
Out-of-Core Simplification and
Crack-Free LOD Volume Rendering

for Irregular Grids

Zhiyan Du and Yi-Jen Chiang
Polytechnic Institute of New York University, NY, USA

Volume Rendering for Tetrahedral
Meshes

• Large datasets pose a big challenge in efficiency
 Out-of-core and level-of-detail (LOD) methods are
essential

• Existing approaches:
– GPU-based methods: can only handle small datasets
– LOD methods: very few (mostly in-core)
– Out-of-core methods: either do not support LOD or do

not completely resolve the crack-free issue (explained in a
moment)

• Our Goal: To perform out-of-core simplification and
LOD volume rendering efficiently while resolving the
crack-free issue completely

Crack-Free Issue & Our Contribution
* In out-of-core setting, we need to use block-based structure:

sub-volumes from space decomposition (e.g., octree, kd-tree, etc.)

* Crack-free issue: neighboring sub-volumes at different levels of tree
in the selected LOD mesh must have consistent boundaries

* Crack-free LOD for general meshes in out-of-core is very challenging
– Naïve way: not to simplify the boundary --- low quality, not desirable

– Only a few methods address this issue --- Not guaranteed that the
boundary cells can always be simplified (simplified at future levels)

* Our new out-of-core algorithm:
1. Guarantees to simplify both boundary & interior at each current
level
2. Achieves crack-free LODs with a theoretical guarantee
3. Supports selective-refinement LODs: highest image quality, much
faster speed

Previous Work
• GPU-based methods: see survey [Silva et al 05]

--- in-core, single resolution
• LOD methods: [Cignoni et al 04] [Callahan et al 05]

--- in-core
• Out-of-core methods

* [Farias et al 01] [Chiang et al 01] --- no LOD support
* Progressive rendering [Callahan et al 06]
--- preprocessing is in-core, no mesh LODs
* iRun [Vo et al 07] --- sample-based, no mesh LODs
* [Sondershaus et al 06] --- mesh LODs, boundary not
simplified

Previous Out-of-Core Crack-Free LOD
Methods

• Triangle Meshes
* TetraPuzzles [Cignoni et al 04]
* Quick VDR [Yoon et al 04]
* Progressive Buffers [Sander & Mitchell 05]
* Batched Multi Triangulation [Cignoni et al 05]
--- each has some un-resolved issues (see paper for
details)

• Tetrahedral Meshes
* Segment-Based Tetrahedral Meshing [Sondershaus et al
06] --- based on Batched Multi Triangulation [Cignoni et al
05]

Previous Best Out-of-Core Crack-Free
LOD Method(s)

[Cignoni et al 05], [Sondershaus et al 06] (based on Batched Multi
Triangulation)

• Use a sequence of coarser space partitions; at each level two
consecutive partitions are super-imposed. Only cells lying
entirely within a region can be simplified.

• Cannot guarantee that the boundary cells can always be
simplified (e.g., the triangle shown below). [They must be
simplified at future levels]

• Neighboring nodes in LOD must have level difference at most 1

Our New Algorithm
• Out-of-core simplification and crack-free LOD volume

rendering
• Smooth & high-quality simplification

- Guarantees to simplify both boundary & interior at each
current level
- Uses edge collapses with extended quadric error metric
[Garland & Zhou 05]

• Achieves crack-free LODs with a theoretical guarantee
• Supports selective-refinement LODs --- highest image

quality, much faster speed
• Integrates GPU-based HAVS [Callahan et al 05] as volume

rendering engine --- out-of-core HAVS as a by-product

Key Idea 1: Error-Based LOD Cuts
• Merge Tree (only tree skeleton is kept in-core):

– Spatially partition input mesh into sub-volumes of roughly same # of
vertices (meta-cell technique [Chiang et al 98]). These sub-volumes
are tree leaves.

– Simplify and merge neighboring sub-volumes bottom-up recursively.
– Create & simplify one node at a

time. Propagate the boundary
updates to its neighbors so that
their boundaries are always
consistent  One new node
creates one new breadth cut
(n new nodes <-> n+1 cuts)

– Create the new nodes in the order of increasing errors
 For any query error ɛ, the LOD cut for ɛ must be one of the
n+1 breadth cuts created before (boundary consistent)

Simplification for Continuous LODs

• For each node (sub-volume), perform 2 phases:
1. Global simplification: Simplify globally including the interior &

boundary (in increasing errors up to ɛl), and propagate
updates to neighbors. Set a simplification lower bound ɛl

2. Internal simplification: Further simplify only the interior (in
increasing errors), to get a simplification upper bound ɛu
(progressive representation: the reverse linear sequence
gives the refinement sequence) --- for continuous LODs

• Resulting mesh: base mesh, with a refinement sequence
& error bound range [ɛl, ɛu]

Key Idea 2: Progressive Boundary &
Interior with Fire Wall

• Issue: Same sub-volume
V in different LODs ---
different neighbors with
different boundaries
 Progressive boundary

• After a node V finishes its global & internal simplifications
(base mesh), future neighbor simplifications will
propagate updates to further simplify the boundary of V
 Collect the updates into a simplification sequence for V

• This requires us to refine interior & simplify boundary of V
independently.

Solution: Fire-Wall

• V is simplified before U.
(a) After global simplification on V. Define the fire wall (in red) of V.
(b) After internal simplification on V. The fire wall is made intact.
(c) Simplifying U updates the boundary of V. The fire wall is intact.

• Not restrictive: First perform global simplification (already simplify
V as desired), then identify fire wall and simplify interior.

Simplification Algorithm
• For each leaf only simplify its interior (up to pre-defined

size c) to get error bound [0, ɛu]. Put all leaves to a
priority queue Q with error upper bound ɛu being the key.

