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ABSTRACT


In this paper we propose a novel geometry compression
technique for volumetric datasets represented as tetrahedral
meshes. We focus on a commonly used technique for pre-
dicting vertex geometries via a flipping operation using an
extension of the parallelogram rule. We demonstrate that the
efficiency of the flipping operation is dependent on the order
in which tetrahedra are traversed and vertices are predicted
accordingly. We formulate the problem of optimally (travers-
ing tetrahedra and) predicting the vertices via flippings as a
combinatorial optimization problem of constructing acon-
strained minimum spanning tree. We give heuristic solutions
for this problem and show that we can achieve prediction
efficiency very close to that of theunconstrainedminimum
spanning tree which is an unachievable lower bound. We also
show significant improvements of our new geometry com-
pression over the state-of-the-art flipping approach, whose
traversal order does not take into account the geometry of
the mesh.


1. INTRODUCTION


In the past several years, new challenges for scientific visu-
alization have emerged as the size of data generated from the
simulations has grown exponentially. The emerging demand
for efficiently storing, transmitting, and visualizing such data
in networked environments has motivated graphics compres-
sion for 3D polygonal models and volumetric datasets to be-
come a focus of research in the past several years. For volu-
metric data, the most general class isirregular-grid volume
data represented as atetrahedral mesh. It has been pro-
posed as an effective means of representing disparate field
data that arise in a broad spectrum of scientific applications
including structural mechanics, computational fluid dynam-
ics, partial differential equation solvers, and shock physics.
A tetrahedral-mesh dataset consists of the following two
components:geometry—the 3D coordinates and thedata-
attribute information (such asscalar valuesin our case) of
the mesh vertices, andconnectivity—the incidence informa-
tion specifying the edges, triangle faces, and tetrahedral cells
connecting the mesh vertices.


Although there has been a significant amount of research
done on graphics compression, most techniques reported in
the literature have mainly focused on compressing thecon-
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nectivity, rather than thegeometryinformation. As a results,
while connectivity compression already achieves an impres-
sive compression rate of 1–2 bits per triangle for triangle
meshes [23, 19, 1, 24] and 2.04–2.31 bits per tetrahedron for
tetrahedral meshes [8, 25], progress made in compressing the
geometry information has not been equally impressive. For
a tetrahedral mesh, typically each floating-point coordinate
is first quantized to a 16-bit integer (thus 48 bits per vertex
for the raw information,not including the scalar values), and
about 30 bits per vertex (not including the scalar values) are
required after compression [8]. Given that the number of
tetrahedral cells is about 4.5 times the number of vertices
in typical tetrahedral meshes and that the connectivity com-
pression ratio is about 2 bits per tetrahedron, it is clear that
geometry compression is by far the dominating bottleneck
that needs to be worked on if we hope to obtain a significant
improvement in the overall compression efficiency.


In this paper, we propose a novel geometry compres-
sion technique for tetrahedral volume data. Our approach
is based on an extension of theflipping algorithm first in-
troduced in [24], which, originally working for 3D triangle
meshes, traverses the triangles and predicts the position of
the next vertex via aflipping operation using theparallelo-
gram rule. This flipping algorithm [24] has been dominant
and widely considered as state of the art for geometry com-
pression, and has been adopted for the MPEG-4 standard for
mesh geometry coding [21]. The flipping algorithm can be
extended to work for tetrahedral meshes in a similar manner,
traversing the tetrahedra and predicting the position (as well
as the scalar value) of the next vertex via a flipping opera-
tion, now instead of flipping across the center of the com-
mon edge shared by the current and the new triangles, flip-
ping across the center of the commontriangle faceshared
by the current and the new tetrahedra. This flipping exten-
sion, combined with the best connectivity coder [8, 25], is
also considered as state of the art for geometry compression
of tetrahedral meshes. However, such encoding is dominated
by the connectivity coder, and traverses tetrahedra in an order
that ignores the geometry of the mesh, resulting in a geome-
try compression ratio that is far below optimal as we show in
this paper.


The main idea behind our technique is that the effi-
ciency of the flipping operation is dependent on the order in
which tetrahedra are traversed and vertices are predicted ac-
cordingly. We formulate the problem of optimally (travers-
ing tetrahedra and) predicting the vertices via flippings as a
combinatorial optimization problem of constructing acon-
strained minimum spanning tree. We give heuristic solutions
for this problem and show that we can achieve prediction
efficiency within 5.85% on an average compared to that of







the unconstrainedminimum spanning tree which is an un-
achievable lower bound. We also show significant improve-
ments (up to 30.2%) of our new geometry compression over
the state-of-the-art flipping approach, whose traversal order
is solely decided by the connectivity coder.


