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Abstract


Practical applications that employ entropy coding for large alphabets often


partition the alphabet set into two or more layers and encode each symbol by


using some suitable prefix coding for each layer. In this paper, we formulate


the problem of finding an alphabet partitioning for the design of a two-layer


semi-adaptive code as an optimization problem, and give a solution based on


dynamic programming. However, the complexity of the dynamic programming


approach can be quite prohibitive for a long sequence and a very large alphabet


size. Hence, we also give a simple greedy heuristic algorithm whose running


time is linear in the length of the input sequence, irrespective of the underlying


alphabet size. Although our dynamic programming and greedy algorithms do


not provide a globally optimal solution for the alphabet partitioning problem,


experimental results demonstrate that superior prefix coding schemes for large


∗A preliminary version of this paper appeared in Proc. IEEE Data Compression Conference
(DCC ’03), pp. 372-381, March 2003.


†dchen@cis.poly.edu. Research supported by NSF Grant CCF-0118915.
‡yjc@poly.edu. Research supported in part by NSF Grant CCF-0118915, NSF CAREER Grant


CCF-0093373, and NSF Grant CCF-0541255.
§memon@poly.edu. Research supported in part by NSF Grant CCF-0118915 and NSF Grant


CCF-0208678.
¶xwu@poly.edu. Research supported in part by NSF Grant CCF-0208678.


1







alphabets can be designed using our new approach.


Keywords: Data compression, two-layer semi-adaptive coding, large alphabet


partitioning, dynamic programming, greedy heuristic.


1 Introduction


For various reasons, some of them technical and some not, the most widely used


entropy coding technique today is Huffman coding [4]. Although adaptive versions


of Huffman’s algorithm have been known for many years [7, 17], primarily due to


complexity issues, Huffman coding is most widely used in a static or semi-adaptive


form. Static Huffman coding can be used when there is some knowledge about the


statistics of the data being coded. However, when this is not the case, a semi-adaptive


Huffman code which makes two passes through the data is used. Here, in the first


pass, statistics are collected to aid the construction of the optimal Huffman code


for the given instance of the source sequence. The actual coding is then done in the


second pass. Since the Huffman code arrived at is data specific, it needs to be included


in the data using some canonical representation technique. Widely used compression


standards like JPEG, GIF, gzip, etc. include a semi-adaptive Huffman code as one


of the supported, and indeed most commonly employed, options for entropy coding.


Although the simplicity and effectiveness of static and semi-adaptive Huffman


coding provide a compelling rationale for their deployment in many applications,


complexity issues start becoming serious concerns as the underlying alphabet size of


the data being encoded starts getting very large. This is due to the fact that for large


alphabet sizes, a Huffman code for the entire alphabet requires an unduly large code


table. This is the case even for a semi-adaptive technique where only the codewords


for symbols that occur in the data being compressed need to be stored in the Huffman


table. An excessively large Huffman table can lead to multiple problems. First of all,


in the semi-adaptive case, a larger table would require more bits to represent, thereby


reducing the efficiency of Huffman coding. For example, symbols that occur only once


need to be explicitly or implicitly specified along with their Huffman code. Although


the cost for this can be significantly reduced for dense alphabets [16], it can still


be prohibitively high for sparse alphabets and could even result in data expansion.


Secondly, in both the static and semi-adaptive case, large Huffman tables can lead to
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serious difficulties in a hardware implementation of the codec. This is due to the fact


that, given its large size, the Huffman table may need to be stored off-chip, leading


to the CPU-Memory bandwidth problem which is a well known bottleneck in modern


computing architectures. For special cases like probability sorted alphabets, clever


techniques are known that require significantly less memory, but in general, Huffman


table size is a serious issue for hardware implementations.


1.1 Alphabet Partitioning


One way to deal with the problem of entropy coding of large alphabets is to partition


the alphabet into smaller sets and use a product code architecture where a symbol


is identified by a set number and then by the element within the set. This approach


has also been called amplitude partitioning [14] in the literature. One special case of


the product code arises when the cardinality of each partition is 2k for some k and


exactly k bits are employed to identify any given element in that set. This strategy


has been employed in many data compression standards in the context of Huffman


coding and has also been called Modified Huffman Coding. For example, a modified


Huffman coding procedure specified by the JPEG standard [12] is used for encoding


DC coefficient differences. Here, each prediction error (or DC difference in the lossy


codec) is classified into a “magnitude category” and the label of this category is


Huffman coded. Since each category consists of multiple symbols, uncoded “extra


bits” are also transmitted which identify the exact symbol (prediction error in the


lossless codec, and DC difference in the lossy codec) within the category.


Other well known standards like the CCITT Group 3 and Group 4 facsimile com-


pression standards [5] and the MPEG video compression standards [11] also use a


similar modified Huffman coding procedure to keep the Huffman table small relative


to the underlying alphabet size they are entropy coding.


Note that the alphabet partitioning approach can also be applied recursively. That


is, the elements within each set can be further partitioned in subsets and so on. One


popular way of doing this is when encoding floating-point numerical data that arise in


compression of scientific applications. For example, the 32-bit floating-point numbers


to be encoded are viewed as a sequence of four bytes and separate entropy codes are


designed for each of the four bytes. This clearly can be viewed as recursive alphabet


partitioning. The first level partitions the numbers into 256 different sets and the


elements within each set are further partitioned into 256 sets and so on. Similar
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comments apply if the numbers are 64 bits or 80 bits or any other representation and


if the partitioning is done based on bytes or nibbles or 16-bit chunks, etc.. Another


more sophisticated, but nevertheless ad-hoc, recursive partitioning approach called


group partitioning is presented in [20].


