI

NUMBER OF COPIES PER VERSION FOR TOP 1000 FASTTRACK VERSIONS

versions do not circulate and multiply as do the clean and
polluted versions.

o The decoyers often make available a large number of
copies of the same polluted version, thereby increasing
the availability of the (very frustrating) polluted files in
the users” GUIs.

Our findings shown in Table VI confirm our expectation of
the uniqueness of poisoned identifiers. The table shows the
average number of copies per version for the top 1000 versions
in FastTrack. Poison versions on average have between 1 and
2 copies per version, compared to a higher number for clean
and polluted versions.

VI. DEFENDING AGAINST THE POISONING ATTACK

We have shown that existing P2P file-sharing systems are
highly vulnerable to index poisoning attacks. In this section

1

Polluted sz
Poisoned s

0.8

0.6

Fraction

04

0.2

(b) Overnet

Estimates of poison/pollution/clean levels by versions for 10 titles

we address possible directions for countering the attack. As
we shall see, it is a challenging problem to defend against the
poisoning attack in a P2P file-sharing system.

We first observe that this vulnerability is not a consequence
of having an index system distributed over peer nodes. The
original Napster design would have also been vulnerable to the
poisoning attack. In fact, centralized systems are even more
vulnerable than decentralized systems since bogus records
only need to be inserted in one node.

A. Rating Versions and Advertisements

One possible direction is to authenticate versions to defend
against the pollution attack and to authenticate advertisements
to defend against the index poisoning attack. An example of a
content-rating system is Amazon’s review system, which helps
prospective customers anticipate the quality of the goods being
sold. For file-sharing systems, some content rating websites
and forums have been initiated. Separate from the file sharing
systems, these forums include verified file hashes or download
links to counter the pollution attack [20] [21]. These hash-
checking systems are enabled by volunteer postings, typically
with a moderator to manage disputes. These centralized hash-
checking systems are subject to legal attack: The popular
eDonkey link forum was forced to shut down; Supernova, the
Bitorrent resource link website [19] [22], had a similar fate.

Although version rating and verification schemes can in
some cases be used to authenticate content [25], it is more

difficult to authenticate advertisements, that is, verify that
a source that advertises a hash actually has a version that
corresponds to the hash. This is a challenging problem, partic-
ularly in a distributed system. But even if it were possible to
authenticate advertisements, the attackers could simply acquire
or create versions, advertise their hashes, have their hashes
authenticated, and then not upload files in response to requests.
Note that this attack works even if the hashes are assigned
meaningful reputations.

B. Rating Sources

The eBay feedback system enables a buyer/seller to rate its
counterpart in terms of transaction performance. The rating
history helps build the reputations of individual buyers and
sellers. Similarly, a promising approach for file sharing is
to recognize that there are good sources, which advertise
and upload files they actually have, and bad sources, which
index poison and pollute the system. If the bad sources can
be identified, they can then be blacklisted. A well-known
centralized forum was introduced to aggregate suspicious
sources reported by users [24]. Ideally, one would like to
have a distributed scheme that responds to attempts to evade
detection by changing identity. (Here, identity can be the
source IP address, a password-authenticated username, or a
certified public-key.)

We now outline a distributed approach that could be applied
to two-tier unstructured systems, such as FastTrack. This
approach is based on our decoyer detection methodology
discussed in Section 4. For the sake of discussion, we simply
use the IP address of the source for source identification.
(Decoyers sit in front of NATSs; but to handle the remote
possibility that a decoyer is NATed, we can augment the
definition of a source with the service port number.) Since in
FastTrack, advertisements are maintained with ongoing TCP
connections, the source IP address of an advertisement is
authenticated by the establishment of a TCP connection. In
devising this scheme, we again make use of the observation
that decoyers advertise a large number of versions of the same
title.

Decoyers typically control narrow blocks of IP addresses
and can easily move their nodes from one IP address to another
within the block. Thus, rather than assigning reputations to
individual IP addresses, we assign reputations to narrow ranges
of IP addresses. For the IP range, we use /n subnets. One needs
to choose n small enough so that both decoyers and ordinary
users do not operate from within the same prefix; and large
enough to cover multiple decoying servers in the same subnet.
For correctness, we use /n = /24 for the remainder of this
discussion.