• Repeat the following recursively:
1. w Extract_Min(Q).
2. Check the place holder, pool, for w’s neighbors:
– If not found: Put w into pool.
– If found:

* Merge those neighbors with w into a new node x (also remove
these nodes from pool)
* Set the error lower bound of x: ɛl(x) = ɛu(w).
* Simplify new node x globally up to error lower bound ɛl(x).
* Simplify x internally up to size c & get error upper bound ɛu(x).
* Put x into Q with key ɛu(x).

Simplification Example

Simplification Example (con’d)

Properties of the LOD Cuts

– New nodes 6, 7, 8, 9 are created with ɛl = 2, 4, 6, 8 (increasing), which
partition the whole range [0, infinity) into 5 ranges [0, 2), [2,4), [4,6),
[6,8), [8, infinity]

– Query against ɛl : For any query error ɛ, the LOD cut for ɛ must be one of
the 5 breadth cuts created before (already made boundary consistent)

Selecting the LOD Mesh (1): Uniform LOD

Uniform LOD: the LOD mesh satisfying query error bound ɛ
everywhere

• On the Merge Tree, find the LOD cut satisfying ɛ
• For each node in the cut:

– Use the simplification sequence to simplify the
boundary (up to ɛ) to get the boundary version of this
LOD cut (consistent boundary, crack-free)

– Use the refinement sequence to refine the interior up
to ɛ

Selecting the LOD Mesh (2):
Selective-Refinement LOD

Selective-Refinement LOD: the LOD mesh with the highest LOD
cut where the selected sub-volumes satisfy ɛ and other sub-
volumes are just enough detailed to ensure crack-free

• Find the LOD cut satisfying ɛ
• Select nodes from the cut:

M1. view-dependent (t%): select the t% nodes closest to the
viewer
M2. scalar-range ([a,b]): select the nodes whose scalar-value
range [min, max] intersects [a,b]

• Make the LOD cut go higher (highest possible yet still going
thru the selected nodes) (see paper) --- fewer cut nodes

• In the new LOD cut:
* Make boundary consistent as before
* Only refine the interior of selected nodes up to ɛ (for other
nodes, use the base-mesh interior without any refinement)

Experiments: Simplification
• Datasets: up to 101M cells, 3.9 GB

[Remark: In-core HAVS needs 6-10 times of dataset
size for its memory footprint (e.g., 13.1GB footprint
for a 2.1GB dataset)]

• PC: RAM size 1.5GB, GPU memory 512MB
• Out-of-core simplification

– Tree size up to 82.5 KB
– Final total size on disk up to 4GB
– Memory footprint up to 1.2 GB
– Total time up to 4.5 hours

(partition: 0.92 hours; simplification: 3.53 hours)
• Comparison: In-core simplification

– For dataset of 148MB, memory footprint was 1.8GB and
thrashing occurred (512.5s vs. 295.6s out-of-core time)

Experiments: Rendering
• Single Resolution

– In-core HAVS [Callahan et at 05]
2.1 GB data --- 13.1GB memory footprint, >> 24 hours

– Out-of-core HAVS
* 2.1GB data --- 630MB footprint, 6.3 minutes
* 3.9GB data --- 870 MB footprint, 19.7 minutes

• Out-of-Core Uniform LOD
– Speed depends on LOD resolution (ratio of extracted vs.

total # triangle faces)
– 3.9 GB data --- 0.07s (14 fps) at 0.21% resolution

[at 100% resolution: 870 MB footprint, 22 minutes]
• Out-of-Core Selective-Refinement LOD

– Selected parts at full resolution  almost the same image
quality as the best one (i.e. full resolution everywhere)

– 3.9 GB data: Scalar-range (ave. 47.8%): 4.5 minutes
– 3.9 GB data: View-dependent (ave. 38.56%): 3.82 minutes

Uniform LOD

2.1GB
data

LOD Resolution: 0.28% 14.45% 32.8% 100%

LOD Resolution: 0.21% 10.27% 25.66% 100%

3.9GB
data

Selective-Refinement LOD

ave. LOD 38.56% 47.8% (100%)

ave. LOD 58.12% 70.05% (100%)
Rough view view-dependent scalar-range original

Interaction (Video)

Conclusions

• The first out-of-core algorithm that can always
simplify both boundary & interior at each current
level, while achieving crack-free LODs with a
theoretical guarantee

• Supports selective-refinement LODs

• Achieves significant speed-ups in both
simplification & rendering

• Extension: out-of-core LOD isosurface extraction

Acknowledgments

• We thank Claudio Sliva and Steven Callahan
for the HAVS code and the test datasets

• NSF grant CCF-0541255, NSF CAREER grant
CCF-0093373

	Out-of-Core Simplification and Crack-Free LOD Volume Rendering for Irregular Grids
	Volume Rendering for Tetrahedral Meshes
	Crack-Free Issue & Our Contribution
	Previous Work
	Previous Out-of-Core Crack-Free LOD Methods
	Previous Best Out-of-Core Crack-Free LOD Method(s)
	Our New Algorithm
	Key Idea 1: Error-Based LOD Cuts
	Simplification for Continuous LODs
	Key Idea 2: Progressive Boundary & Interior with Fire Wall
	Solution: Fire-Wall
	Simplification Algorithm
	Simplification Example
	Simplification Example (con’d)
	Properties of the LOD Cuts
	Selecting the LOD Mesh (1): Uniform LOD
	Selecting the LOD Mesh (2): Selective-Refinement LOD
	Experiments: Simplification
	Experiments: Rendering
	Uniform LOD
	Selective-Refinement LOD
	Interaction (Video)
	Conclusions
	Acknowledgments