1.2 Our Contribution - Dynamic Programming and Greedy


Algorithms for Alphabet Partitioning


Although the modified Huffman coding procedures designed by JPEG, CCITT and


other standards are quite effective, they are clearly ad-hoc in nature. For example, the


design of the JPEG Huffman code is guided by the fact that the underlying symbols


are DCT coefficients and are well modeled by a Laplacian or a generalized Gaus-


sian distribution [15]. This knowledge is exploited in designing a suitable modified


Huffman code. The exponentially decaying pmf’s of quantized DCT coefficients are


matched with partitions of exponentially increasing size, resulting in each partition


being assigned a roughly equal probability mass.


Given the ad-hoc nature of alphabet partitioning techniques in the literature, our


work is motivated by the following question: given a finite input sequence S drawn


from a very large alphabet Z with an unknown distribution, how does one design


an optimal semi-adaptive modified Huffman code? Or more generally, how does one


optimally partition the alphabet into sets, such that any symbol is encoded by an


entropy code (say, a Huffman code) of the index of the partition to which it belongs


followed by a suitable encoding of its value within the partition? By optimal here, we


mean a code that minimizes the number of bits needed to encode the source sequence


plus the number of overhead bits needed to describe the code.


In this paper, we present an O(N 3)-time dynamic programming algorithm and an


O(N)-time greedy heuristic method for partitioning an alphabet with the goal that


the overall combined cost of representing the message and the Huffman table is mini-


mized, where N is the number of distinct symbols being encoded. In both algorithms,


an additional time linear in the length of the input message is needed to read the


message and collect the symbol frequencies, prior to performing alphabet partition-


ing. It turns out that we do not optimally solve the alphabet partitioning problem.


This is due to the fact that it is difficult to accurately formulate the cost of the final


Huffman table in our dynamic programming formulation. Even though the resulting


dynamic programming solution provides an optimal solution to our cost function,
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because the cost function itself does not exactly capture the cost of the final Huffman


table, the solution does not achieve the real optimal. Our alternative algorithm, the


greedy approach, is a heuristic method with local considerations and hence does not


achieve the global optimal either (but is much faster than dynamic programming).


We pose the question of how to (provably) solve the alphabet partitioning problem


optimally for semi-adaptive modified Huffman code as an open question. Although


this problem is not solved optimally, our problem formulation and the developed solu-


tions, the dynamic programming and the greedy algorithms, result in superior overall


coding efficiencies in our semi-adaptive modified Huffman code, as demonstrated in


the experimental results.


The rest of this paper is organized as follows. In the next section we formulate


the problem of finding a good alphabet partitioning for the design of a two-layer


semi-adaptive entropy code as an optimization problem, and give a solution based


on dynamic programming. However, the complexity of the dynamic programming


approach can be quite prohibitive for a long sequence and a large alphabet size.


Hence in Section 3 we give a greedy heuristic whose running time is linear in the


length of the input sequence. Finally, in Section 4 we give experimental results that


demonstrate the fact that superior semi-adaptive entropy coding schemes for large


alphabets can be designed using our approach, as opposed to the typically ad-hoc


partitioning methods applied in the literature.


1.3 Related Work


The problem of a large alphabet size also arises in adaptive single-pass entropy coding,


for example, adaptive arithmetic coding. Here in addition to the large table size, the


lack of sufficient samples in order to make reliable probability estimations becomes a


more serious concern. Specifically, it is well known that the zero frequency problem


can lead to serious coding inefficiency. The widely known PPM text compression


algorithm [1] allocates explicit codes only to symbols that have occurred in the past


and uses a special escape symbol to code a new symbol. In the work of Zhu et.


al. [19], this approach is extended further by the use of a dual symbol set adaptive


partitioning scheme, where the first set contains all the symbols that are likely to


occur and the second set contains all the other symbols. Only the symbols in the first


set are explicitly coded. They also give an adaptive procedure for moving symbols


between the two sets.
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Itoh [6] has given a universal noiseless coding technique for large alphabets where


the per-letter redundancy is bounded by a factor that does not include alphabet size.


As discussed in Effros et al. [2], in Itoh’s approach the encoder first sends to the


decoder a model of the distribution of the data, and then describes the data using


this model. The encoder chooses the model that minimizes the total description


length of the data, i.e., the length of the model description plus the length of the


data description given the model. We refer to [2, 6] for more details.


The multi-level coding scheme has been applied very effectively in the Burrows-


Wheeler Transform (BWT) compression; see the work of Fenwick [3] for an example.


More recently Yang and Jia [18] have given a universal scheme for coding sources


with large and unbounded alphabets, which employs multi-level arithmetic coding.


They dynamically construct a tree-based partition of the alphabet into small subsets


and encode a symbol by its path to the leaf node that represents the subset of the


symbol and by the index of the symbol within this subset. They prove that their


code is universal, that is, it asymptotically achieves the source entropy.


The problem of minimizing space and time complexity when constructing prefix


codes for large alphabets has been extensively studied in a series of papers by Moffat,


Turpin et. al.. For example, see [10] and the references therein.


Finally and most importantly, Liddell and Moffat [8], independent of this work


and roughly around the same time as this work was done, considered the problem of


encoding a large alphabet source sequence by using a two-layer code called a K-flat


code. The structure of a K-flat code can be represented by a tree, which has a binary


upper section of K = 2k nodes for some integer k, and each of the nodes at depth k is


the root of a strictly binary subtree where all leaves are at the same depth. Therefore,


the first-layer code has exactly k bits that acts as a subtree selector for picking one of


the K binary subtrees. They formulate the problem of finding an optimal partitioning


scheme as a dynamic programming problem and give an O(KN log N)-time solution


by exploiting some structure in the optimization problem [8, 9]. They assume that


the symbols in the alphabet are sorted by the frequency values, and hence in that


sense their method is less general than our approach here. Moreover, their first-layer


code is a fixed-length binary code of k bits, as opposed to a Huffman code in our


case, and thus their compression efficiency is in general not expected to be as good


as ours. However, the advantage of their K-flat code is its structural simplicity:


each codeword consists of a k-bit prefix and a variable-length suffix whose length is
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completely defined by the prefix; this allows a simple decoding process. Therefore,


the main strength of their coding scheme is fast decoding rather than compression


efficiency.


