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ABSTRACT

In this paper, we propose a novel out-of-core volume rendering al-
gorithm for large time-varying fields. Exploring temporal and spa-
tial coherences has been an important direction for speeding up the
rendering of time-varying data. Previously, there were techniques
that hierarchically partition both the time and space domains into a
data structure so as to re-use some results from the previous time
step in multiresolution rendering; however, it has not been stud-
ied on which domain should be partitioned first to obtain a better
re-use rate. We address this open question, and show both theoret-
ically and experimentally that partitioning the time domain first is
better. We call the resulting structure (a binary time tree as the pri-
mary structure and an octree as the secondary structure) the space-
partitioning time (SPT) tree. Typically, our SPT-tree rendering has
a higher level of details, a higher re-use rate, and runs faster. In
addition, we devise a novel cut-finding algorithm to facilitate effi-
cient out-of-core volume rendering using our SPT tree, we develop
a novel out-of-core preprocessing algorithm to build our SPT tree
I/O-efficiently, and we propose modified error metrics with a the-
oretical guarantee of a monotonicity property that is desirable for
the tree search. The experiments on datasets as large as 25GB using
a PC with only 2GB of RAM demonstrated the efficacy of our new
approach.

1 INTRODUCTION

The rapid growth of the data size in recent years has made scien-
tific visualization of time-varying datasets a big challenge. The
sheer size of the data often makes the task of interactive explo-
ration impossible, as only a small portion of the data can fit into
main memory, and the computation cost is often too high for an
algorithm to run in real-time. In this paper, we address the is-
sues of limited main memory and insufficient computing speed, by
proposing a novel out-of-core volume rendering technique for large
time-varying fields.

Exploring temporal coherence among time steps has been an im-
portant direction for speeding up the rendering of time-varying data.
This has often been combined with the exploration of spatial coher-
ence to facilitate multiresolution rendering. Previously, there were
two major techniques that hierarchically partition both the time and
space domains into a data structure so as to re-use some render-
ing results from the previous time step (by temporal coherence), in
the context of multiresolution rendering: (a) Finkelstein’s tree [5],
which first partitions the time domain by a binary tree (we call
it time tree in this paper for consistency) as a primary structure,
and then for each time-tree node partitions the space domain into a
quadtree (in the context of generating multiresolution videos), and
(b) Shen’s TSP tree [14] (and the follow-up work [4, 6]), which first
partitions the space domain by an octree as the primary structure,
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and then for each octree node partitions the time domain by a time
tree as the secondary structure. Although these two complementary
schemes have been proposed for a long time, it has never been stud-
ied on which domain should be partitioned first to obtain a better re-
use rate (the TSP scheme is still being employed and shown to be
very effective in a more recent work [6], but this question is still not
addressed). In fact, one main reason that the TSP tree chose to par-
tition the space domain first was because volume rendering requires
a consistent breadth cut through the octree, which is non-trivial if
such cut has to go through a collection of secondary octrees (Finkel-
stein’s tree [5] only supports a fixed cut through quadtrees (i.e., only
for a fixed spatial error) and cannot work for dynamic error queries
in run-time as needed); see [14]. The decision was not based on the
re-use rate, however.

In this paper, we take on this line of work and make a novel
extension along two orthogonal directions: (1) we study the open
question of which domain should be partitioned first for a better
re-use rate, and choose the better scheme as our data structure; (2)
for the chosen data structure, we make it out-of-core so that we can
perform out-of-core volume rendering, and in addition we develop
an out-of-core preprocessing algorithm to build the data structure
I/O-efficiently. Note that in the out-of-core setting, a better re-use
rate means more savings in the I/O cost (via a better re-use of sub-
volume textures in hardware volume rendering), which is very im-
portant. Also, our out-of-core techniques in (2) can be applied to
both partitioning schemes, hence (2) is orthogonal to (1).

For (1), we show, with both theoretical analysis of the tree struc-
tures and experiments on real datasets, that partitioning the time
domain first is better. We call the resulting structure (time tree
as the primary and octree as the secondary structures) the space-
partitioning time (SPT) tree. It is important to observe that search-
ing on the SPT and the TSP trees for subvolumes satisfying user-
specified error tolerances can have different results. Intuitively,
since the search is on the primary tree first and then the secondary
trees, the SPT tree favors higher-level time-tree nodes (i.e., with
larger time spans and hence re-usable for more time steps), while
the TSP tree favors higher-level octree nodes (i.e., larger subvol-
umes) instead. Therefore the SPT tree has a better re-use rate.
Moreover, since the SPT tree tends to select smaller (but more)
subvolumes, we typically have a higher level of details, and yet
the speed is still faster due to a higher re-use rate. In addition, the
structural property of our SPT tree makes it extremely simple to
cache subvolumes for future re-use.

As mentioned above, using our SPT tree for volume rendering
needs to find a consistent/valid cut through a collection of sec-
ondary octrees, which is non-trivial and there was no algorithm be-
fore. We devise a novel cut-finding algorithm for this task, which
exploits the traversal coherence among the octrees to optimize the
search. In addition, we obtain a further speed-up by combining the
temporal coherence when traversing the time-tree part of our SPT
tree for subsequent time steps.

For (2), the original TSP tree can be easily adapted to work in
the out-of-core setting in the rendering phase (and similarly for the
SPT tree), but its preprocessing phase has been done in-core (i.e.,
requiring the entire dataset including all time steps to reside in main
memory) using a brute-force approach. We develop a novel out-of-



core preprocessing algorithm to build our SPT tree, and the same
algorithm (with just a very simple mapping) can build the TSP tree
as well in the out-of-core setting. Our out-of-core preprocessing
algorithm makes a good use of intermediate computing results, and
is actually much faster than the in-core brute-force approach even
when there is enough main memory (see Section 4).