2. PREVIOUS WORK


There has been a significant amount of work on compressing
polygonal meshes [5, 23, 9, 19, 14, 1, 10, 15, 17, 24]. Much
of this work has mainly focussed on compressingconnectiv-
ity information. Compression techniques for polyhedral vol-
ume meshes have also been widely studied [22, 8, 18, 25];
again the main focus has been on connectivity compression.
As mentioned before, these techniques achieve an impressive
compression performance of 1–2 bits per triangle for trian-
gle meshes [23, 19, 1], and 2.04–2.31 bits per tetrahedron for
tetrahedral meshes [8, 25].


There are relatively few results that focus on compress-
ing the geometry information. Devillers and Gandoin [6, 7]
have proposed compression techniques that are driven by the
geometry information, for both triangle meshes and tetrahe-
dral meshes. They only consider compression of vertex co-
ordinates but not the associated scalar values for the case of
tetrahedral meshes. Leeet. al. [17] proposed theangle ana-
lyzerapproach for traversing and encoding polygonal meshes
consisting of triangles and quads.


The most popular technique for geometry compression of
polygonal meshes is theflippingalgorithm based on thepar-
allelogram rulefirst introduced by Touma and Gotsman [24]
as mentioned before. Isenburg and Alliez [12] extended the
parallelogram rule so that it works well for polygonal sur-
faces beyond triangle meshes. Isenburg and Gumhold [13]
applied the parallelogram rule in their out-of-core compres-
sion algorithm for polygonal meshes larger than can fit in
main memory. Other extensions of the flipping approach
for compressing polygonal surfaces include the work given
in [16, 3, 2].


For volume compression, Isenburg and Alliez [11] ex-
tended the flipping idea to hexahedral volume meshes. As
mentioned in Section 1, the basic flipping approach of [24]
can be extended to tetrahedral meshes as well, which, com-
bined with the best connectivity coder [8, 25], is considered
as state-of-the-art geometry compression technique for tetra-
hedral meshes. We show in Section 4 that our new geometry
compression achieves improvements of up to 30.2% over this
approach.


There are other compression techniques forregular-grid
volume data (e.g., [20] and the references therein). All these
approaches do not consider compressing the vertex coordi-
nates, since such information is not needed for regular grids.


3. OUR APPROACH


3.1 Problem Formulation and Algorithm Overview


As mentioned before, our approach is based on an extension
of the flipping algorithm [24] from 3D triangle meshes to
tetrahedral meshes: we traverse the tetrahedra and predict the
position (as well as the scalar value) of the next vertex via a
flipping operation, which flips across the center of the com-
mon triangle faceshared by the current and the new tetra-
hedra. Specifically, suppose(x,a,b,c) and(y,a,b,c) are two
face-adjacent tetrahedra sharing a common triangle4abc,


andd is the center of4abcgiven byd = (a+ b+ c)/3. We
predict the position (and scalar value) ofy from x asy′, where
the vector(x,d) equals to the vector(d,y′), i.e.,d−x= y′−d
(and thusy′ = 2d−x), with theprediction error y−y′. Sim-
ilarly, we can predictx from y asx′, wherex′ = 2d−y, with
the prediction errorx−x′. We callx andy anantipodal pair
since they can predict each other by flipping across the same
face. Also, the prediction errorsy−y′ andx−x′ are the same
(both equal tox+y−2d).


Our main idea is built on the observation that there are
many ways to predict a vertexv: essentially, each tetrahedron
havingv as a vertex gives rise to a distinct vertexw such that
w andv are an antipodal pair (andw gives a distinct predic-
tion for v). For the purpose of geometry compression, our
goal is to predict each vertexonceand to minimize the total
prediction error for the whole mesh. This can be formulated
as a combinatorial optimization problem, namely, the prob-
lem of finding aminimum spanning tree (MST)on a graph
G = (V,E) where the vertex setV consists of the vertices of
the tetrahedral mesh, and the edge setE consists of edges
(x,y) for each antipodal pairx andy. Since the prediction
errorsx− x′ andy− y′ are the same, each edge(x,y) ∈ E is
undirectedwith edge cost the prediction errorx−x′ (thusG
is anundirected, weighted graph).


This MST problem is not yet the corrected formulation
of the problem, however. Notice that in order to flip from a
vertexx to predict its antipodal vertexy across the common
triangle face4abc, the verticesa,b,c, as well asx, need to be
known (visited) first. This is a causality constraint imposed
by the flipping operation. Hence we introduce the notion of a
constrainedMST (CMST) which admits a traversal that does
not violate the causality constraint. Our final formulation of
the problem, then, is to find a CMST onG, where each edge
(x,y) ∈G connecting antipodal verticesx andy is associated
with constraint vertices a,b, andc that define the common
triangle face4abcto be flipped across.