In this scheme, each supernode creates a local reputation for
each /24 prefix that is advertising directly to the supernode.
The reputation is a function of the number of copies per title
being advertised by the prefix; if a prefix advertises a large
number of copies of any one title, it will likely have a low
reputation. Specifically, for each such advertising prefix i, let
W denote the number of copies of title T that are advertised

to the supernode (including replica copies across nodes in
prefix). Also, for each prefix i, the supernode determines
yZT , the number of nodes from prefix ¢ that advertise title 7.
We then define the local reputation (local to the supernode) of
prefix 7 as 1

 maxy W /yl” M
where the max is taken over all titles advertised by subnet .
Note that reputations range from O to 1, with higher values r;
corresponding to better reputations. In this manner, each SN
can create a local reputation list, which contains all the prefixes
directly advertising to the SN along with the reputations of
those prefixes.

Each SN would also maintains its own global reputation
list, which includes all IP prefixes advertised to all the SNs.
SNs would exchange with each other their global reputation
lists. When a SN receives global lists from other SN, it
combines the received lists with its own local list to create
a new global reputation list at that node. For this purpose,
a reputation algorithm such as Eigentrust [18] could be used.
(Eigentrust also includes a distributed implementation.) In this
manner, by continually exchanging and combining, each SN
obtains reputation values for prefixes, reflecting the prefixes
global behavior throughout the file-sharing system. Each SN
periodically refreshes its local reputation lists, recalculates its
global view, and exchanges its global view with other SNs. The
lower the reputation, the more likely the prefix is a decoyer.
Each SN could periodically send its global reputation list to
its children nodes, and the children nodes could use a peer-
dependent threshold for blacklisting peers with reputations
lower than the threshold.

Figure 4 shows the reputation values of all /24 subnets that
participated in FastTrack during our measurement interval. The
maximum in (1) is taken over the ten investigated titles. The
x-axis of this figure is the IP space, ranging from 0.0.0/24
to 255.255.255/24; the y-axis is the reputation values of the
discovered subnets. The reputations in Figure 4 are obtained
in a centralized manner by merging the reputations from
the individual supernodes. Although this figure results from
a “centralized” algorithm, it illustrates the potential of a
distributed algorithm. The blacklisting threshold could be .005,
thereby blacklisting the subnets with reputations at the bottom
of the figure. This threshold would result in blacklisting 53
of the advertised /24 networks (which includes 624 observed
IP addresses) and not blacklisting the remaining 62,403 of
the remaining advertised /24 networks (which includes 82,015
advertised IP addresses).

One problem with such a scheme is that some of the SNs
actually may be operated by attackers. But if the number of
compromised SNs is small, then a reputation scheme such as
Eigentrust should give meaningful results [18]. Another issue
is the scheme as described requires each SN to classify each
received advertisement into a title. To this end, automated
classification mechanisms could be employed. Alternatively,
we could define reputation simply in terms of total number
of copies advertised (rather than per title), and then employ a

voting mechanism to identify the subnets that advertise many
copies to many SNs.

A similar approach can be taken in a DHT based system
such as Overnet. Each node can maintain a local reputation
list for each /24 prefix that publishes metadata to it. In Overnet
it is easy to keep track of the number of versions for every
keyword since it is used as a key in the first round of file
information publishing. Thus, nodes can calculate their local
reputation lists in a manner similar to the approach proposed
above for FastTrack. In order to take into account the breadth
of metadata for every keyword discussed in Section V-A, nodes
with close IDs can exchange their reputation lists and each
of them can construct its view on the part of the network
responsible for a set of keywords.