We summarize our technical contributions as follows.

(i) We study the open question of which of the time and space do-
mains should be partitioned first for a better re-use rate. We show
both theoretically and experimentally that our SPT tree scheme is
better. Typically, our SPT-tree rendering has a higher level of de-
tails, a higher re-use rate, and runs faster.
(ii) We devise a novel cut-finding algorithm to facilitate efficient
out-of-core volume rendering using our SPT tree.
(iii) We develop a novel out-of-core preprocessing algorithm that
can build both our SPT tree and the TSP tree I/O-efficiently. This
algorithm is much faster than the original in-core approach even
when there is enough main memory.
(iv) We propose modified error metrics and provide a theoretical
guarantee of a monotonicity property that is desirable for both our
SPT tree and the TSP tree (see Section 3.1).

Note that our major results are (i)-(iii), and they are independent
of the underlying error metrics used. As for (iv), although image-
space error metrics (e.g., those in [4]) can potentially result in a
better coherence (by mapping different scalar values to the same
color and opacity under a particular transfer function), data-space
error metrics are still correct and actually more conservative (never
treating different scalar values as equal). In addition, image-space
error metrics need to be re-computed each time the transfer func-
tion is changed in the rendering phase, which is expensive for large,
out-of-core datasets and does not pay off for the potential render-
ing speed-up gains. Therefore we opt for data-space error metrics,
which are independent of the transfer function and thus we only
need to perform out-of-core preprocessing once. The experiments
on datasets as large as 25GB using a PC with only 2GB of RAM
demonstrated the efficacy of our new approach.

2 PREVIOUS WORK

In this section, we review previous work on in-core and out-of-core
techniques for volume visualization of time-varying scalar fields.
For other out-of-core techniques in graphics and scientific visual-
ization, we refer to the survey by Silva et al. [16].

Exploring data coherence has been an important direction for
speeding up the visualization of time-varying fields. Shen and
Johnson [15] proposed a differential volume rendering strategy, and
Shen [13] utilized temporal coherence for fast isosurface extraction.
As mentioned in Section 1, Shen et al. [14] developed the TSP tree
to capture spatial and temporal coherences of the data for fast vol-
ume rendering, and prior to the TSP tree, Finkelstein’s tree [5] was
proposed in the context of generating multiresolution videos. Fol-
lowing up the TSP work, Ellsworth et al. [4] used the TSP tree
for hardware volume rendering. More recently, Gao et al. [7] ex-
ploited temporal occlusion coherence to speed up volume rendering
using visibility culling, and Younesy et al. [21] employed a differ-
ential time-histogram table for efficient volume rendering. Other
work on the visualization of time-varying fields includes applying
compression techniques (e.g., [12] and the references therein), fea-
ture tracking [10], parallel algorithms [11], high-dimensional ap-
proaches [20], dynamic view selection [9], and ray tracing [18].

The techniques mentioned so far are mainly main-memory ap-
proaches. For out-of-core time-varying techniques, Sutton and
Hansen [17], Gregorski et al. [8] and Waters et al. [19] developed
out-of-core isosurface extraction methods for regular grids, and
Chiang [2] developed an out-of-core isosurface approach for irreg-
ular grids. Also, Gao et al. [6] employed the TSP tree scheme [14]
for distributed parallel volume rendering that addresses some I/O
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Figure 1: An example of the SPT tree for time interval [0,5]. In
the time tree T , each internal node labeled [t1, t2] covers the time
span [t1, t2], and each leaf labeled [t] corresponds to time step t. The
search path P on T for query (εs,εt , t

′) with t ′ = 1 is P = (A,B,C,D),
and P′ with t ′ = 2 is P′ = (A,B,E). At run-time, only T and the octree
skeleton S are kept in main memory. We also show a breadth cut on
S; any node and its ancestor cannot both exist in a valid cut.

issues such as data caching and prefetching, with the main focus on
distributed data management in parallel computing.

3 OUR APPROACH

3.1 The SPT Tree Data Structure

We first give an overview of the SPT tree partitioning scheme, ana-
lyze its re-use rate from the tree structure, and then describe our
modified error metrics, followed by the out-of-core organization
and other details.

The primary structure of the SPT tree is a fully balanced binary
tree T called time tree. The root of T corresponds to the time inter-
val over the entire time steps, and we recursively partition the time
interval into two equal halves for the two subtrees until the time
interval becomes a single time step (see Fig. 1).

The secondary structure of the SPT tree is a standard complete
octree, which recursively subdivides the input volume spatially un-
til all octree leaves are at the same predefined depth D. We will
specify D later.

For each time-tree node u with time span Iu, we have a secondary
octree of the same structure (as described above); all such octree
nodes have the same time span Iu in the time domain, but they rep-
resent different subvolumes in the space domain—the node α rep-
resenting subvolume Vα means the resulting time-space partition is
(Iu,Vα ). In each such octree node α , we store both the spatial error
and the temporal error of the partition (Iu,Vα ). The spatial (resp.
temporal) error serves as an indication of the spatial (resp. tempo-
ral) coherence of the subvolume; the lower the value, the higher the
coherence. We will give our error metrics later.

In addition to the SPT tree, we have an auxiliary octree skeleton
S to represent the (same) structure of all secondary octrees. This
skeleton S will be used for efficient searches, and is also conceptu-
ally useful for analyzing the re-use rate. Now we first address the
question of which of the time and space domains should be parti-
tioned first to get a better re-use rate.