To solve the CMST problem onG, we propose a heuristic
algorithm to compute an (approximate) CMST that is a fea-
sible solution but the cost may not be optimal. Our next task
is to use the constructed CMSTT to traverse the tetrahedra
and predict vertices accordingly, in an order satisfying the
causality constraint of the flipping operations, to perform the
geometry compression. Ideally, we would like to traverse the
treeT on the fly whileT is being constructed, but it turns out
that such traversal order is very expensive to encode. There-
fore, we first complete the construction ofT, and then tra-
verseT in a separate pass, in an order that still satisfies the
causality constraint and yet is much cheaper to encode. Such
traversal results in apseudo-CMST, which in fact is a forest
and may have a slightly higher prediction cost thanT due to
the starting cost of each tree in the forest. Theoverall en-
coding cost, including the starting costs and the prediction
costs, however, is greatly reduced in the pseudo-CMST com-
pared with the overall encoding cost needed forT. Finally,
the geometry coder does not visit all tetrahedra in the mesh,
since each vertex is spanned exactly once, where spanning
a vertex corresponds to visiting a new tetrahedron, and typi-
cally the number of tetrahedra is about 4.5 times the number
of vertices in a tetrahedral mesh. We still need to “collect”
the left-over tetrahedra for the purpose of connectivity com-
pression. We develop an algorithm to build a pseudo-CMST
and collect the left-over tetrahedra in the same pass, in an
interleaving manner; this completes both geometry and con-







nectivity encoding at the same time. In summary, our overall
algorithm performs the following steps:
1. Form the graphG.
2. Construct an approximate CMSTT onG.
3. TraverseT in another pass, build a pseudo-CMST and


collect the left-over tetrahedra, and complete both geom-
etry and connectivity encoding.


In the following, we describe the details of Steps 2 and 3.


3.2 Heuristic Algorithm for CMST


Given the graphG = (V,E) where each edge(x,y) ∈ E con-
necting antipodal verticesx and y is associated with the
constraint verticesa,b,c defining the common triangle face
4abc to be flipped across, our heuristic algorithm to build
an approximate CMSTT on G is a modifiedPrim’s algo-
rithm [4]. Initially, for each edge(x,y) with constraint ver-
tices a,b, andc, we establish abidirectional link between
(x,y) and each ofa,b, and c, so that from each edge we
know its constraint vertices, and from each vertex we know
the edges constrained by this vertex.


We start constructingT by including the four vertices
of a tetrahedron intoT, which enables initial predictions.
Throughout the process, we use a priority queueQ to main-
tain the vertices not yet added toT. The key of each vertexx
in Q is the minimum cost among the costs of thevalid edges
(x,y) ∈G through whichx can be added toT, where(x,y) is
valid if its constraint vertices a,b,c, as well asy, are already
in T. The cost ofx is infinity if no valid edges exist forx.


In each iteration whileQ is not empty, we perform the
following operations. (1) Extract the current minimum-cost
vertex v from Q, and markv as included intoT. (2) Up-
date the key values of the vertices inQ that are “influenced”
by v. Namely, we need to find the edges ofG that become
valid by the addition ofv into T, and perform the necessary
decrease-keyoperations on the corresponding vertices inQ.
The candidates for such newly valid edges can be classified
into two types: the edges ofG incident onv, and the edges
of G with v a constraint vertex. In either case, we can find
such candidate edges via bidirectional links fromv, and use
the bidirectional links from the candidate edges to the corre-
sponding vertices to check their marking status. Note that in
the entire process each edge ofG is examined at most five
times, so that the overall complexity is the same as the origi-
nal Prim’s algorithm.


In case the extracted minimum-cost vertexv has infinite
cost (meaning thatv cannot be added toT via a valid edge),
we start a new tree by the same process (such case occurred
very rarely in our experiments). In this way, we can always
span all the vertices.


3.3 Building a Pseudo-CMST and Final Encoding


Now we describe the last step of our encoding algorithm.
From Section 3.2, we see that traversing the constructed
CMSTT by the order we growT is afeasibleflipping traver-
sal. However, such order grows the boundary of the sub-
volume spanned by the currentT arbitrarily according to
which boundary face is the least expensive to flip across, and
thus encoding such traversal requires us to specify which of
the candidate boundary faces to flip across. As the number
of such boundary faces is large, this is too expensive to en-
code. This is why we seek an alternative traversal and build
a pseudo-CMST to get a better compression efficiency.