We have just sketched one possible approach for creating
a blacklist in a distributed manner. The central assumption in
this scheme is that each decoyers advertise a relatively large
number of copies from /n networks. To circumvent blacklist-
ing, the decoyers could deploy a massive number of hosts,
each in a different /n network, and each advertising a relatively
small number of copies. However, such a deployment would
be unlikely due to exorbitant cost. Many variations of this
reputation/blacklisting scheme are possible. In future research,
it is of interest to analyze such variations in greater detail.

sssss B%

01

o0 gonslas,

0.01 |

Reputation

0.001

/24 prefix =
1e-04 1 L

L L L L
5e+08 1e+09 15e+09 2e+09 25e+09 3e+09 3.5e+09 4e+09
IP space

Fig. 4. Reputations of /24 prefixes

VII. DHT VULNERABILITIES TO POISONING

A. Node Insertion Attack

Another form of the index poisoning attack is for the
attacker to insert nodes into the file-sharing and manipulate
the indexes of the inserted nodes. For example, in a two-
tier unstructured system, such as FastTrack, the attacker could
insert powerful nodes with the expectation that those nodes
will be promoted to supernodes. Once the inserted nodes
become supernodes, the attackers could manipulate the indexes
in those nodes as they so desire. To date, we have not observed
the presence of such a “node insertion” attack in FastTrack.
This is probably because the FastTrack protocol is proprietary,
uses encryption, and has not been fully cracked.

On the other hand, we have observed in our measurements
the presence of the node insertion attack in Overnet. Specif-
ically, in addition to actively advertising bogus versions of
targeted titles, the decoyers have inserted their own nodes
into the overlay network. Those nodes have identifiers that
are close to targeted keyword hashes. When those nodes are
queried, they respond with randomized identifiers; in fact,
each query results in a fresh set of randomized identifiers!
Figure 5 plots the number of unique identifiers returned as
a function of the number of queries for four nodes. Two of
these nodes are normal nodes and two these nodes we suspect
to be malicious inserted nodes. As shown in the figure, the
normal nodes provide no more than 100 identifiers since those
nodes are making available a bounded number of files. The
inserted nodes, however, continuously provide new identifiers,
without bound. The node insertion attack for targeted titles is
particularly pernicious in a DHT.

We remark that Figures 2 and 3 do not include the copies
that are advertised by the malicious inserted nodes, since these
malicious nodes do not publish advertisements. When a user
queries with keywords for a title that has been targeted by
the index poisoning attack, it may receive poisoned identifiers
from the inserted nodes (not reflected in Figures 2 and 3) as
well as from the regular nodes (reflected in Figures 2 and 3).
Thus, for Overnet, the poisoning level is actually worse than
that depicted in Figures 2 and 3.

This attack is very damaging to the P2P system in that it
not only affects the targeted content, like the active poisoning
attack does, but it can also prevent users from finding other
items in the network. For example, if a title “wordl word2”
is targeted by an attacker who’s strategically inserted nodes
reply bogus results to queries for either wordl or word2, then
searches of any titles that include wordl or word2 will result
in fewer results than in a clean system. If the title is just word1
or word2, then a user might only get bogus replies because of
the intentional poisoning of “wordl word2”.

Without observing the presence of this attack, Dumitriu et
al [15] discuss a related attack and conclude that unstructured
systems are more vulnerable than DHTs. Even though those
conclusions appear to be contradictory to the ones provided
here, this is not the case since they study a routing attack where
malicious nodes attack the whole network and try to bring
down its goodput. The attack that we observed is different in
that it only targets a limited number of titles.

B. Poisoning: DHT versus Unstructured

Because of the differences in their architectures, structured
and unstructured systems require different amounts of effort
to poison. In Section III we described how index poisoning
can be done in both types of networks. In an unstructured P2P
system, such as FastTrack, a successful attack will require that
every emulated client maintains active TCP connections to all,
or at least a great number, of the supernodes in the network.
In Overnet, on the other hand, publishing of metadata is done
by low-overhead UDP messages that need to be refreshed
every hour or so. Furthermore, only the nodes responsible

100000

T T T
Inserted source 1
Normal source 1
Inserted source 2
Normal source 2

10000

1000

Number of unique versions

100

10 1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45

Number of requests

50

Fig. 5. Advertised versions from malicious inserted nodes and regular nodes

for the keyspace of the targeted titles need to be poisoned
for successful attack. For this reason, when poisoning a small
number titles, an attack on a DHT requires significantly less
resources than an attack on a distributed unstructured system.
For a large number of titles, however, the number of nodes
that need to be contacted in a DHT will grow and eventually
the resource requirements can become higher than those in an
unstructured system.