Structural Properties: High Re-Use Rate and Simple Caching
As mentioned in Section 1, the TSP tree [14] is similar to the SPT
tree but reverses the partitioning order: it uses the octree S to par-
tition the space domain as the primary tree, and then the time tree
T to partition the time domain as the secondary tree. Let u be a
time-tree node with time span Iu and α be an octree node with sub-
volume Vα ; the time-space partition (Iu,Vα ) in the SPT tree and the
space-time partition (Vα , Iu) in the TSP tree are exactly the same.



In the rendering phase, the user specifies (t ′,εs,εt) for volume
rendering time step t ′ satisfying spatial and temporal error toler-
ances εs and εt respectively. When the user keeps εs and εt un-
changed and only varies t ′ sequentially in subsequent queries, some
previously selected subvolumes may be selected again and thus can
be re-used. Clearly, if a selected subvolume has a larger time span,
then it can be re-used more.

Although details are different (see Section 3.2), the search al-
gorithms for the SPT and the TSP trees are based on a top-down
search, first on the primary tree and then on the secondary tree:
For the current primary-tree node, look at its secondary tree to
find the highest node(s) satisfying εs,εt . If such node(s) cannot
be found, then go down one level in the primary tree and repeat
the process. Note that higher-level primary-tree nodes are always
preferred, at the expense of choosing lower-level nodes in their cor-
responding secondary trees if possible. In our SPT tree, we favor
higher-level time-tree nodes (with larger time spans), possibly split-
ting their space domain into more subvolumes of smaller sizes. In
the TSP tree, higher-level octree nodes (larger subvolumes) are pre-
ferred, possibly splitting their time domain into smaller time spans.
This intuitively explains why our SPT tree has a higher re-use rate.
Moreover, since we tend to split into more subvolumes, our render-
ing typically has a higher level of details, and can still be faster due
to a higher re-use rate (see Section 4).

Lemma: Our SPT tree has a re-use rate at least as good as, and
possibly better than, the re-use rate of the TSP tree.
Proof: In order to perform volume rendering, the selected subvol-
umes of both methods must form a valid breadth cut on the octree
skeleton S (see Fig. 1). For an octree node α (associated with time-
tree node u of time span Iu) in the cut of the TSP tree, we look at
how the space of subvolume Vα is covered in the octree cut of SPT.
There are three cases.
(1) The octree cut of SPT goes through the same node α . In this
case, since the partition (Vα , Iu) of the TSP tree satisfies εs,εt , in
our SPT tree surely we can choose time-tree node u whose octree
node α is satisfied. So our subvolume at least has the same time
span Iu and hence the re-use rate is at least as good. (In fact by
a symmetric argument, our subvolume has exactly the same time
span Iu and hence the same re-use rate.)
(2) The octree cut of SPT goes through a bigger octree node β than
α (i.e., an ancestor of α). This is impossible. Suppose β is associ-
ated with time-tree node u′. This means that the partition (Vβ , Iu′)
in TSP tree would satisfy εs,εt . Since TSP tree favors bigger octree
nodes, β would have been chosen (with time-tree node u′), a con-
tradiction.
(3) The octree cut of SPT goes through smaller octree nodes than
α (i.e., descendants of α). This means that at least one of such de-
scendants, say γ , is associated with a time-tree node u′ higher than
u (and thus the time span Iu′ is larger (i.e., more re-usable) than Iu).
Namely, when searching the time tree in SPT, we look at u′ before
u, and find that u′ has an octree node γ that satisfies εs,εt (otherwise,
if no such γ exists, then in SPT search we would eventually reach
time-tree node u and select the same octree node α , contradicting
the case condition). For other descendants of α in question, their
time spans are at least as big as Iu, since in the secondary octree of
time-tree node u, octree node α already satisfies εs,εt and surely
the descendants of α are satisfied as well (because each child error
is no larger than the parent error1). In summary, there is at least one
γ that has a better re-use rate, and others have re-use rates at least
as good.
Finally, over all possible cases, our re-use rate is always as good,
and if some instances of case (3) occur then our re-use rate is better.

⊓⊔

1We call this condition the monotonicity property. This property is im-

plicitly assumed but not guaranteed in [14]. We fix it by modifying the error

metrics and giving a theoretical guarantee; see below.

In addition to re-use rate, another advantage of our SPT tree is
that it is extremely simple to cache the subvolumes for future re-
use. Referring to Fig. 1, the search path on the time tree T for time
step t ′ = 1 is (A,B,C,D) and for time step t ′ = 2 is (A,B,E). The
two paths fork at node B, i.e., they have a common subpath (A,B),
which is from the beginning up to and including the fork node B.
The search results on the secondary octrees are all the same (and
can be re-used) except after the fork node B. Therefore, we can
cache the subvolumes in order, and only replace the last part of
the subvolumes by the new subvolumes that correspond to the new
path after the fork (e.g, replacing (C,D) by E). Since the replace-
ments always occur at the end, it is extremely simple to cache the
subvolumes.

Modified Error Metrics
Now we consider the error metrics, defined for the subvolume Vα

over time span Iu, where u and α are time-tree and octree nodes
respectively.

As discussed at the end of Section 1, we choose to use data-space
error metrics since they are correct, conservative, and independent
of the transfer function. As mentioned, all other results in this paper
are independent of the underlying error metrics used.

