

Lossless Geometry Compression for
Steady-State and Time-Varying

Irregular Grids

Dan Chen
Yi-Jen Chiang
Nasir Memon
Xiaolin Wu

Polytechnic University, New York, USA
(Eurographics/IEEE EuroVis 2006)

Graphics Compression for
Irregular-Grid Volume Data

• Graphics compression is an emerging need for storing,
transmitting, and visualizing large volume datasets

• Irregular Grids (represented as tetrahedral meshes):
– The most general class of volume data, with many

applications

– Two components of information:

geometry -- 3D coordinates & scalar values at mesh
vertices

connectivity – edges, triangles & tetrahedral cells
connecting vertices

Previous Work
• Many results in connectivity compression… (see paper)
• Best connectivity compression results: 2.04 -- 2.31 bits/cell

on an average
(# cells = 4.5 * (# vertices) ~ 2 * 4.5 = ~ 9 bits/vertex)

– e.g. [Gumhold et al 99], [Yang et al 00]

• Geometry compression results are not equally impressive
– Typical results: ~ 30 bits/vertex (e.g. [Gumhold et at 99])

(1. not including scalar values 2. quantized then compressed (lossy))

Geometry compression is by far the dominating
bottleneck!!

Even worse for time-varying data & lossless compression

Remark: Why Lossless Compression?
[Note: Almost all geometry coders need quantization (lossy)]

• In many scientific applications accuracy is of vital
importance (and quantization is not desirable)
– Cf. for graphics models, lossy compression might be

acceptable to ‘‘fool the eyes’’

• Usually scientists do not like their data to be changed
in a process outside their control, and hence often
avoid using any lossy compression [Isenburg et al 04]

We focus on lossless geometry compression, for both
steady-state & time-varying tetrahedral meshes

Previous Work: Geometry Compression
• Flipping for triangle meshes [Touma-Gotsman 98]

– Dominant, widely considered state of the art
– Traverse triangles by connectivity coder; predict new vertex

position of new triangle by flipping using parallelogram rule

– Many other extensions (see paper);
[Isenburg et al 04] -- lossless flipping (the only method with no
quantization)

• Flipping for volume data
- [Isenburg-Alliez 02]:
hexahedral meshes
- State of the art for tetrahedral
meshes: flipping combined with
best connectivity coder [GGS99,
YMC00]
* No lossless flipping result

c

Our New Algorithm
• Lossless geometry compression method, for both steady-

state & time-varying tetrahedral volume data
• Truly lossless --- quantization is not needed (but it works

equally effective if quantization is performed)
• Can be easily integrated with the best connectivity coder

[GGS99, YMC00]
• Novel direction: geometry coder is independent of

connectivity coder---they may re-order vertices differently
– Causes an additional overhead of recording vertex permutation

when integrating the two coders

– Significantly improves the geometry-compression cost even after
paying the permutation overhead

– New feature: geometry coder does not need connectivity
information --- suitable for point cloud compression

Key Ideas of Our Algorithm
• Not trying to design a fancy predictor

– Use differential coding (simplest predictor)

– Re-order vertices to optimize differential coding ---
formulate optimal vertex re-ordering as a traveling
salesman problem (TSP). * Solve it with heuristics

• Using kd-tree-like partitioning/clustering to speed up TSP
computation

• Final encoding: separate exponent and mantissa
– Encode sign bit & exponent (signed exponent) by gzip
– Encode mantissa differences by entropy code

Problem: many distinct symbols (large alphabet size)
big Huffman table; bad probability estimation

Sol: Use two-layer modified Huffman code [our DCC03 paper] or
two-layer modified arithmetic code

Algorithm Steps
* Entry for each vertex v : (x, y, z, f1, f2, …, ft)
1. For each vertex v, take mantissa differences of scalar

values along time steps: (x, y, z, f1, (f2 - f1), …, (ft - ft-1))
(only for time-varying data)

2. Partition vertices into clusters (using mantissa of x, y, z)
3. In each cluster, re-order vertices by formulating and

solving a TSP problem (using mantissa of x, y, z and fi’s)
4. Take component-wise mantissa differences:

mantissa of each component of vi is replaced by its
difference with the corresponding mantissa of vi-1

5. Entropy code the mantissa differences (two-layer modified
Huffman or arithmetic code)

6. Compress the signed exponents by gzip
(order: all x-values, all y, all z, all f1, all f2, …, all ft)

(* If quantized: quantized integer as mantissa; no exponent)

Step 3: Vertex Re-Ordering
• Goal: re-order vertices to optimize differential code of

mantissa differences
• Form a complete (undirected) weighted graph G:

* nodes of G: mesh vertices * edges: all pairs of vertices
* cost of edge (vi, vj) = lg |xi – xj| + lg |yi – yj| + lg |fi1 – fj1| +
… + lg |fit – fjt| (difference: component mantissa diff.)