2 Alphabet Partitioning Using Dynamic Program-


ming


Our problem is to code a finite input sequence S drawn from a very large alphabet Z
with an unknown distribution. Since the size of alphabet is much larger than the input


sequence length, |Z| >> |S|, one-pass universal coding approach may not work well


in practice due to the sample sparsity, i.e., the input sequence does not supply enough


samples to reach a good estimate of the source distribution. Instead, we propose a


two-pass and two-layer coding approach based on the Minimum Description Length


(MDL) principle [13].


We assume that the alphabet Z is ordered, which is very large. Suppose that


the input sequence consists of N distinct values: z1 < z2 < · · · < zN , and that


U is the total range of values any input symbol could fall into (U is decided by


the given input data representation—e.g., for input symbols given as 4-byte inte-


gers, U = 232, and log2 U = 32 bits suffice to represent any input symbol). Cen-


tral to our two-layer code design is the formulation of alphabet partitioning as an


optimization problem. The range of alphabet Z is partitioned into M intervals:


(−∞, zq1
], (zq1


, zq2
], · · · , (zqM−1


,∞). Note the M -cell partition of Z is defined by M−1


existing symbol values of S, indexed by q1 < q2 < · · · qM−1. Consequently, the sym-


bols of input sequence S is partitioned into M subsets: S(qi−1, qi] = {zj|j ∈ (qi−1, qi]},
1 ≤ i ≤ M , where q0 = 0 and qM = N by convention. This partition constitutes the


first layer of the code. Given an alphabet partition, the self entropy of the first layer


is


H(q1, q2, · · · , qM−1) = −
M∑


i=1


P (S(qi−1, qi]) log2 P (S(qi−1, qi]). (1)


This is the average bit rate required to identify the subset membership of an input


symbol in the alphabet partition.


We still need to resolve the remaining uncertainty for the symbols within a cell of


the alphabet partition, which is the second layer of our code. We use a fixed-length


code for this second-layer coding, as is done by the JPEG modified Huffman code.
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Optionally, we could use a variable-length code (such as Golomb code) to probably


further improve the compression efficiency. However, using a fixed-length code has


an advantage of being simple and yet still quite efficient, as demonstrated by our


experiments.


The proposed two-layer coding scheme is semi-adaptive. The encoder first scans


the input sequence and collects the statistics to find a good alphabet partition as


described by the following dynamic programming algorithm. It then sends side infor-


mation about the alphabet partition, namely the values zq1
, zq2


, · · · , zqM−1
that define


the partition. Note that scanning the input sequence and collecting the statistics


takes time linear in the length of the input sequence (e.g., by using a hash table),


prior to performing alphabet partitioning.


Now we present a dynamic programming algorithm for our alphabet partition-


ing. Let L(zj|j ∈ (qi−1, qi]) be the length of the second-layer fixed-length code of


the set S(qi−1, qi] = {zj|j ∈ (qi−1, qi]}. Obviously, we have L(zj|j ∈ (qi−1, qi]) =


|S(qi−1, qi]| log2(qi − qi−1). Let Rk(0, n] be the overall code length produced by the


two-layer coding scheme under the best k-cell alphabet partition that we can achieve


for the subset {z|z < zn} of the input data set. Namely,


Rk(0, n] = min
0=q0<q1<···<qk=n


{
k∑


i=1


L(zj|j ∈ (qi−1, qi]) + H(q1, q2, · · · , qk−1)|S(0, n]|


+ T (q1, q2, · · · , qk−1)}. (2)


Here T (q1, q2, · · · , qk−1) is the Huffman table size of the first-layer code for the k-


cell partition by (q1, q2, · · · , qk−1) on the subset {z|z < zn}. Such Huffman table


size depends on how the table is represented. Assuming that it is stored in the same


canonical format as in the JPEG standard, i.e., by storing the codeword lengths, then


the table size is upper-bounded by k log2 k bits. In our case we also need to store the


information on the partition. This requires an additional log2 U bits for each entry.


Hence k(log2 k + log2 U) is an upper bound for T (q1, q2, · · · , qk−1). We remark that


for canonical Huffman table, its sub-table size T (q1, q2, · · · , qk−1) corresponding to


the sub-problem {z|z < zn} in intermediate steps of dynamic programming cannot


be expressed exactly, therefore we let T (q1, q2, · · · , qk−1) = k(log2 k + log2 U), which


is only an estimation. Because T (·) is only an estimation, our resulting dynamic pro-


gramming solution is not optimal, albeit it is optimal with respect to the cost function


we use in the dynamic programming formulation. For other representations of the
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Huffman table in the first-layer code, T (·) needs to be appropriately modified, and


again the resulting dynamic programming solution is not optimal if the corresponding


T (·) is not expressed exactly.


With Rk(0, n] given above, our objectives are to find


RM(0, N ], M = arg min
k


Rk(0, N ], (3)


and to construct the underlying alphabet partition given by 0 = q0 < q1 < · · · <


qM = N . The dynamic programming procedure is based on the recursion:


Rk(0, n] = min
0<q<n


{Rk−1(0, q] + L(zj|j ∈ (q, n]) − |S(q, n]| log2 P (S(q, n])}


−(k − 1) log2(k − 1) + k log2 k + log2 U. (4)


After pre-computing


F (a, b] = L(zj|j ∈ (a, b]) − |S(a, b]| log2 P (S(a, b]), 0 < a < b ≤ N (5)


for all possible O(N 2) subsets, the dynamic programming algorithm proceeds as de-


scribed by the following pseudo code.