Our error metrics are modified from those given in [14]. The
spatial error metric is the coefficient of variation and can be seen as
a normalized version of the standard deviation:

m =
∑i, t vi, t

N , s =

√

∑i, t v2
i, t

N −m2, and

Spatial Error =
1

8k
(s/m) (1)

where vi,t is the scalar value of grid point i at time step t, N is the
total number of data points in the subvolume Vα across all time
steps in the time span Iu, m is the mean value of the data points in
question, s is the standard deviation, and finally k means the octree
node α in question is at level k of the octree where the root level
is 0. The spatial error defined above is always between 0 and 1.
This spatial error is the same as that in [14] except for the term
1
8k . The TSP/SPT tree search algorithm assumes that the parent

error is at least as large as the child error (otherwise when searching
top-down to find the node(s) satisfying the specified error tolerance
the child would never be chosen). We call this desirable condition
the monotonicity property. This monotonicity property, however, is
not guaranteed in the original metric of [14]. With the additional

term 1
8k , we can now prove that such property is always guaranteed.

Intuitively, when we go down one level in the octree, the node is
split into 8 children, so there is a factor of 1/8 to the contribution,

and hence the term 1
8k . Due to space limitation, we omit the detailed

proof here and refer to the extended version of this paper [3].

For our temporal error, letting the time span Iu be [t1, t2], we have

m(vi) =
∑

t=t2
t=t1

vi, t

t2−t1+1 , s(vi) =

√

∑
t=t2
t=t1

v2
i, t

t2−t1+1 −m(vi)2, c(vi) = s(vi)/m(vi),

and

Temporal Error =
1

8k

∑i c(vi)

n
(2)

where m(vi) is the mean value of the grid point i over the time
span Iu, s(vi) is the corresponding standard deviation, c(vi) is the
coefficient of variation of i , n is the total number of grid points in
the subvolume Vα , and finally k means that the node α in question is
at level k of the octree. The temporal error defined above is always
between 0 and 1. Again, this temporal error is the same as that

in [14] except for the term 1
8k for the same reason, and we can prove

that with this term the monotonicity property is always guaranteed.
The intuition to add this term is the same as before. Again, we omit
the detailed proof here and refer to the extended version [3].



Out-of-Core Organization and Other Details
Now we describe the out-of-core organization and other details of
our SPT tree data structure. There are two parts: (1) the SPT tree
itself, and (2) the data of simplified subvolumes associated with the
time-space partitions induced by the SPT tree.

Recall that the primary tree of the SPT tree is the time tree T . We
assume that the entire time tree T can fit in main memory, which is
not a restriction since typically the number of time steps in large-
scale time-varying datasets is just in the order of tens of thousands.

For the secondary octrees, recall that each of them recursively
subdivides the input volume until all octree leaves are at the same
predefined depth D. We predefine the parameter D according to
the available main memory size, so that the skeleton of a single
octree can fit in main memory. We assume that for a single time
step, the input grid points in a single leaf subvolume can all fit in
main memory. Again this is a reasonable assumption: suppose the
main memory can fit O(M) items (e.g., O(M) grid points (in a leaf
subvolume) or an octree skeleton of O(M) nodes/leaves), then this

means that we can handle datasets with O(M2) grid points in the

input. Even for a main memory of size 128MB, M2 is in the order
of 1013–1015, showing that this assumption is clearly not restrictive.

For each secondary octree node α corresponding to the time-
space partition (Iu,Vα ), we store its spatial and temporal errors
given above. In addition, we also store a pointer to the simplified
grid that represents the data, which is a k× k× k grid obtained by
down-sampling the subvolume Vα . For each such grid point p, we
let its scalar value be the average scalar value of p over the time
span Iu. This simplified grid will be used for multiresolution vol-
ume rendering if node α satisfies the queried error tolerances and
is selected for rendering. To support empty-space skipping during
rendering, we record at node α the min, max scalar values of this
simplified grid. If node α is an octree leaf associated with a time-
tree leaf (a single time step), we additionally store a pointer to the
original grid Gℓ which is the subvolume Vα of the original input
grid. We use Gℓ when a full resolution rendering of Vα is needed.
Again we record at α the min, max values of Gℓ.

Finally, recall that we have an auxiliary octree skeleton S in ad-
dition to the SPT tree. In summary, the time tree T of the SPT tree
represents the partition of the time domain, and the octree skeleton
S represents the partition of the space domain. At run time we only
keep T and S in main memory, and other structures are kept in disk
and read to main memory when needed.

3.2 Run-Time Volume Rendering Using the SPT Tree

We now describe our run-time volume rendering technique. We
start by reading the time tree T and the octree skeleton S to main
memory. The user specifies (t ′,εs,εt) for rendering time step t ′

satisfying spatial and temporal error tolerances εs and εt . When
the user keeps εs and εt unchanged and only varies t ′ in a series of
queries, as typically the case, we can take advantage of the coher-
ence and speed up the rendering. We remark that in main memory
we have a place holder for a single subvolume only. Each new
subvolume needed will be read from disk to this place holder and
then cached in the texture memory of GPU. We refer to such tex-
ture cache as the GPU buffer B. Note that using the programmable
GPU, changing the transfer function only requires us to re-load the
1D texture for the transfer function [1], while the cached subvolume
textures can still be re-used in hardware volume rendering.

The Cut-Finding Algorithm
Performing volume rendering using our SPT tree essentially per-
forms a breadth cut of the underlying octree (see Fig. 1) so that the
octree nodes in the cut collectively cover the entire volume. These
octree nodes α in the cut may come from different secondary oc-
trees Su of different time-tree nodes u, where each node α satisfies
both εs and εt . There are three major tasks for each volume ren-
dering query. First, we find the appropriate octree nodes α in the

cut. In the process, for each such α , if its subvolume Vα is not
an empty space (checked by the min, max values with the transfer
function) and has not been cached, we read Vα from disk to main
memory and cache it in the GPU buffer B. Finally, we perform a
standard hardware volume rendering using texture mapping on oc-
tree subvolumes, where the visibility sorting of the subvolumes is
easily done by just sorting their octree-node IDs. At any time, we
only cache the subvolumes of the most recent query.