• Optimal vertex re-ordering: TSP on G, i.e., a Hamiltonian
path that visits each node of G exactly once while
minimizing the total path cost

• Heuristic algorithms (TSP is NP-complete):
1. simulated annealing (SA)
2. minimum-spanning tree (MST) based approximation:
depth-first-search traversal on MST

Step 2: Partition Vertices into Clusters
• The MST heuristic to find TSP takes O(n2) time since G is a

complete graph (n: # vertices)
• Even just computing the edge costs of G takes O(n2) time
Sol: Partition vertices into K clusters of same size, solve TSP

inside each cluster
(TSP time: O(K (n/K)2) = O(n2/K), speed-up factor: K)

Partitioning algorithm: (let L = K1/3)
• Sort all vertices by mantissa of x-values, split into L groups of

same size
• For each group, sort by mantissa of y, split into L groups
• Repeat the process by mantissa of z (final groups = clusters)
• O(n log n) time (due to sorting)

Step 5: Entropy Coding Mantissa Differences
• Too many distinct symbols (large alphabet) in mantissa

differences to encode directly
• Two-layer modified Huffman code [our DCC 03 paper]

– Partition range of integer values (alphabet) into intervals
– Encode the intervals by a Huffman code (first-layer code)
– Encode the values within each interval by a fixed-length code

(second-layer code)

– Try to optimize alphabet partitioning so that total code length is
minimized
1. dynamic programming : O(N3) time (N: # distinct symbols)
2. greedy method: O(N log N) time; still compresses well

• Here, we extend to two-layer modified arithmetic code with
greedy method. Use two-layer arithmetic/Huffman code

Step 5: Entropy Coding (cont.)
• We need to encode multiple clusters & multiple vertex

components (i.e., x, y, z, fi’s)
• Two extreme options:

1. for each cluster, one AC/Huffman code for mantissa of each vertex
component --- too many probability-/Huffman-tables (expensive)

2. a single AC/Huffman code for all components in all clusters ---
entropy code less efficient

• Our approach
– Idea: coordinates are co-related, so are scalar values

– Steady-state: Combined Greedy (CGreedy) --- one code for all
coordinates in all clusters, one code for all scalar values

– Time-varying: CGreedyi --- one code for all coordinates; for scalar
values, one code for every i time steps in all clusters

Summary: Algorithm Steps
1. For each vertex, take mantissa differences of scalar

values along time steps (time-varying data only)
2. Partition vertices into clusters
3. In each cluster, re-order vertices by TSP
4. Take component-wise mantissa differences

between adjacent vertices
5. Entropy code the mantissa differences by two-

layer modified AC/Huffman code
6. Compress the signed exponents by gzip
(* If quantized: quantized integer as mantissa; no exponent)

* Encoding only performed once; decoding takes linear time

Last Technical Part: Integration with
Connectivity Coder

• Easy to do (see paper for details)
• Geometry & connectivity coders re-order

vertices differently: permutation sequence
• Encoding the permutation sequence

– Differential coding on the permutation sequence

– Issue: many distinct symbols
Use two-layer modified Huffman code

Experiments
• 7 well-known tetrahedral-mesh datasets

– 5 datasets are steady-state
– 2 datasets are time-varying (10 & 20 time steps) of the

same mesh

– size: small --- moderately large
(# cells: 12,936—1,005,675, # vertices: 20,108—211,680)

• Evaluate effectiveness of clustering & vertex re-ordering

• Compare our final compression ratios with the following:
– For lossless compression (no quantization):

(1) Gzip, (2) arithmetic coding (AC), (3) lossless flipping

– For lossy compression (quantization first):
lossy flipping (encoding prediction errors: gzip & AC)

Representative Isosurfaces of Datasets

Results: Statistics Summary
• Clustering & TSP vertex re-ordering: entropy-speed trade-off

– 100--200 vertices/cluster (i.e., 512 clusters) the best balance
– TSP-MST: ~ 200 times faster than TSP-SA, with comparable entropy

• Steady-state (AC-CGreedy)
– Lossless

» Always much better than AC/Gzip* (* see paper for more details)
» Lossless flipping: bad predictor (entropy > original entropy!!)

– Lossy (32-bit quantization)
» Permutation sequence can be efficiently encoded
» Always much better than flipping; gain up to 62.1 b/v (67.2%)

• Time varying (AC-CGreedyi)
– Lossless: always much better than AC/Gzip; gain up to 66 b/v (32.6%)
– Lossy (24-bit quantization): always much better than flipping; gain up

to 61.4 b/v (23.6%)

Conclusions
• Novel lossless geometry compression method via vertex re-

ordering by TSP, for both steady-state and time-varying data
• Novel direction: geometry oriented; connectivity information

not needed
• Easily integrated with connectivity coder
• Huge improvements in both lossless & lossy settings
Extension

Point cloud compression
[Chen-Chiang-Memon]: PG 05 short paper

Open Question
How can we use connectivity information better than flipping
(especially in lossless setting)?
(cf. lossy: optimized flipping for triangle meshes [our DCC05])

Acknowledgments
• C. Silver, H.-W. Shen, Lawrence Livermore

National Lab, NASA, Vtk for the test
datasets

• National Science Foundation (NSF)
(CAREER CCF-0093373, CCF-0118915,
ITR CCF-0081964, CCF-0541255)

		Lossless Geometry Compression for Steady-State and Time-Varying Irregular Grids

		Graphics Compression for Irregular-Grid Volume Data

		Previous Work

		Remark: Why Lossless Compression?

		Previous Work: Geometry Compression

		Our New Algorithm

		Key Ideas of Our Algorithm

		Algorithm Steps

		Step 3: Vertex Re-Ordering

		Step 2: Partition Vertices into Clusters

		Step 5: Entropy Coding Mantissa Differences

		Step 5: Entropy Coding (cont.)

		Summary: Algorithm Steps

		Last Technical Part: Integration with Connectivity Coder

		Experiments

		Representative Isosurfaces of Datasets

		Results: Statistics Summary

		Conclusions

		Acknowledgments

