Optimized Prediction for Geometry Compression of Triangle Meshes

Dan Chen
Yi-Jen Chiang
Nasir Memon
Xiaolin Wu
Polytechnic University, NY, USA
(DCC 05, March 2005)

Graphics Compression for 3D Triangle Meshes

- Graphics compression is an emerging need for storing, transmitting, and visualizing large graphics models.
- 3D triangle mesh:
 - The most common type of graphics models
 - Two components of information:
 - geometry – 3D coordinates of mesh vertices
 - connectivity – edges & triangles connecting vertices

Previous Work

- Lots of results in connectivity compression... (see paper)
- Best connectivity compression results: 1.5 – 4 bits per vertex on an average
 - e.g. [Taubin-Rossignac 98], [Touma-Gotsman 98], [Rossignac 99], [Alliez-Desbrun 01]
- Geometry compression results are not equally impressive
 - Usually quantize each coordinate to a 10-bit or 12-bit integer (30 or 36 bits/vertex in raw data)
 - Typical results: 40—50% of raw data (12—18 bits/vertex)
 e.g. [Deering 95], [Karni-Gotsman 00], [Taubin-Rossignac 98], [Touma-Gotsman 98]

Previous Work: Geometry Compression (1)

- Flipping method [Touma-Gotsman 98]
 - Dominant, widely considered state of the art: adopted to the MPEG-4 standard for mesh geometry coding
 - Traverse triangles by connectivity coder; predict new vertex position of new triangle by flipping using parallelogram rule
 - Drawback: triangle traversal ignores the geometry of the model

- Other extensions of flipping
 - [Isenburg-Alliez 02]: beyond triangle meshes
 - [Isenburg-Gumbhold 03]: out-of-core method for meshes larger than main memory
 * Do not address the drawback

Geometry compression is by far the dominating bottleneck!!
Previous Work: Geometry Compression (2)

- Prediction tree method [Kronrod-Gotsman 02]
 - Only previous work trying to optimize the flipping prediction error
 - Formulate the problem as finding an optimal cover tree
 - Take the dual graph of the triangle mesh, span the mesh triangles (nodes in dual graph) until all vertices are covered, with min total dual-edge cost (prediction error)
 - Heuristic solution; improves the flipping approach

- Sub-optimal:
 - May cover vertices more than once
 - Cannot visit a triangle from a vertex-adjacent neighbor

Our New Algorithm

- Try to optimize the flipping prediction error
 - New formulation: finding a constrained minimum spanning tree on a new graph G (G is not the dual graph)
 - Span each vertex exactly once (vs. cover more than once)
 - Can visit a triangle from vertex-adjacent neighbor (vs. cannot)
 - Improves the prediction tree method by up to 33.2%

- Overview: 3 major technical components
 - Problem formulation: finding a constrained minimum spanning tree (CMST) on the graph G
 - Heuristic algorithm to find an approximate CMST on G
 - Algorithm to traverse CMST in another pass, build a pseudo-CMST & collect left-over triangles in the same pass, and finish both geometry and connectivity coding

Problem Formulation

- Observation: many possible ways of flipping for a vertex
 - Each flipping pair \((x, y)\) gives a possible flipping

- Form a graph \(G\):
 * nodes—mesh vertices; edges—connect all flipping pairs, edge cost = prediction error
 * \((y', y) = (x', x) \Rightarrow G \text{ is undirected} \)* minimum spanning tree on \(G\)
Final Problem Formulation

- In graph G, each edge (x, y) has constraint vertices a, b
- Constrained minimum spanning tree T on G: T admits a traversal where each (x, y) is visited only after visiting a, b

![Example of CMST T]

Heuristic Algorithm for CMST

- Modify Prim’s algorithm for an approx. CMST T
 - For each edge (x, y) of G, make bidirectional links between (x, y) and its constraint vertices a, b
 - Initially, include 3 vertices of a triangle to T for initial prediction
 - Use a priority queue Q to maintain vertices not yet added to T
 - Key (x): min cost of adding x to T, initially infinity; key $(x) \leftarrow \min \{ \text{cost} (x, y) \mid (x, y) \text{ is valid, i.e., } y, a, b \text{ already in } T\}$
 - While Q is not empty do
 - $v \leftarrow \text{Extract-min} (Q)$; include v to T
 - Update key values of vertices influenced by v
 - candidates for newly valid edges: (i) edges incident on v; (ii) edges with v a constraint vertex
 - If key $(v) = \text{infinity}$, then start a new tree (rarely occurred)
 - Cost (T) is very close to the cost of unconstrained MST (unachievable lower bound)

Pseudo-CMST and Final Encoding

- The approx. CMST T admits a valid traversal by the order we grow T
- This order grows the boundary of the patch of current T arbitrarily---very expensive to encode

- Idea: each triangle has at most 3 edges to flip
- Traverse T in another pass; build a pseudo CMST T_p & collect left-over triangles
 - (i) recursively traverse t_1; (ii) recursively traverse t_2; (iii) collect t_3, t_4 if all vertices visited
- Step (i): if t_1 is visited, ignore t_1; else
 - If v unvisited: (a) $e \text{ in } T$: predict v by e, add v, e to T_p, recurse from t_1
 (b) $e \text{ not in } T$: ignore (v, t_1 will be visited later by other paths)
 - If v visited: add e to T_p with no cost (pseudo-edge), recurse from t_1

Summary: Algorithm Steps

1. Form graph G
2. Compute an approximate CMST
3. Compute a pseudo-CMST & collect left-over triangles, finish geometry & connectivity coding
Experiments

- 12 datasets commonly used in literature
 - size: small --- moderately large
 - feature: smooth --- with significantly many sharp corners
- Vertex coordinates are quantized to 12-bit integers
- Compare first-order entropy of prediction errors of:
 - constrained MST (CMST) vs. unconstrained MST (lower bound, though unachievable)
 - pseudo-CMST vs. flipping [Touma-Gotsman 98] (code available from web)
 - prediction tree [Kronrod-Gotsman 02] (from paper)

Datasets (1)

Datasets (2)

Results: Statistics Summary

- CMST vs. unconstrained MST (lower bound):
 - In most cases: CMST is within 10% of MST
 - On an average: within 17.4%
- Pseudo-CMST vs. flipping & prediction tree (PT):
 - Pseudo-CMST: 8.2—20.41 bits per vertex (b/v)
 Cf. original: 36 b/v
 - Gain over flipping: up to 55.45% (> 32% on an average)
 - Gain over PT: up to 33.17% (> 18% on an average)
 - Also, Pseudo-CMST is very close to original CMST
Conclusions

- Novel geometry compression technique via optimized flipping prediction
- Novel problem formulation & optimization methods
- Geometry oriented, integrating both geometry & connectivity coding
- Large improvements:
 55.45% over flipping; 33.17% over prediction tree

Extension

Tetrahedral meshes (volume data)
[Chen-Chiang-Memon-Wu]

Open Problem

Acknowledgments

- C. Touma and C. Gotsman for the Flipping code
- C. Gotsman, Princeton Graphics Database and Stanford Graphics Lab for the test datasets

- National Science Foundation (NSF)
 (CAREER CCR-0093373, ACI-0118915, ITR CCR-0081964, CCR-0208678)