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Graphics Compression for     
Irregular-Grid Volume Data


• Graphics compression is an emerging need for storing, 
transmitting, and visualizing large volume datasets


• Irregular Grids (represented as tetrahedral meshes):
– The most general class of  volume data, with many 


applications


– Two components of information:


geometry  -- 3D coordinates & scalar values at mesh 
vertices        


connectivity – edges, triangles & tetrahedral cells   
connecting vertices







Previous Work 
• Many results in connectivity compression… (see paper)
• Best connectivity compression results: 2.04 -- 2.31 bits/cell


on an average                                                   
(# cells = 4.5 * (# vertices) ~ 2 * 4.5 = ~ 9 bits/vertex) 


– e.g. [Gumhold et al 99], [Yang et al 00]


• Geometry compression results are not equally impressive
– Typical results: ~ 30 bits/vertex (e.g. [Gumhold et at 99])          


(1. not including scalar values 2. quantized then compressed (lossy))


Geometry compression is by far the dominating 
bottleneck!!


Even worse for time-varying data & lossless compression







Remark: Why Lossless Compression? 
[Note: Almost all geometry coders need quantization (lossy)]


• In many scientific applications accuracy is of vital   
importance (and quantization is not desirable)
– Cf. for graphics models, lossy compression might be 


acceptable to ‘‘fool the eyes’’


• Usually scientists do not like their data to be changed 
in a process outside their control, and hence often
avoid using any lossy compression [Isenburg et al 04]


We focus on lossless geometry compression, for both 
steady-state & time-varying tetrahedral meshes







Previous Work: Geometry Compression
• Flipping for triangle meshes [Touma-Gotsman 98]


– Dominant, widely considered state of the art
– Traverse triangles by connectivity coder; predict new vertex 


position of new triangle by flipping using parallelogram rule


– Many other extensions (see paper);
[Isenburg et al 04] -- lossless flipping (the only method with no 
quantization)


• Flipping for volume data
- [Isenburg-Alliez 02]: 
hexahedral meshes
- State of the art for tetrahedral 
meshes: flipping combined with 
best connectivity coder [GGS99, 
YMC00]
* No lossless flipping result


c







Our New Algorithm
• Lossless geometry compression method, for both steady-


state & time-varying tetrahedral volume data 
• Truly lossless --- quantization is not needed   (but it works 


equally effective if quantization is performed)
• Can be easily integrated with the best connectivity coder 


[GGS99, YMC00]
• Novel direction: geometry coder is independent of


connectivity coder---they may re-order vertices differently
– Causes an additional overhead of recording vertex permutation


when integrating the two coders


– Significantly improves the geometry-compression cost even after 
paying the permutation overhead


– New feature: geometry coder does not need connectivity 
information --- suitable for point cloud compression







Key Ideas of Our Algorithm
• Not trying to design a fancy predictor


– Use differential coding (simplest predictor)


– Re-order vertices to optimize differential coding ---
formulate optimal vertex re-ordering as a traveling 
salesman problem (TSP).  * Solve it with heuristics


• Using kd-tree-like partitioning/clustering to speed up TSP 
computation


• Final encoding: separate exponent and mantissa
– Encode sign bit & exponent (signed exponent) by gzip
– Encode mantissa differences by entropy code                           


Problem: many distinct symbols (large alphabet size)                     
big Huffman table; bad probability estimation


Sol: Use two-layer modified Huffman code [our DCC03 paper] or 
two-layer modified arithmetic code







Algorithm Steps
* Entry for each vertex v : (x, y, z, f1, f2, …, ft ) 
1. For each vertex v, take mantissa differences of scalar  


values along time steps: (x, y, z, f1, (f2 - f1), …, (ft - ft-1 )) 
(only for time-varying data) 


2. Partition vertices into clusters (using mantissa of x, y, z)
3. In each cluster, re-order vertices by formulating and 


solving a TSP problem (using mantissa of x, y, z and fi’s)
4. Take component-wise mantissa differences:


mantissa of each component of vi is replaced by its 
difference with the corresponding mantissa of  vi-1


5. Entropy code the mantissa differences (two-layer modified 
Huffman or arithmetic code)


6. Compress the signed exponents by gzip
(order: all x-values, all y, all z, all f1, all f2, …, all ft )


(* If quantized: quantized integer as mantissa; no exponent)







Step 3: Vertex Re-Ordering
• Goal: re-order vertices to optimize differential code of 


mantissa differences
• Form a complete (undirected) weighted graph G:                   


* nodes of G: mesh vertices  * edges: all pairs of vertices            
* cost of edge (vi, vj) = lg |xi – xj| + lg |yi – yj| + lg |fi1 – fj1| + 
… + lg |fit – fjt|     (difference: component mantissa diff. )


• Optimal vertex re-ordering: TSP on G, i.e., a Hamiltonian 
path that visits each node of G exactly once while 
minimizing the total path cost