The key task is to find the octree nodes α in the cut. Our goals
are the following. First, we want to find α whose corresponding
time-tree node is as high as possible, so that the subvolume Vα can
be re-used as much as possible. Secondly, we want α itself to be
as high as possible in the octree, so that we use the most simplified
subvolume possible to speed up the rendering. To achieve these
goals, we first search on the time tree T and find a root-to-leaf path
P such that each node on P has its time span containing the query
time step t ′ (see Fig. 1, for example P = (A,B,C,D) for t ′ = 1).
Next, we process the nodes of P one at a time starting from the
root, where we say that processing one node of P is one round. For
each current-round node u, we load its secondary octree Su from
disk to main memory to identify the cut nodes in Su. Recall that
Su has spatial and temporal errors for each node. We perform the
actual cut-finding on the octree skeleton S, which records the global
cut-finding progress from different secondary octrees Su, so that at
the end we complete a breadth cut in S.

We now discuss the main idea in this cut-finding process.
Naively, in each round we might want to find the highest nodes
in the octree satisfying both εs,εt . However, this does not work,
since we must respect the cut nodes found in the previous rounds to
form a valid cut at the end. For example, suppose in the first round
(for the root r of T ) we already identify some cut nodes α in the
secondary octree Sr (and the corresponding nodes α in the skele-
ton S). In the next round, it is possible that an ancestor a(α) of α
satisfies both εs,εt , since now the time span is shorter. However,
any node and its ancestor cannot simultaneously exist in a valid cut
(see Fig. 1). Clearly, α is already a cut node and has a priority
over a(α), and this is the key property: as soon as α becomes a
cut node, all its ancestors are ruled out from being a cut node in the
future rounds. In other words, a node β can be a candidate cut node
in the next round only if so far no descendants of β satisfy both
εs,εt . Since we want to find the highest possible cut, the next round
should start from the highest such candidate nodes β in S.

At the end of each round corresponding to node w in P, we create
two lists for w: (a) the cut list CL, maintaining the cut nodes found
in this round, and (b) the next-round starting list NR, maintaining
the highest nodes β mentioned above so that the next round starts
from each node in this list. We use a marking scheme to mark the
nodes of S, with three types: (i) “cut”, meaning that the node satis-
fies both εs,εt and is a cut node found; (ii) “not candidate”, meaning
that the node has a “cut” descendant and cannot be a candidate cut
node in the next round; (iii) “candidate”, meaning that this node has
no descendant satisfying both εs,εt and hence is a candidate node
β for the next-round cut nodes; the highest such nodes will be put
to the list NR.

In the initial round for the root r of T , we perform Algorithm
Find Cut below on nodes of S recursively starting from the root of
S. We describe Find Cut (s) for a generic node s of S:
—————
Algorithm Find Cut (s)
0. Unmark s.
1. If s satisfies both εs,εt , mark s “cut”, put s to the cut list CL of
the current time-tree node and return.
2. Otherwise, s does not satisfy both error tolerances. If s is a leaf,
mark s “candidate” and return; otherwise, perform Find Cut recur-
sively on each child of s. When these recursions return, distinguish
the following cases.



Case i All children of s are marked “candidate”: this means that all
children are the β nodes, and thus s is a β node as well. Therefore
we mark s “candidate” and return. Observe how the “candidate”
mark is propagated in a bottom-up fashion in the entire recursive
process.
Case ii At least one child of s is marked “cut” or “not candidate”:
this means that s has a “cut” descendant and thus s is ruled out from
being a candidate cut-node in the next round. Therefore we mark
s “not candidate”. Note that the “not candidate” mark is eventually
propagated bottom up for all ancestors of a “cut” node in the recur-
sive process. In addition, any child of s marked “candidate” must
be the highest candidate now, since s and all ancestors of s are “not
candidate”. Therefore, we put each “candidate” child of s to the
next-round starting list NR of the current time-tree node and return.
—————

For the next round corresponding to node u on P, we start by
applying Find Cut recursively on each node in the list NR of r, and
create the two lists of u. In the yet next round, we apply Find Cut
on each node in the list NR of u, and so on. Finally, in the last
round (for a leaf time-tree node), we have to complete a breadth
cut on S. In the Find Cut process of this round, in case a leaf ℓ
of S is reached but ℓ still does not satisfy the two error bounds,
we put ℓ as a cut node but will instead use its original grid Gℓ for
the volume rendering, which has zero errors and surely satisfies the
error bounds. Except for this special case, for each cut node we use
its simplified k× k× k grid for the rendering.

In the above cut-finding process, as soon as an octree node α is
found as a cut node, if its corresponding grid is not an empty space
(checked by the min, max scalar values with the transfer function)
and is not already cached in the GPU buffer B, we load this sub-
volume grid from disk to main memory and cache it in B. We will
see later that due to search-path coherences in our approach, we ac-
tually do not need to check whether a subvolume has been cached
or not. The caching is done sequentially, putting the new subvol-
ume to the next available place in B. The resulting effect is that
the subvolumes are cached in B in groups, each group for a node
in path P. For example, in Fig. 1, path P for t ′ = 1 is (A,B,C,D).
Then the subvolumes discovered for A are in the first group, those
discovered for B are in the second group, and so on. We maintain
the current path P, and for each node in P we maintain a pointer to
the starting position of this group in the GPU buffer B.

