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Isosurface Extraction and View-Dependent 
Filtering of Time-Varying Fields
 Problem instance: 


 Volume dataset with a time-varying field
 Want to do query:


 Given an isovalue q and a time step t, extract and display all the 
points (a surface) whose scalar values at time step t are the 
isovalue q


 One of the most important and widely used techniques  for 
volume visualization 


 Large datasets pose a big challenge; want to do it efficiently
 One direction: View-dependent filtering:


 Only extract the visible portions of an (opaque) isosurface







Motivation
Extraction + Filtering: 2 parts:
 Extraction: Search for active cells --- query in value domain
 Interval tree [Cignoni et al 97.]
 Achieves optimal search time, no space domain information


 Filtering: query in space domain
 BONO [Wilhelms et al 92.] 
 Search on value domain is not optimal


We want to combine the best of the two worlds 
 POT [Shi et al 06.]: optimal search & supports filtering, but 


only for steady-state data
 4D POT [Shi et al 06.]: for time-varying data, but search is 


NOT output-sensitive, NO view-dependent filtering







Our New Algorithm


 Persistent Time-Octree (PTOT ) : Combining the best of 
two worlds for time-varying data
 Extraction: Optimal searching time (not known before) 
 Filtering: Supports view-dependent filtering 


 Also, we develop filtering method in out-of-core setting:                                                                                
reduce both # of I/Os & disk seek time                           
achieve huge speed up for large datasets







Previous Work
 For steady-state data


 Many in-core methods, e.g.
Marching Cubes [Lorensen et al 87],  BONO [Wilhelms et al 92] ,
NOISE [Livnat et al 96] , Interval tree [Cignoni et al 97], 
QDV [Stockinger et al 05]


 Out-of-core approaches
 [Chiang et al. 97], [Chiang et al. 98], [Bajaj et al. 99], [Chiang et al. 01]


 For time-varying fields
 In-core: THI tree [Shen 98]
 Out-of-core: [Sutton et al. 00], [Chiang 03], [Gregorski et al. 


04], [Waters et al. 06]
 View-dependent filtering techniques


 [Livnat et al. 98], [Gao et al. 03], [Pesco et al. 04]







Previous Work (cont.)
 Combining value-domain searching and space-domain 


filtering
 POT [Shi et al 06.]: optimal search & supports filtering, 


but only for steady-state data
 4D POT [Shi et al 06.]: for time-varying data, but search 


is NOT output-sensitive, NO view-dependent filtering







Our New Algorithm


 Persistent Time-Octree (PTOT ) : Combining the best of 
two worlds for time-varying data
 Extraction: Optimal searching time (not known before) 
 Filtering: Supports view-dependent filtering 


 Also, we develop filtering method in out-of-core setting:                                                                                
reduce both # of I/Os & disk seek time                           
achieve huge speed up for large datasets







Overview of Our Approach
 Building Block: Persistent Data Structure [Driscoll et al 


89.] 
 Time-Octree as base data structure
 Build Persistent Time-Octree (PTOT) by Line Sweep 


Process
 Compact tree representation
 View-Dependent Filtering integrated with Implicit 


Occluders [Pesco et al 04.]
 Using CUDA to perform efficient hardware Marching 


Cubes







Building Block: Persistent Data 
Structure [Driscoll et al 89.] 
 A dynamic tree supports updates such as insert/delete. 


Each update creates a new version
 An ordinary dynamic tree keeps only the latest version.


It is called an ephemeral tree
 A persistent tree keeps all versions from updates


 m structural changes take O(m) additional space
 Any version i of a persistent tree can be queried


 Asymptotically the same time as querying version i of 
the ephemeral tree







Persistent Tree: Node Copying


 Each node has constant number 
of extra fields to record some 
future updates


 When all extra fields in a node 
are used up, the next update 
incurs  a node-copying:  the 
node is copied to a new node 
with latest field values. 







Base Data Structure: Time-Octree


 The top part is a fully balanced binary tree called time tree, which  
partitions the time domain


 The bottom part  consists of a collection of octrees, one octree per 
time step, which partitions the space domain


 In time tree, we maintain a pointer from a leaf to the next leaf  
whose octree is also not empty







Line Sweep Process: PTOT Construction


 For each  cell c at time step t, we produce an Interval Ic,t = 
[min,max] for its min, max scalar values.


 If  an interval Ic,t contains isovalue q => the cell is an active cell
 Sort all interval endpoints and sweep from −∞ to ∞
 Sweeping event: each creates a version


 Encountering the left endpoint of an interval Ic,t: insert Ic,t to the 
time-octree


 Encountering the right endpoint of an interval Ic,t: delete Ic,t from 
the time-octree


 Preprocessing phase; no more update to the PTOT from now on







Insert/delete on Time-Octree


 To insert Ic,t , first use time step t to locate the leaf t in 
the time tree. 