C. Leveraging a DHT for a DDoS Attack

Another possible attack, although currently not employed,
is to cause a DHT to be the source of a powerful DDoS
attack against any arbitrary host. Recall that in a DHT, sources
sharing content advertise to the DHT information about the
content as well as the source’s IP address and port number.
Thus, a malicious user can use the poisoning attack in a
completely different context - not to attack a specific title,
but instead attack a targeted host. If for a number of popular
titles the attacker inserts into the DHT numerous poisoned
records pointing to a targeted host, then the users that want to
download those titles will be told that the content resides in the
targeted host. The users will then repeatedly send requests to
the targeted host. In a large scale P2P system, these requests
may generate a successful DDoS attack. As of June 2005,
we have experimented with Overnet and have found that it
can easily be made the source of a DDoS attack. In fact
during some of our experiments we advertised our own nodes
so heavily that the responses that we received brought our
university network down! We have alerted the Overnet team
about the problem.

D. Related Work

Although a relatively new Internet application, there are
many measurement studies on P2P file-sharing systems. Band-
width, availability, and TCP connection duration for popular
filesharing systems such as Gnutella and Napster are examined
in [8] [9] [11] [4]. P2P user behavior and content characteris-
tics are studied in [10] [12].

Several independent research groups have developed
crawlers for P2P file sharing systems. A crawler for the orig-

inal single-tier Gnutella system is described in [4]. A crawler
for the current two-tier Gnutella system (with “ultrapeers”) is
described in [5]. A crawler for the FastTrack P2P file sharing
is described in [2].

In [2] it was established that pollution is widespread for
popular titles. The methodology in [2] to determine pollution
levels is inefficient in that it requires downloading and binary
content analysis of hundreds of versions for every investigated
title. In [13] the authors examine intentional and uninten-
tional pollution and conduct a measurement study of content
availability in the four popular P2P file-sharing networks.
In [15], the authors develop a deterministic model for the
pollution evolution in a file-sharing system. They also examine
a “takeover attack” when the attackers either insert or takeover
a limited number of P2P nodes.

A user-supported antip2p banlist is available in [24]. Walsh
and Sirer propose an object rating scheme that is based
on peer endorsements of objects [25]. As described above,
object rating is unlikely to be successful for abating the index
poisoning attack.

VIII. CONCLUSION AND FUTURE WORK

A critical component of a P2P file sharing system, the
index allows users to discover and locate content in other
peers. Unfortunately, arbitrary users can easily poison the
index by advertising to it bogus records. It is difficult for
a P2P file-sharing to authenticate the advertisements, that is,
to verify that the advertised content is not only present but
will also be uploaded upon request. Attackers have discovered
this vulnerability and are now aggressively index poisoning
popular file-sharing systems.

P2P file sharing is a natural and power application, al-
lowing communities of users to pool files, locate pooled
files, and download pooled files. The P2P file-sharing sharing
paradigm has broad applications in business, educational, and
community arenas. Unfortunately, without special care, the
indexes in these systems can easily be compromised. When
designing P2P file-sharing systems in the future, it is crucial
that designers bear the poisoning attack in mind. We believe
that counter measures based on content and advertisement
authentication will be largely unsuccessful. A more promising
direction employs user authentication and, in open commu-
nities, distributed reputations and blacklisting. Although we
outlined a distributed blacklisting scheme in Section 6, much
more work remains to be done in the counter-measure area.

DHTs are particularly vulnerable to poisoning attacks
against specific titles. Indeed, in a DHT, a small set of nodes
is typically responsible for responding to queries about any
specific title. Thus, to poison the distributed index for a
specific title, the attacker only needs poison a relatively small
number of nodes. Furthermore, the attacker can insert its own
node into the DHT, fixing the ID of the node so that queries
for the targeted title are directed to it. Finally, if special care
is not taken, index poisoning can be used to to turn a DHT
into an engine for a massive DDoS attack.