Re-Using Subvolumes by Search-Path Coherences
The major advantage of our approach is the re-use of the subvol-
umes. Typically, the search paths P and P′ on the time tree T for
two consecutive time steps have a long common subpath at the be-
ginning. For example, in Fig. 1 P for t ′ = 1 is (A,B,C,D) and P′

for t ′ = 2 is (A,B,E). The two paths fork at node B, with a common
subpath (A,B). It is easy to see that the search results on the sec-
ondary octrees will be exactly the same (and thus can be re-used)
for the common subpath (A,B), and we only need to replace the
part after the fork node B (e.g., replacing (C,D) with E). Now all
we need is to update the cut starting from the first node w after the
fork (w is node E in our example). This is essentially to resume the
above cut-finding process starting from the round of w. Observe
that our scheme readily supports this task: we now apply Algo-
rithm Find Cut on each node in the next-round starting list NR of
the fork node, the node immediately before w. We remark that at
step 0 of Find Cut we first unmark each node of S visited, which
serves to initialize the marking of the nodes in S as needed.

Finally, since the common (re-used) subvolumes all appear at the
beginning of the GPU buffer B, and the new subvolumes all appear
after the fork-node group, it is extremely simple to cache/replace
the subvolumes.

3.3 Out-of-Core Preprocessing

We present our out-of-core preprocessing algorithm for building
the SPT tree. The computation is highly non-trivial in the out-
of-core setting, especially in computing the spatial and temporal
errors defined in Eqs. (1) and (2). We develop the slice accumula-
tion algorithm for computing these errors, and the slice distribution
algorithm for computing the simplified scalar data for the simpli-
fied grids of the secondary octree nodes. Moreover, observe that
each secondary-tree node of the TSP tree is uniquely identified by
(octree ID, time-tree ID), which is exactly the secondary-tree node
(time-tree ID,octree ID) of our SPT tree. Thus the same out-of-
core preprocessing algorithm can also compute the TSP tree by just
performing an additional simple mapping step at the end.

We now describe how to compute the errors of Eqs. (1), (2). The
main task is to compute the sum and the sum of squares in these
equations. Typically the input dataset is organized by groups of
increasing time steps, one file per time step, where in each such
file the grid-point scalar values are given in slices of increasing z-
coordinates. First we create a scratch file for each node of the time
tree T as follows. Starting from the leaf level, at each leaf (a single
time step ti) we create a scratch file by augmenting the input file
of ti such that each grid-point scalar value f is replaced by ( f , f 2).
In the next level up, for each internal node u with two children, we
create a scratch file of u by summing the corresponding data values
from the two child scratch files. Namely, if for the same grid point
p its data values in the two children are ( f1, f 2

1 ) and ( f2, f 2
2 ), then

the data values of p in the file of u are ( f1 + f2, f 2
1 + f 2

2 ). Note that
the grid points appear in the same order for all scratch files, so that
this step can be easily done by simultaneously scanning through
the two child files. This process is repeated level by level up to
the root of T . Moreover, as soon as the file Fu for a node u has
been used to create its parent file, we replace each tuple ( f , f 2) by

( f /|Iu|, f 2/|Iu|) in Fu, where |Iu| is the number of time steps in the
time span of u. Comparing with Eq. (2), we see that f /|Iu| is m(vi)
and f 2/|Iu| is ready for use to compute s(vi), for each individual
grid point p = vi, using the scratch file Fu for each node u.

To complete the computation for Eqs. (1) and (2), what we need
is to distribute the appropriate grid points to the subvolumes defined
by the secondary octree (and accumulate the suitable data values
of these grid points within the subvolumes). Specifically, for each
time-tree node u, we use its scratch file Fu to compute the errors of
Eqs. (1) and (2) for each subvolume of its secondary octree Su using
the following slice accumulation algorithm. We repeat the process
for each time-tree node u one by one; since the underlying octree
structures are all the same, the same slice accumulation algorithm
is used for all of them.

Now we describe the slice accumulation algorithm for octree Su

associated with a generic time-tree node u. Recall that the file Fu

organizes the grid points in slices of increasing z-values. The oc-
tree Su, when viewed just in the z-dimension, is a fully balanced
binary tree Z on the z-dimension (see Fig. 2(a)(b)). Each leaf of
Z corresponds to a layer, which is the union of the subvolumes of
the octree leaves having the same z-span (see the green leaves in
Fig. 2(a)).

We will read from Fu to main memory once slice at a time to an
input-slice buffer, and for each level of tree Z we also have a slice
buffer in main memory to store one slice. Note that tree Z has the
same height as the octree, and thus our main memory requirement
is just a small, fixed number (e.g., 5 in our experiments) of slices.
Intuitively, the algorithm proceeds as follows. We load one slice at a
time in the order of increasing z. For the current layer, we maintain
its accumulation slice AC so far. Initially, AC is just the bottom
slice of this layer. When a new slice comes in, it is “squashed”
into AC by adding the data values of each grid point to those of
AC having the same (x,y) coordinates. When the current layer is
finished, the corresponding leaf of Z is ready, and we move on to
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Figure 2: Illustration for the slice accumulation algorithm. The (con-
ceptual) tree Z is a binary tree obtained by viewing the octree in the
z-dimension only. (a) A 2D illustration, where we replace the octree
with a quadtree. The green leaf of the binary tree corresponds to the
union of the four green quadtree leaves. (b) An example of tree Z.