 Secondly, use cell c to locate the leaf in the octree. 
 Create a leaf node, and grow missing nodes on the fly
 Deleting Ic,t is similar (a reverse op)







Query on PTOT


Run-time phase:
 Each range Ri corresponds to a version i of the time-octree
 If  we ignore time step, version i of the time-octree contains 


exactly those active cells---just report everything 
 These cells are further grouped into octrees according to their 


time steps--- for time step t, just report everything in the octree
of t.
 Optimal search time * Octree: contains space info for filtering


A
B


C







Compact Tree Representation
Problem in normal tree 


representation:


 Insert/delete an interval may 
introduce O(logT +logN)=O(log(NT)) 
structural changes


 Recall : for a  persistent tree , m structural changes need O(m) 
additional space [Driscoll et al. 89]


 In our line sweep, there are O(NT) insert/delete ops, each with 
O(log (NT)) structural changes                                                    
 O((NT) log(NT)) structural changes, and hence                 
O((NT)log (NT) space for our PTOT, not linear







Compact Tree Representation (cont.)


Compact Tree:
 Any internal node u 


other than the root is 
removed if u has only 
one child.


 A bit sequence is used to 
store path information


 Insert/delete an interval 
has O(1) structural 
changes  linear space







Out-of-Core Scheme
 Partition the space domain into meta-cells, each with 


k*k*k cells
 Use PTOT to index the meta-cells. Choose k so that # 


of meta-cells is not too big, and the PTOT can entirely 
fit in main memory


 During Query:                                                                    
* Keep PTOT in main memory for searching & filtering                  
* Keep meta-cells on disk;  read only the needed meta-
dells to main memory (I/O + extraction)







View-Dependent Filtering
 Recall: for query (q, t), intervals in the version for q  


are active, and they are further grouped into octrees. 
The octree of t is called the active octree.


 Naïve approach
 Traverse the active octree hierarchically in the front-to-


back visibility order, use isosurface portions already rendered 
as occluders
 Initial occluder is too small
 Visibility order is often highly non-sequential in terms of the 


storage order on disk  large disk seek time


 Our approach
 Integrate with Implicit Occluders [Pesco et al. 04]  







View-Dependent Filtering (cont.)
 Build Implicit Occluders [Pesco et al 04.] using octree


skeleton, one for each time step
 De-couples rendering isosurface and constructing occluders
 Much larger initial occluder


 Batched I/O reads
 Traverse front to back in visibility order (in-core)
 Perform occlusion filtering until we accumulate L meta-cell 


IDs  that need to be read (all using the current occluder M)
 Sort these L IDs, read the meta-cells in this sorted order one 


at a time  sequential I/Os, small disk seek time
 Grow the occluder by rendering isosurface to z-buffer:     


The new occluder M’ is used for next batch of L meta-cell 
IDs.







Isosurface Extraction Using CUDA
 The original CUDA code is good for sending the whole 


dataset at the beginning
 Only works on small dataset


 Naively: send one meta-cell at a time 
 GPU concurrency is not fully used


 We use some technique so that we can send B meta-
cells in a batch                                                                    
 increase concurrency in GPU (see paper for details)
 3.89s (B = 32) vs. 13.89s (B = 1) for one time step on Vort, 


11M triangles on an average







Experiments
 Datasets


 Resolution: 1024*1024*1024,  4GB each time step. Up to 
48 time steps. 64GB – 192GB in size


 RAM size: 1GB. Meta-cell size: 32*32*32
 Preprocessing:                                                                     


Meta-cell construction: 140MB footprint                                     
PTOT construction: up to 870MB footprint                        
Overall  data structure :  size overhead: only 9.5%


 Runtime:                                                                              
Memory footprint: no more than 230MB







Representative Isosurfaces
Jets Syn







Representative Isosurfaces (cont.)
Turb Vort







Experiments
 Run-Time Query: View-Independent Isosurfacing


 PTOT vs. 4D-POT [Shi et al. 06]
 Smaller tree size
 Faster index searching time


 PTOT vs. THI tree [Shen 98]
 Tree size and index searching time were worse


 Difference was small. The dominating cost was the I/O time


 THI reports a super-set of active meta-cells ---- large I/O 
penalty, much worse total time                                                       
(e.g. Vort 48 time steps:   1839 sec vs.  1999 sec)







Experiments
 Run-Time Query: View-Dependent Filtering


 Three methods (all using our PTOT):
 Implicit (ours): use implicit occluders, batched I/O with L=128
 Explicit: rendered isosurface as occluder
 No-Occ: no occlusion filtering. All active meta-cells are sorted by IDs 


and read sequentially
 Explicit:


 Smallest  # of meta-cells read and extracted  
 No-Occ:


 Largest # of meta-cells read and extracted  (since no filtering)
 Running time could be better than Explicit!


 sequential (sorted) disk reads are important!
 Implicit:


 Strikes a balance between reducing # of I/Os and reducing disk 
seek time


 Always the fastest with large margin (e.g., Syn for 10 time steps: 
342 sec  vs. 467 sec (Explicit) vs. 865 sec (No-Occ))







Implicit vs. Explicit (Video)


Implicit                             Explicit







Conclusions
 PTOT data structure achieves optimal searching for 


active cells in time-varying fields
 Supports view-dependent filtering
 Integrates with implicit occluders, strikes a balance 


between reducing the number of I/Os and reducing 
the disk seek time; achieves great performance


 In Figs 1—4 all spaces betweens words are gone. 
Correct version:                             
http://cis.poly.edu/chiang/PTOT-vis09.pdf
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