Acknowledgment: We would like to thank Andromahe Zo-
grafos and Rakesh Kumar for their useful comments through-
out this research. We also acknowledge NSF grant NSF
0325777 and the Polytechnic University Center for Advanced
Technologies in Telecommunications.

REFERENCES

[1] CacheLogic Research: The True Picture of P2P File Sharing,
http://www.cachelogic.com/research/

[2] J. Liang, R. Kumar, Y. Xi, K.W. Ross. Pollution in P2P File Sharing
Systems, IEEE INFOCOM 2005, Miami, March 2005

[3] J. Liang, R. Kumar, K.W. Ross, The FastTrack Overlay: A Measurement
Study, to appear in Computer Networks

[4] M. Ripeanu, I. Foster, and A. Iamnitchi,“Mapping the Gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design,” IEEE Internet Computing Journal, vol. 6, no. 1, 2002.

[5] D. Stutzbach, R. Rejaie. Characterizating Today’s Gnutella Topology,
submitted.

[6] Apple iTunes Top 100, http://www.apple.com/itunes/

[7] FFmpeg project, http://sourceforge.net/projects/ffmpeg/

[8] S. Sen, J. Wang. Analyzing Peer-to-Peer Traffic Across Large Networks,
ACM/IEEE Transactions on Networking, Vol. 12, No. 2, April 2004

[9] S. Saroiu, P. K. Gummadi, S. D. Gribble, A Measurement Study of Peer-
to-Peer File Sharing Systems, Multimedia Computing and Networking
(MMCN’02), San Jose, January 2002

[10] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
J. Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-Peer
File-Sharing Workload. Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP-19), October 2003

[11] V. Aggarwal, S. Bender, A. Feldmann, A. Wichmann. Methodology
for Estimating Network Distances of Gnutella Neighbors. Proceedings
of the Workshop on Algorithms and Protocols for Efficient Peer-to-Peer
Applications at Informatik, 2004

[12] FE. Le Fessant, S. Handurukande, A.-M. Kermarrec, L. Massouli. Clus-
tering in Peer-to-Peer File Sharing Workloads. IPTPS’04

[13] N. Christin, A. S. Weigend, and J. Chuang. Content Availability, Pollu-
tion and Poisoning in Peer-to-Peer File Sharing Networks. Proceedings of
the Sixth ACM Conference on Electronic Commerce (EC’05) Vancouver,
BC, Canada. June 2005.

[14] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information
System Based on the XOR Metric, I/PTPS’02, Cambridge, MA, USA,
March 2002.

[15] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and W. Zwaenepoel.
Denial-of-Service Resilience in Peer-to-Peer File-Sharing Systems, Pro-
ceedings of ACM SIGMETRICS 2005, Banff, Canada, June 2005.

[16] S. Guha and P. Francis. Characterization and Measurement of TCP
Traversal through NATSs and Firewalls, submitted

[17] R. Bhagwan, S. Savage, G. M. Voelker. Understanding Availability 2nd
International Workshop on Peer-to-peer systems, February 2003

[18] Sepandar D. Kamvar, The EigenTrust Algorithm for Reputation Man-
agement in P2P Networks, WWW-2003.

[19] Slyck news, http://www.slyck.com/news.php?story=623, 2004.

[20] Edonkey link list, http://www.freereactor.com/list.php, 2005.

[21] Magnet Project, http://magnet-uri.sourceforge.net/, 2005.

[22] Slashdot news, http://yro.slashdot.org/yro/04/12/19/1712258.shtml
Nid=95&tid=123, 2004.

[23] IP to orgnization mapping, www.banlist.org

[24] Bluetack website, http://www.bluetack.co.uk/index.php.

[25] K. Walsh and E. Sirer, Fighting Peer-to-Peer SPAM and Decoys with
Object Reputation, P2PECON Workshop, Philadelphia, Pennsylvania,
August 2005.