Data # time steps Dimensions Size

Jets 200 128x128x128 1.56GB

Turb 150 104x129x129 990MB

Turb2-10 10 413x513x513 4GB

Turb2-30 30 413x513x513 12GB

TComb 122 480x720x120 19GB

Jets2 50 509x509x509 25GB

Table 1: Statistics of our test datasets.

the next layer. When both children of a node of Z are ready, we
make this node ready as well by squashing the two AC’s from the
children in the same way. For example, in Fig. 2(b), the nodes of
Z are ready in the following order: 1, 2, 9, 3, 4, 10, 13, 5, 6, 11,
7, 8, 12, 14, 15. When a node τ of Z is ready, we can compute the
errors of Eqs. (1), (2) for all the octree nodes corresponding to τ:
for each such octree node, we take its 2D (x,y)-range R from the
AC slice of τ , and use the data values of the points in R to finish
computing the two errors, which now can be done very easily. We
omit the remaining technical details here and refer to the extended
version of this paper [3]. Overall, each slice is read only once and
the results are written out once, which is I/O-optimal.

To compute the simplified scalar data for the simplified k×k×k
grids of the secondary octree nodes, we use the slice distribution
algorithm. This algorithm works in a manner similar to the slice
accumulation algorithm, but is much simpler: Instead of “squash-
ing” the slices read, we retain the slices until the current layer is
ready. Then we distribute the current layer to the octree leaves be-
longing to this layer, and take sub-samples to obtain the simplified
grids. Note that only the octree leaves of the current layer are active.
After all octree leaves are done, we work on each internal node by
merging the simplified grids from its eight children and take sub-
samples, in a bottom-up fashion. Since we work on one node at a
time, the main memory requirement is very low.

4 RESULTS

We have implemented our technique in C/C++ and ran our experi-
ments on a Dell Precision PC with 2GB of RAM, two 3GHz Intel
Xeon CPUs, Nvidia Quadro FX 4500 graphics (512MB graphics
memory), and 300GB SCSI 10K rpm disk, running under RedHat
Enterprise 64bit Linux OS. The datasets we tested are listed in Ta-
ble 1, where a pair such as (Jets, Jets2) means they correspond to
the same volume data but sampled at different resolutions and taken
with different numbers of time steps; Turb2-10 and Turb2-30 only
differ in the number of time steps. Our main focus was on experi-
menting with the three largest datasets (12GB–25GB); the smaller
datasets were only used to compare with in-core approaches.

Data Turb2-30 TComb Jets2
(12GB) (19GB) (25GB)

SPT tree size 7MB 30MB 12MB

Original grids Gℓ 13.5GB 24.4GB 27GB

Simplified grids 8.3GB 16.3GB 17GB

Total size 21.8GB 40.8GB 44GB

Size increase 82 % 115% 63%

Disk scratch space 3.5GB 2GB 5GB
SA memory footprint 38MB 62MB 45MB
Simp. memory footprint 150MB 73MB 182MB

SA time 2297s 3686s 4709s

Simp. time 660s 1057s 1257s

Total time 2957s 4743s 5967s

Table 2: Preprocessing results. The upper table shows the space
statistics of the resulting data structure in disk. The lower table shows
the execution performance of the preprocessing. The underlying oc-
tree has 5 levels (including the root). The dimensions of the simpli-
fied grids are: Turb2-30: 14x17x17, TComb: 16x24x5, and Jets2:
17x17x17.

Data Jets Turb Turb2-10

SA time 345s 205s 765s

Simp. time 153s 81s 211s

Total time 498s 286s 976s

SA-MM time 217s 132s No VM

BF-MM time 3880s 2249s 26.65h

Table 3: Preprocessing time comparison with in-core approaches.
“No VM” means not enough virtual memory.

Preprocessing
We ran our out-of-core preprocessing algorithm and built the SPT
tree; the results are shown in Table 2. In the upper table we show
the space statistics of the resulting data structure in disk. We see
that the SPT tree itself is very small, and the total size increase
ranges from 63% to 115%, showing that our data structure is very
space efficient. In the lower table of Table 2, we show the execution
performance of our algorithm, where SA means our slice accumu-
lation algorithm, and Simp. means our slice distribution algorithm.
The disk scratch space refers to all the scratch files Fu. It can be
seen that such scratch space is small, and that both SA and Simp.
have very small memory footprint (at most 182MB), making them
very effective in the out-of-core setting. The total preprocessing
time is quite fast, for example processing a 25GB dataset in 99.45
minutes (5967s). Recall from Section 3.3 that our preprocessing
algorithm can also build the TSP tree by a simple mapping. In the
experiments we also built the TSP tree out-of-core, which had the
same run-time and space statistics as in Table 2.

To study the effectiveness of SA, we also implemented two other
methods for the same task: SA-MM, which is the same as our
SA algorithm but performs all tasks in main memory instead, and
BF-MM, which is the brute-force approach of directly applying
Eqs. (1), (2) in main memory—so far this has been the method for
the TSP tree. We compared our algorithm with SA-MM and BF-
MM on the three smaller datasets; the results are shown in Table 3.
It is interesting to see that BF-MM is quite inefficient due to re-
peated computations; it was the slowest, and in fact much slower
than SA even when there was enough main memory (3880s vs.
345s for Jets and 2249s vs. 205s for Turb) albeit SA payed extra
I/O costs. SA-MM was the fastest when there was enough main
memory, but for the larger dataset (Turb2-10) it ran out of virtual



Turb2-30 εs = 0.00002 εs = 0.00001
Err. in query εt = 0.000001 εt = 0.0000008

SPT TSP SPT TSP

Avg cut size 1873 338 2012 428
Avg re-use rate 90.9% 39.2% 89.9% 41.6%
Avg load rate 7.3% 44% 7.6% 42.9%
Avg time 0.59s 0.75s 0.75s 0.97s
Total time 17.8s 19.5s 22.5s 29.1s