/* Initialization */


q0 ≡ 0;


qM ≡ N ;


for n := 1 to N do


R1(0, n] := L(zj|j ∈ (0, n]) + log2 U ;


/* Minimize the description length */


for m := 2 to N do


for n := m to N do


Rm(0, n] := min0<q<n{Rm−1(0, q] + F (q, n]} − (m − 1) log2(m − 1) + m log2 m


+ log2 U ;


Qm(n) := arg min0<q<n{Rm−1(0, q] + F (q, n]};
/* Construct the alphabet partition */


M := arg min1≤m≤N Rm(0, N ];


for m := M down to 2 do


qm−1 := Qm(qm);


output final M -cell alphabet partition (q0, q1, · · · , qM).
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The complexity of the above dynamic programming algorithm is clearly O(N 3).


Recall that we also spend an additional time linear in the length of the input sequence


to collect the symbol frequencies before performing the dynamic programming algo-


rithm. It should be noted that the algorithm we have presented is quite general and


can be adapted for different types of coding strategies. For example, in the above


algorithm we use a fixed-length code for encoding the value of a symbol within a par-


tition. However, we could alternatively use a variable-length code (such as Golomb


code) for this purpose and the above algorithm can be easily modified to yield a


suitable partitioning of the alphabet. We remark that, as mentioned before, using a


fixed-length code in the second layer already compresses quite well as shown by our


experiments, and we suspect that the additional complexity of using a variable-length


code in the second layer may not pay off in practice.


3 Greedy Heuristic


The running time of the dynamic programming algorithm as given in the previous


section is O(N 3). When coding a large number of symbols (drawn from a large


alphabet), say tens of thousands, this is clearly prohibitive, even though the cost


is only incurred by the encoder and not the decoder. In this section we present


a greedy heuristic for partitioning the alphabet, which runs in time linear in the


number of distinct symbols in the source sequence, that is, in O(N) time. Prior


to performing alphabet partitioning, the encoder needs an additional time linear in


the length of the input sequence to collect the symbol frequencies, as is the case


described in the previous section. In the next section we give experimental results


showing that the greedy heuristic yields results quite close to those obtained by the


dynamic programming approach, and hence can be an attractive alternative in many


applications.


As in the previous section, we assume that the distinct symbols that occur in the


source sequence are ordered from the smallest to the largest. The greedy algorithm


works as follows. We make a linear scan of the symbols starting from the smallest


symbol (or equivalently the largest symbol). We assign this symbol to a partition in


which it now is the only element. We then consider the next smallest symbol. We


have two choices. The first choice is to create a new partition for this new symbol,


thereby closing the previous partition. The second choice is to include this symbol
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into the previous partition that contained only the first symbol. We compare the


“cost” of these two choices and use a greedy strategy to select the one that has lower


cost. We continue in this manner, visiting each new distinct symbol and assigning it


either to the previous partition or to a new partition of its own.


More generally, as before we assume that the input sequence consists of N distinct


values: z1 < z2 < · · · < zN and that log2 U bits suffice to represent any input symbol,


where U is the total range of values any input symbol could fall into. Suppose


our current working partition is (zqi
, zqj


]. We now consider the symbol z(qj+1). We


compute the “cost” of the following two choices:


1. Add symbol z(qj+1) to the partition (zqi
, zqj


] so that our current working partition


becomes (zqi
, z(qj+1)].


2. Terminate our current working partition (zqi
, zqj


] and create a new working


partition (zqj
, z(qj+1)].


The question that arises is how to compute the cost of the two choices we are facing


at each step. Essentially we calculate an estimation of the resulting cumulative code


size for each choice and select the one that leads to lower code size. In general, to


estimate the cumulative code size C(qk) right after dealing with the symbol zqk
we


use the following expression:


C(qk) = f(q1) + f(q2) + . . . + f(qk) + g(qk), (6)


where f(qk) is an estimate of the code length for the partition (zqk−1
, zqk


]. Note that


this partition is equivalent to the partition [z(qk−1+1), zqk
] as there is no input symbol


falling into the interval (zqk−1
, z(qk−1+1)) to be coded. We express f(qk) as


f(qk) = n · (− log2 p + log2 d). (7)


Here n is the number of distinct input symbols in the partition [z(qk−1+1), zqk
], and


p is the empirical probability of the input values falling into this partition, i.e.,
∑


(qk−1+1)≤r≤qk
wr/W , where wr is the number of times the input symbol zr appears


in the input sequence and W is the sum of all such wr’s. Finally, d is the distance


between the upper bound and the lower bound of this partition, that is, zqk
−z(qk−1+1).


The component g(·) is an estimate of the size of the Huffman table, that is,


g(qk) = t · (log2 t + log2 U), (8)
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where t is the number of partitions that we have accumulated thus far right after


dealing with the symbol zqk
. As before, we are assuming that the Huffman table is


stored in the same canonical format as in the JPEG standard, namely, by storing


codeword lengths, and t log2 t is an estimate of this. Also, in our case we need to


store the information on the partition. This requires the additional log2 U bits for


each entry. It is easy to see that for the current symbol z(qj+1), C(qj + 1) has two


possible values corresponding to the two choices of where to place z(qj+1).


Clearly the above algorithm is sub-optimal. In fact, scanning the symbols from


low to high values and from high to low values will yield two different partitioning


schemes. Typically, the gap between the code lengths of the two schemes is very


small, indicating that the method is reasonably stable. In practice, we scan in both


directions and select the partitioning scheme that results in the lowest code length.


There are other possible approaches for designing simple heuristics for the alphabet


partitioning problem. We experimented with quite a few. For example, a hierarchical


scheme, a pivoting scheme, and so on. However, the simple greedy technique described


above appeared to give the best performance on all the datasets that we have tested.


4 Experimental Results


To evaluate the effectiveness of our algorithms, we implemented in C/C++ the dy-


namic programming method described in Section 2 and the greedy heuristic given in


Section 3, where in both methods we used a Huffman code for the first-layer coding


and a fixed-length code for the second-layer coding. All the experiments were con-


ducted on a Sun Blade 1000 workstation with dual 750MHz UltraSPARC III CPUs


and 4GB of main memory, running under the Solaris operating system.