• Heuristic algorithms (TSP is NP-complete):                                 
1. simulated annealing (SA)
2. minimum-spanning tree (MST) based approximation: 
depth-first-search traversal on  MST







Step 2: Partition Vertices into Clusters
• The MST heuristic to find TSP takes O(n2) time since G is a 


complete graph      (n: # vertices)
• Even just computing the edge costs of G takes O(n2) time
Sol: Partition vertices into K clusters of same size, solve TSP 


inside each cluster
(TSP time: O(K (n/K)2) = O(n2/K), speed-up factor: K)


Partitioning algorithm: (let L = K1/3 )
• Sort all vertices by mantissa of x-values, split into L groups of 


same size
• For each group, sort by mantissa of y, split into L groups
• Repeat the process by mantissa of z   (final groups = clusters)
• O( n log n) time (due to sorting)







Step 5: Entropy Coding Mantissa Differences
• Too many distinct symbols (large alphabet) in mantissa 


differences to encode directly
• Two-layer modified Huffman code [our DCC 03 paper]


– Partition range of integer values (alphabet) into intervals
– Encode the intervals by a Huffman code (first-layer code)
– Encode the values within each interval by a fixed-length code


(second-layer code)


– Try to optimize alphabet partitioning so that total code length is 
minimized
1. dynamic programming : O(N3) time  (N: # distinct symbols)              
2. greedy method: O(N log N) time; still compresses well


• Here, we extend to two-layer modified arithmetic code with 
greedy method. Use two-layer arithmetic/Huffman code







Step 5: Entropy Coding (cont.)
• We need to encode multiple clusters & multiple vertex 


components  (i.e., x, y, z, fi’s)
• Two extreme options: 


1. for each cluster, one AC/Huffman code for mantissa of each vertex 
component --- too many probability-/Huffman-tables (expensive) 


2. a single AC/Huffman code for all components in all clusters ---
entropy code less efficient


• Our approach                                                    
– Idea: coordinates are co-related, so are scalar values 


– Steady-state: Combined Greedy (CGreedy) --- one code for all 
coordinates in all clusters, one code for all scalar values


– Time-varying: CGreedyi --- one code for all coordinates; for scalar 
values,  one code for every i time steps in all clusters







Summary: Algorithm Steps
1. For each vertex, take mantissa differences of scalar  


values along time steps (time-varying data only) 
2. Partition vertices into clusters
3. In each cluster, re-order vertices by TSP
4. Take component-wise mantissa differences


between adjacent vertices
5. Entropy code the mantissa differences by two-


layer modified AC/Huffman code
6. Compress the signed exponents by gzip
(* If quantized: quantized integer as mantissa; no exponent)


* Encoding only performed once; decoding takes linear time







Last Technical Part: Integration with 
Connectivity Coder


• Easy to do (see paper for details)
• Geometry & connectivity coders re-order 


vertices differently: permutation sequence
• Encoding the permutation sequence


– Differential coding on the permutation sequence 


– Issue: many distinct symbols
Use two-layer modified Huffman code







Experiments
• 7 well-known tetrahedral-mesh datasets  


– 5 datasets are steady-state 
– 2  datasets are time-varying (10 & 20 time steps) of the 


same mesh


– size: small --- moderately large                                           
(# cells: 12,936—1,005,675, # vertices: 20,108—211,680)


• Evaluate effectiveness of clustering & vertex re-ordering


• Compare our final compression ratios with the following:
– For lossless compression (no quantization):


(1) Gzip, (2) arithmetic coding (AC), (3) lossless flipping       


– For lossy compression (quantization first):
lossy flipping (encoding prediction errors: gzip & AC)







Representative Isosurfaces of Datasets







Results: Statistics Summary
• Clustering & TSP vertex re-ordering: entropy-speed trade-off


– 100--200 vertices/cluster (i.e., 512 clusters) the best balance
– TSP-MST: ~ 200 times faster than TSP-SA, with comparable entropy


• Steady-state (AC-CGreedy)
– Lossless


» Always much better than AC/Gzip* (* see paper for more details)
» Lossless flipping: bad predictor (entropy > original entropy!!)


– Lossy (32-bit quantization) 
» Permutation sequence can be efficiently encoded
» Always much better than flipping; gain up to 62.1 b/v (67.2%)


• Time varying (AC-CGreedyi)
– Lossless: always much better than AC/Gzip; gain up to 66 b/v (32.6%)
– Lossy (24-bit quantization): always much better than flipping; gain up 


to 61.4 b/v (23.6%)







Conclusions
• Novel lossless geometry compression method via vertex re-


ordering by TSP, for both steady-state and time-varying data
• Novel direction: geometry oriented; connectivity information 


not needed
• Easily integrated with connectivity coder
• Huge improvements in both lossless & lossy settings
Extension                                                       


Point cloud compression                                                     
[Chen-Chiang-Memon]: PG 05 short paper


Open Question  
How can we use connectivity information better than flipping 
(especially in lossless setting)?                                                      
(cf. lossy: optimized flipping for triangle meshes [our DCC05])
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