TComb εs = 0.005 εs = 0.002
Err. in query εt = 0.00002 εt = 0.00001

SPT TSP SPT TSP

Avg cut size 1879 1360 3182 2958
Avg re-use rate 16.3% 7.3% 9.4% 7.7%
Avg load rate 21% 30% 18.9% 21.2%
Avg time 0.25s 0.33s 0.4s 0.53s
Total time 30.7s 40.26s 48.9s 65.88s

Jets2 εs = 0.00002 εs = 0.00001
Err. in query εt = 0.0000002 εt = 0.0000001

SPT TSP SPT TSP

Avg cut size 3732 407 4096 863
Avg re-use rate 96.8% 70.5% 89.9% 71.6%
Avg load rate 1.6% 18.5% 2.76% 15.8%
Avg time 0.25s 0.32s 0.38s 0.61s
Total time 12.5s 16.1s 19.1s 30.7s

Table 4: Run-time statistics of our SPT tree and the TSP tree tech-
niques. Note that “re-use rate” plus “load rate” is not necessarily
100% due to the empty-space effect; see text.

memory (it needed 8.91GB of virtual memory) and could not fin-
ish. Comparing SA with BF-MM on Turb2-10 (when there was not
enough main memory), we see that SA made a huge improvement
from 26.65 hours to 12.75 minutes (765s)!

Run-Time Rendering
To study the re-use rate in practice, and to see how the re-use rate
reflects the real running time, we would like to compare out-of-
core volume rendering using both the SPT-tree and the TSP-tree
schemes. Therefore we have also implemented another volume ren-
dering approach, which uses the same out-of-core organization but
replaces our SPT tree with the TSP tree. As mentioned, we used
our preprocessing algorithm to build both data structures out-of-
core. We remark that conceptually we treat the simplified grids to
have equal dimensions k × k × k. But in our implementation we
used the OpenGL shading language to handle texture mapping so
that we can deal with subvolume textures of unequal dimensions
easily (the dimensions are shown in the caption of Table 2).

We performed out-of-core volume rendering using both trees on
the largest three datasets. For each set of εs,εt , we always rendered
every time step from the beginning to the end. The results are listed
in Table 4, and some representative images are shown in Fig. 3.

In Table 4, each average is taken over all time steps. The “cut
size” means the number of subvolumes in the breadth cut of the oc-
tree. Since each subvolume is a grid of the same dimensions, more
subvolumes in the cut means the rendering is at a higher resolu-
tion. Thus “cut size” gives a quantitative indication of the render-
ing resolution, the larger the higher. Also, “re-use rate” means the
fraction of the subvolumes in the current cut that are also in the pre-
vious cut, regardless of whether the subvolumes are empty space
or not. This coincides with our concept of the re-use rate discussed
in Section 3.1, which only depends on the structural properties of
the trees and does not depend on the transfer function. The “load
rate” means the fraction of the subvolumes in the cut that actually
need to be loaded from disk, i.e., they are neither cached nor empty
space. Note that “load rate” times “cut size” gives the number of

subvolume I/Os, and thus is an indication of the running time (the
higher number, the slower).2 It is important to observe that “re-use
rate” plus “load rate” is not necessarily 100% because of the empty-
space effect: for example, there might be new empty spaces not in
the previous cut (thus cannot be “re-used”) and yet they need not be
loaded.

From Table 4, we see that our SPT tree always had a larger cut
size, and always had a higher re-use rate; the differences were typ-
ically high (e.g., 90.9% vs. 39.2% for Turb2-30, left part). This
confirms with our theoretical analysis of Lemma in Section 3.1,
i.e., our SPT tree tends to select smaller subvolumes with larger
time spans, resulting in a higher rendering resolution and a higher
re-use rate. We also see that our SPT tree always had a smaller
load rate, typically with a big difference too (e.g., 7.3% vs. 44%
for Turb2-30 left, and 1.6% vs. 18.5% for Jets2 left). We observed
that our SPT tree, in favor of selecting more, smaller subvolumes,
resulted in a more refined selection that could also capture empty
spaces better and skip them. This, combined with a higher re-use
rate, made the load rate even better. Therefore, even though our
cut size was larger, the smaller load rate made our actual I/O cost
smaller, and hence a faster running time, as can be seen in Table 4.
In summary, our SPT tree typically resulted in a higher rendering
resolution, higher re-use rate, smaller load rate, and faster running
time.

We also compared with a basic in-core approach which for each
query loads the scalar values of one single time step of the entire
volume from disk to main memory and performs volume render-
ing using the same rendering engine. We found that it needed 15s
per time step for Jets2,3 which was the best case for the approach
since one single time step volume could still entirely fit in main
memory (otherwise it would have been much slower). Still, this is
significantly slower compared to our interactive frame rates of al-
ways much less than 1s in the average times shown in Table 4. We
remark that for both SPT and TSP methods, the memory footprint
was no more than 100MB, showing the efficacy of the techniques
for out-of-core volume rendering.

5 CONCLUSIONS

We have presented a novel out-of-core volume rendering algorithm
for large time-varying datasets using the SPT tree. We address the
open question of which of the time and space domains should be
partitioned first to obtain a better re-use rate, both in theory and in
practice. We have developed a novel cut-finding algorithm to fa-
cilitate out-of-core volume rendering with the SPT tree, proposed
modified error metrics with a theoretical guarantee of a monotonic-
ity property, and devised a novel out-of-core preprocessing tech-
nique that can build both our SPT and the TSP trees I/O-efficiently.
Compared with the existing in-core brute-force approach, our algo-
rithm is much faster even when there is enough main memory, and
achieves a huge speed-up when there is not enough main memory.

We believe that our new techniques such as the slice accumula-
tion, the slice distribution, and the cut-finding algorithms are quite
general, and might be useful for other out-of-core computations.
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