4.1 Optimality of Alphabet Partitioning


First, we want to see how close to optimal our two alphabet partitioning approaches


(dynamic programming and greedy heuristic) achieve. To do this, we generate a


family of datasets satisfying some properties so that some fixed alphabet partitioning


is provably optimal. We then run our dynamic programming and greedy heuristic


on these datasets, and compare their resulting compression ratios with those of the


optimal partitioning to see how close they are.
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The family of datasets we generate has the following structure: There are c clus-


ters (c > 1), each with w consecutive integer numbers (hence a total of cw integer


numbers); intuitively, w means the width of each cluster. In addition, the overall first


number is 0 and the starting numbers of two consecutive clusters differ by g (hence


the starting numbers of the c clusters are 0, g, 2g, · · · , (c − 1)g); intuitively, g means


the gap between two clusters. The datasets are characterized by the parameters c, w,


and g—different values give different datasets. Our target partitioning is the par-


titioning P that makes c partitions corresponding to the c clusters in the data. In


Appendix A, we derive conditions for c, w, and g so that the partitioning P is an


optimal alphabet partitioning. The resulting conditions are as follows:


g > w, (9)


and


(
cw


c − 1
) log2(


(c − 1)g + w


cw
) > log2 U + log2(cw), (10)


where log2 U is the number of bits to represent any input symbol; in our case the


input symbols are given as 4-byte integers, and thus log2 U = 32. To summarize the


results of Appendix A, when c, w, and g satisfy both Conditions (9) and (10), the


partitioning P is optimal.


We have generated a family of datasets syn1,..., syn9 as listed in Table 1. These


datasets all have the described structure of clusters, and the w, g and c values satisfy


Conditions (9) and (10). We performed the described two-layer coding on these


datasets based on the optimal alphabet partitioning P , dynamic programming, and


greedy heuristic; the results are shown in Table 1. All these compression results


include the cost of storing the Huffman table.


From Table 1, we observe that among the nine datasets, our dynamic programming


and greedy heuristic both achieve the same optimal partitioning and compression


results as P on six datasets (syn1–syn6). For the remaining three datasets (syn7–


syn9), our two methods have the same compression efficiency, but both are non-


optimal and yet very close to optimal. Overall, the compression results of our two


methods are very close to optimal.


It is interesting to see that for syn8, dynamic programming and greedy heuristic


result in different partitionings, and yet their compression ratios are the same. In


fact, greedy heuristic achieves the same compression ratios as dynamic programming


for all datasets in Table 1. In general, however, greedy heuristic has a slightly worse
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Data w g c Org. Optimal Dynamic Greedy
Size Size Size # par. Size # par.


syn1 32 128 4 512 148 148 4 148 4
syn2 16 256 20 1280 448 448 20 448 20
syn3 32 1024 4 512 148 148 4 148 4
syn4 16 1024 20 1280 448 448 20 448 20
syn5 8 1024 100 3200 1464 1464 100 1464 100
syn6 32 1024 100 12800 5204 5204 100 5204 100
syn7 40 96 100 16000 6876 6896 67 6896 67
syn8 34 100 4 544 155 172 2 172 3
syn9 38 81 7 1064 307 332 4 332 4


Table 1: Partitioning and compression results with the datasets satisfying Condi-
tions (9) and (10). “Org. Size” is the original uncompressed file size in bytes (cw
integers of 4 bytes each). “Optimal Size” is the compressed file size in bytes of the
optimal alphabet partitioning P where there are c partitions corresponding to the c
clusters in data. For each of dynamic programming (“Dynamic”) and greedy heuristic
(“Greedy”), we list the resulting number of partitions (“# par.”) and the compressed
file size in bytes (“Size”).


compression efficiency than dynamic programming, but runs significantly faster, as


will be seen later.


4.2 Experiments on Real Datasets


To evaluate the effectiveness of our algorithms on real datasets, we ran them on a


set of data obtained from a computer graphics application. Specifically, each input


dataset contains a vertex list of a triangle-mesh model. The four datasets used were:


bunny, bunny2, phone and phone2. The bunny and bunny2 datasets represent the


same model of a bunny but the vertices are sampled at different resolutions, where


each vertex contains five components: its x, y, z, scalar, and confidence values,


each represented as a 32-bit floating-point number. Similarly, the phone and phone2


datasets represent the same model of a phone but the vertices are sampled at different


resolutions, where each vertex contains only three components: its x, y, and z values,


again each represented as a 32-bit floating-point number. Typically these vertex lists


are compressed in the graphics literature using some simple modified Huffman coding


or using a string compression algorithm like gzip.


To remove first order redundancies in the vertex list we used the most widely
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employed technique for vertex compression, namely differential coding: store the first


entry completely, and then store each remaining entry as its difference from the pre-


vious entry. We treated each of the five or three components (x, y, z, scalar and


confidence components for the bunny models, and x, y, and z components for the


phone models) separately, and constructed for each a separate modified Huffman code


for the differences by the dynamic programming method as well as the greedy heuris-


tic. To compare our results we also constructed a separate Huffman code for each


byte (8 bits), for each pair of bytes (16 bits), and for each four-byte word (32 bits), in


each floating-point number, on the same sequence of symbols (i.e., obtained by taking


differences) as encoded by the dynamic programming and the greedy approaches. In


addition, we used an 8-bit and 16-bit modified Huffman code (respectively denoted


by MH-8 and MH-16 in all tables below) to the same sequence, as well as using gzip,


a popular string compression algorithm. We implemented all these coding methods


in C/C++ except for gzip, for which we used the command “gzip” provided in Unix.


As mentioned, all these coding methods were applied to the same sequence for fair


comparisons. For gzip, we always used the option of the best compression (“gzip -9”).