Data # tetra. # vert. MST CMST Diff.
Spx 12936 20108 8.94 10.02 12.08%
Blunt 187395 40960 8.06 8.66 7.44%
Comb 215040 47025 6.16 6.24 1.30%
Post 513375 109744 7.82 8.13 3.96%
Delta 1005675 211680 6.64 7.00 5.42%
Cyl1 615195 131072 5.81 6.27 7.92%
Cyl10 615195 131072 13.09 13.46 2.83%


Table 1: Comparison of entropy of prediction errors (includ-
ing x-, y-, z- and scalar values, in bits per vertex, b/v) with
constrained and unconstrained MSTs.


The main idea of the algorithm is that each tetrahedron
has at most four faces to flip across, which is cheap to encode,
and each potential flipping corresponds to an edgee∈G. The
constraint vertices ofe are among the vertices of the current
tetrahedron and are already visited, and thus the causality
constraint is satisfied. If the face-neighboring tetrahedront
corresponding toe has been visited before then we ignore
t. Otherwise,t is unvisited and letv be the new vertex of
t to be predicted bye. If v has not been visited ande be-
longs to our constructed CMSTT, then we includee into the
pseudo-CMST, visit the new tetrahedront, predictv via e,
code the prediction error, and recursively proceed fromt. If
v has not been visited bute is not an edge ofT, then we ig-
noret ande—v will not be predicted viae (and tetrahedron
t and vertexv will be traversed later from some other paths).
In the remaining case, wherev has been visited before, we
alwaysincludee into the pseudo-CMST withno prediction
cost, visit the new tetrahedront and proceed recursively from
t. Such no-cost edgee is called apseudo-edge(and hence the
pseudo-CMST).


In general, there are three faces to expand from the cur-
rent tetrahedron (four faces for a starting tetrahedron). Our
algorithm recursively expands in one direction, and the next,
in a depth-first manner. For the purpose of connectivity
compression, we also need to collect those left-over tetra-
hedra not visited by the above process. Such tetrahedron-
collection operations are interleaving with the above process
so that we avoid the cost of specifying where to “insert” the
left-over tetrahedra. When a new tetrahedront (with new
vertex v) is visited, we try to recursively expand from the
face-neighboring tetrahedra oft, one by one, by applying the
above process. When this is complete, we look at all the
tetrahedra sharingv that are only edge-neighbors oft or only
vertex-neighbors oft, and collect those that are left-over but
have all four vertices already visited. Note that we donot
recursively expand from such left-over tetrahedra. When the
algorithm can no longer proceed and there are still unvisited
vertices, we start a new tree by the same procedure. In this
way, all the vertices and tetrahedra are visited.


4. EXPERIMENTAL RESULTS


We have implemented our new algorithm, and experimented
on the datasets listed in Table 1. These are all well-known
tetrahedral volume datasets, where Cyl10 is time-varying
with 10 time steps, and Cyl1 is the same dataset with one
time step. In Spx, only 2896 vertices are referenced by the
tetrahedra and thus we removed the remaining vertices in our







xyz + scalar values xyz only
Data Flip PseT Gain Flip PseT Gain
Spx 13.30 10.02 24.7% 9.88 7.26 26.5%
Blunt 11.17 8.70 22.1% 8.63 6.72 22.1%
Comb 8.04 6.24 22.4% 6.42 4.73 26.3%
Post 10.85 8.15 24.9% 8.65 6.40 26.0%
Delta 9.62 7.01 27.1% 8.11 5.78 28.7%
Cyl1 8.97 6.27 30.1% 7.49 5.23 30.2%
Cyl10 18.19 13.46 26.0% – – –
Ave 25.3% 26.6%


Table 2: Comparison of entropy of prediction errors (in b/v)
with different flipping approaches. ‘PseT’ is our pseudo-
CMST, and ‘Flip’ is a state-of-the-art flipping method.


experiments as they cannot be predicted by the flipping op-
erations. The vertex coordinates and scalar values are each
quantized to an 8-bit integer before compression.


The first set of experiments was to evaluate the efficiency
of our heuristic for computing an approximateconstrained
MST (CMST) by comparing it with anunconstrainedMST,
which is a lower bound (albeit unachievable). In Table 1 we
see that the first order entropy of the prediction errors we get
is almost always within 8% of that achieved by an uncon-
strained MST. On an average the difference is 5.85%. This
shows that our resulting CMST is very close to optimal.


For the purpose of comparisons, we also implemented a
state-of-the-art flipping approach, which traverses the tetra-
hedra using the connectivity coder of [25] and predicts the
new vertices via the same flipping operation. In Table 2,
we compare the compression performance of our prediction
technique with this flipping approach. We see that when in-
cluding the scalar values, our technique can be up to 30.1%
more efficient (and 25.3% more efficient on an average),
while the improvements are up to 30.2% (and 26.6% on an
average) when not including the scalar values, showing a sig-
nificant advantage of our algorithm.
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