In addition, we also computed the 32-bit entropy (entropy of the 32-bit symbols) of


the same sequence of symbols.


First we show in Table 2 the compression results on the bunny dataset. Since the


dynamic programming method is time consuming, we only experimented on compress-


ing the first 10,000 entries for each of the x, y, z, scalar and confidence components.


For each coding scheme involving Huffman code, we list the cost of storing the Huff-


man table, the cost of storing the data, and the total cost of storing both, for each


compression result. Looking at the total costs of storing both table and data, we


see that the greedy heuristic gives results very close to those obtained by dynamic


programming—at most 4.9% worse. Surprisingly, in some rare cases such as the y


and z components, the greedy heuristic gives a slightly better result than dynamic


programming. This is counter-intuitive, since dynamic programming is a global opti-


mization technique whereas the greedy heuristic is only a local optimization method.


However, as mentioned in Section 2, the cost function involved in the dynamic pro-


gramming formulation, in particular, the cost T (·) that represents the Huffman table


size, is only an estimation and thus does not always reflect the actual cost precisely.


Because of this, the greedy approach can give better results in some rare cases, al-


though in most cases the dynamic programming results are better. It should be noted
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bunny Dyn. Greedy 8-bit 16-bit 32-bit MH-8 MH-16 Gzip Entropy


x-table 272 672 1108 23921 41148 21 181
x-data 23128 23600 24932 20211 15100 32275 28063
x-all 23400 24272 26040 44132 56248 32296 28244 25525 15930
y-table 90 41 38 40 37964 38 52
y-data 4838 4879 8594 6092 18512 34718 26108
y-all 4928 4920 8632 6132 56476 34756 26160 6031 4831
z-table 102 695 1052 14925 41103 16 39
z-data 18762 17773 20612 16167 17377 31256 24729
z-all 18864 18468 21664 31092 58480 31272 24768 30104 13891
scalar-table 85 755 1060 28541 41260 19 54
scalar-data 22407 22837 24132 18887 16280 31967 26150
scalar-all 22492 23592 25192 47428 57540 31986 26204 32086 16472
conf-table 126 209 1052 12191 22602 19 46
conf-data 10858 11123 13980 9185 13550 31525 25394
conf-all 10984 11332 15032 21376 36152 31544 25440 8456 7537
Total-table 675 2372 4310 79618 184077 113 372
Total-data 79993 80212 92250 70542 80819 161741 130444
Total-all 80668 82584 96560 150160 264896 161854 130816 102202 58661


Table 2: Compression results in bytes with the bunny graphics dataset using different
coding schemes. For each of the x, y, z, scalar and confidence components, we show
the results of compressing the first 10,000 entries (shown as a breakdown between the
cost of the Huffman table (“-table”) and the cost of coding the data (“-data”), and
the total cost (“-all”)), as well as the corresponding 32-bit entropy. The original data
size is 40,004 bytes for each such component (a 4-byte float for each of the 10,000
entries, plus a 4-byte integer to indicate the number of entries). “Dyn.” denotes
dynamic programming.
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Dataset Greedy 8-bit 16-bit 32-bit


bunny-table 8,864 5,230 256,914 736,734
bunny-data 328,576 342,038 307,090 340,626
bunny-all 337,440 347,268 564,004 1,077,360
bunny2-table 36,957 5,294 377,940 2,173,851
bunny2-data 1,012,619 1,138,758 949,532 1,825,109
bunny2-all 1,049,576 1,144,052 1,327,472 3,998,960
phone-table 11,291 2,750 274,508 1,020,159
phone-data 446,329 501,698 407,744 510,953
phone-all 457,620 504,448 682,252 1,531,112
phone2-table 19,042 2,750 180,626 3,081,475
phone2-data 1,294,286 1,517,202 1,219,862 1,737,901
phone2-all 1,313,328 1,519,952 1,400,488 4,819,376


Dataset MH-8 MH-16 Gzip Entropy


bunny-table 178 16,850
bunny-data 611,390 587,262
bunny-all 611,568 604,112 585,242 235,962
bunny2-table 202 20,891
bunny2-data 1,793,014 1,690,293
bunny2-all 1,793,216 1,711,184 1,719,242 762,300
phone-table 118 11,846
phone-data 867,702 821,634
phone-all 867,820 833,480 895,969 342,129
phone2-table 141 13,778
phone2-data 2,602,739 2,415,334
phone2-all 2,602,880 2,429,112 2,584,875 983,496


Table 3: Compression results with the graphics datasets using different coding
schemes. For each dataset, we show the compressed size in bytes for the entire vertex
list, as well as the corresponding 32-bit entropy in bytes. For each coding scheme
involving Huffman code, we list the cost of storing the Huffman table (“-table”), the
cost of storing the data (“-data”), and the total cost (“-all”), for each compression
result. The original vertex-list sizes in bytes (and numbers of vertices) are as follows:
bunny: 718,948 (35,947), bunny2: 2,107,968 (105,398), phone: 996,536 (83,044), and
phone2: 2,988,092 (249,007).
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that the dynamic programming method still gives the optimal solution with respect


to the given cost function. We remark that the 32-bit entropy is always a lower


bound for the compression results of all approaches compared, as expected.


Comparing our results of dynamic programming and of greedy method with those


of 8-bit, 16-bit, and 32-bit Huffman code in Table 2, we see that our results are sig-


nificantly better. In particular, our Huffman-table costs are significantly smaller, and


our data costs are typically smaller or comparable, resulting in great improvements


in overall compression efficiency of our methods. Comparing our results with those of


8-bit and 16-bit modified Huffman code, we see that the latter two methods, though


have very small Huffman-table costs, have significantly larger data costs. Overall,


the partitioning scheme we employ yields tremendous benefits over the ad-hoc mod-


ified Huffman coding approaches. Finally, compared with the results of gzip, again


our results are significantly superior. We remark that gzip performs extremely well


on the confidence component. This is because there are many identical values in


the confidence-component sequence; gzip can concatenate many of them into a single


code word and represent such repeated patterns easily. Therefore gzip can outperform


our two-layer coding in this particular case. Except for this special case, our results


are significantly superior to those of gzip in all other cases, including the overall


compression results combining all components together.


For the entries in Table 2, we also measured the corresponding running times.


The encoding speeds of all the compression methods listed are fast and roughly the


same, except for dynamic programming, which is extremely slow. For example, it


took more than 23 hours for dynamic programming to encode the first 10,000 entries


of one component, for each of the five components, with a total running time of more


than 115 hours. For the greedy method, on the other hand, the encoding times for


the first 10,000 entries of one component range from 0.06 second to 0.1 second, with


a total running time of 0.4 second. The decoding speeds of all methods are similar


and fast—they are slightly faster than the encoding speed of the greedy approach.


Clearly, for large datasets, the greedy heuristic is much more favorable than the


dynamic programming method.


Since the greedy approach runs much faster than the dynamic programming


method and gives compression results almost as good, in the remaining experiments


we only ran the greedy heuristic as our representative results. In Table 3, we show


the results of compressing all four graphics datasets, where for each dataset we com-
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pressed the entire vertex list (as opposed to the first 10,000 vertices in Table 2).


Similar to what we observed in Table 2, our partitioning scheme based on the greedy


method results in significant advantages over all other methods being compared.


It should be noted that the dynamic programming and the greedy partitioning


approaches often resulted in a partition with only one element. To handle this case


we included one bit in every entry of the Huffman table to indicate this fact and hence


saved the bits to code the value of this symbol whenever it occurred.


4.3 Experiments on Synthetic Datasets


Dataset Greedy 8-bit 16-bit 32-bit MH-8 MH-16 Gzip Entropy


(0,100)-table 0.403 0.42 1.91 32.95 0.0128 0.0144
(0,100)-data 9.280 11.65 10.16 12.66 25.00 17.01
(0,100)-all 9.683 12.07 12.07 45.61 25.013 17.024 13.28 9.12
(0,1000)-table 0.529 0.48 11.10 33.00 0.0128 0.0144
(0,1000)-data 12.674 14.54 12.97 13.64 25.00 17.01
(0,1000)-all 13.203 15.02 24.07 46.64 25.013 17.024 18.16 11.92
(0,10000)-table 0.574 0.83 21.78 33.01 0.0128 0.0144
(0,10000)-data 16.738 17.78 14.18 13.07 25.00 17.01
(0,10000)-all 17.312 18.61 35.96 46.08 25.013 17.024 22.64 13.1


Table 4: Compression results in bits per number required to encode 10,000 random
Gaussian numbers with different coding schemes, where (a, b) means the mean is a
and the standard deviation is b. For each coding scheme involving Huffman code,
we list the cost of storing the Huffman table (“-table”), the cost of storing the data
(“-data”), and the total cost (“-all”), for each compression result. We also show the
corresponding 32-bit entropy in bits per number.


To show the applicability of our approaches to a wider class of applications, we


also generated random Gaussian numbers with different variances and used the greedy


heuristic, Huffman coding of bytes (8 bits), Huffman coding of pairs of bytes (16 bits)


and Huffman coding of four-byte words (32 bits), as well as 8-bit and 16-bit modified


Huffman coding and gzip. As before, we used the option of the best compression


(“gzip -9”) for gzip, and we also computed the 32-bit entropy. Table 4 and Table 5


show the results obtained with a source sequence of length 10,000 and 100,000 respec-


tively. As before each result is shown as the cost of storing the Huffman table, the


cost of storing the data, and the total cost of storing both, for each coding scheme
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involving Huffman code. Again we see that alphabet partitioning based on the greedy


heuristic gives superior results.


Dataset Greedy 8-bit 16-bit MH-8 MH-16 Gzip Entropy


(0,100)-table 0.102 0.04 0.24 0.00128 0.00144
(0,100)-data 9.254 11.64 10.21 25.00 17.00
(0,100)-all 9.356 11.68 10.45 25.001 17.001 12.64 9.17
(0,1000)-table 0.386 0.05 1.88 0.00128 0.00144
(0,1000)-data 12.548 14.54 13.47 25.00 17.00
(0,1000)-all 12.934 14.59 15.35 25.001 17.001 17.04 12.44
(0,10000)-table 0.510 0.08 10.94 0.00128 0.00144
(0,10000)-data 16.035 17.78 16.28 25.00 17.00
(0,10000)-all 16.545 17.86 27.22 25.001 17.001 22.24 15.24
(0,100000)-table 0.544 0.09 12.32 0.00128 0.00472
(0,100000)-data 19.986 20.23 18.74 25.00 19.89
(0,100000)-all 20.530 20.32 31.06 25.001 19.895 25.44 16.41


Table 5: Compression results in bits per number required to encode 100,000 random
Gaussian numbers with different coding schemes, where (a, b) means the mean is a
and the standard deviation is b. For each coding scheme involving Huffman code,
we list the cost of storing the Huffman table (“-table”), the cost of storing the data
(“-data”), and the total cost (“-all”), for each compression result. We also show the
corresponding 32-bit entropy in bits per number. We omit the entries for “32-bit”
since these results are much worse than all other methods, similar to what we have
seen in Table 4.


5 Conclusions


In this paper we formulated the problem of finding a good alphabet partitioning for


the design of a two-layer semi-adaptive code as an optimization problem, and gave


a solution based on dynamic programming. Since the complexity of the dynamic


programming approach can be quite prohibitive for a long sequence and a very large


alphabet size, we also presented a simple greedy heuristic that has more reason-


able complexity. Our experimental results demonstrated that superior prefix coding


schemes for large alphabets can be designed using our approach, as opposed to the


typically ad-hoc partitioning methods applied in the literature.
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A Conditions for Optimal Partitioning of Some


Family of Datasets


In Section 4.1, we generate a particular family of datasets characterized by the pa-


rameters c, w, and g. In this section, we derive the conditions for c, w, and g so that


the target partitioning P is an optimal alphabet partitioning. As already mentioned


in Section 4.1, the resulting conditions are Conditions (9) and (10).


Recall that the family of datasets has the following structure: There are c clus-


ters (c > 1), each with w consecutive integer numbers (hence a total of cw integer


numbers); intuitively, w means the width of each cluster. In addition, the overall


first number is 0 and the starting numbers of two consecutive clusters differ by g
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(hence the starting numbers of the c clusters are 0, g, 2g, · · · , (c − 1)g); intuitively,


g means the gap between two clusters. Also, recall that P is the target partitioning


that we want to make optimal, where there are c partitions in P corresponding to the


c clusters in the data.


Now we proceed to derive conditions for c, w, and g. In our two-layer coding


scheme where we use a Huffman code for the first layer and a fixed-length code for


the second layer, the cost (in number of bits) for encoding one partition of P is as


follows: the Huffman table cost for the partition (one entry in the table) is


TP = log2


cw


w
+ log2 U + log2 w, (11)


where log2
cw
w


is the code-word length of the Huffman code, which is the entropy of the


symbol for this partition (namely − log2 p where p = w/(cw)), log2 U is the number


of bits to record the starting position of the partition (in our case where the input


symbols are given as 4-byte integers, we have log2 U = 32), and log2 w is the number


of bits to record the length of the partition. The data cost for all w items in the


partition is


DP = w(log2


cw


w
+ log2 w), (12)


where log2
cw
w


is the length of the first-layer Huffman code and log2 w is the length of


the second-layer fixed-length code.


A.1 Preventing Splitting a Cluster


First, we want to impose some conditions so that changing from P to have more


than c partitions in an alphabet partitioning, which needs to split a cluster into more


than one partition, is more expensive than P . Suppose in such a partitioning S some


cluster is split into two partitions, having s and w − s numbers respectively. Then


for this cluster, the Huffman table cost (two entries in the table) is


TS = [log2


cw


s
+ log2 U + log2 s] + [log2


cw


w − s
+ log2 U + log2(w − s)],


and the data cost for all w items in the cluster is


DS = s[log2


cw


s
+ log2 s] + (w − s)[log2


cw


w − s
+ log2(w − s)].


We want to impose some conditions on c, w and g so that TS +DS > TP +DP , i.e.,


the partitioning S is more expensive than the partitioning P , and thus an optimal
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partitioning will not split a cluster. It turns out that TS = 2(log2(cw)+log2 U) = 2TP


and that DS = w log2(cw) = DP . This means that S is always more costly than P


without the need to impose any conditions on c, w and g. Therefore, simply by the


structure of the datasets, an optimal partitioning will not have more than c partitions.


A.2 Preventing Merging More Than One Cluster in a Parti-


tion


Now we want to impose some conditions on c, w and g so that changing from P to


have fewer than c partitions in an alphabet partitioning, which needs to merge more


than one cluster in some partition, is more expensive than P . We proceed in two


stages: First, we impose conditions so that merging a non-integer number (larger


than one) of clusters in some partitions is more expensive than including an integer


number (larger than one) of clusters; secondly, we impose conditions so that merging


an integer number (larger than one) of clusters in some partition is more expensive


than P .


First Stage. We proceed with the first stage. Let MN be a non-integral partitioning


where some partition contains w+ s items and another partition contains (w− s)+w


items, for three consecutive clusters in the data, and MI be an integral partitioning


where the corresponding three clusters are included in two partitions with 2w and w


items respectively (see Fig. 1). We want to impose conditions so that MN is more


expensive than MI .


The Huffman table cost of MN for the three clusters in question is


TMN
= [log2


cw


w + s
+log2(g+s)+log2 U ]+[log2


cw


(w − s) + w
+log2(g+(w−s))+log2 U ],


and the data cost of MN for the three clusters in question is


DMN
= (w+s)[log2


cw


w + s
+log2(g+s)]+((w−s)+w)[log2


cw


(w − s) + w
+log2(g+(w−s))].


Applying the inequality that for two positive numbers A and B, A + B ≥ 2
√


AB


with the minimum occurring when A = B, we see that by letting s = w − s, we have


T ∗
MN


= 2(log2


c


3/2
+ log2(g + w/2) + log2 U) ≤ TMN


,
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w s w−s w


w ww


partition length = g + w partition length = w


partition length = g + s partition length = g + (w − s)(a)


(b)


Figure 1: Non-integral partitioning MN and integral partitioning MI in the first stage.
(a) Three consecutive clusters are included in two partitions of w + s and (w− s)+w
items in MN . (b) The three clusters are included in two partitions of 2w and w items
in MI .


and


D∗
MN


= 3w(log2


c


3/2
+ log2(g + w/2)) ≤ DMN


.


The Huffman table cost of MI for the three clusters in question is


TMI
= [log2(c/2) + log2(g + w) + log2 U ] + [log2 c + log2 w + log2 U ],


and the data cost of MI for the three clusters in question is


DMI
= 2w[log2(c/2) + log2(g + w)] + w[log2 c + log2 w].


Now we impose the following two conditions:


T ∗
MN


> TMI
(13)


D∗
MN


> DMI
. (14)
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Clearly, we then have TMN
> TMI


and DMN
> DMI


, meaning that MN is more


expensive than MI , as desired.


From Inequality (13), we have log2
(g+w/2)2


(3/2)2
> log2


(g+w)w
2


, i.e., (8/9)(g + w/2)2 >


(g + w)w, which gives (8g + 7w)(g − w) > 0, and thus the condition g > w. From


Inequality (14), we have log2
(g+w/2)3


27/8
> log2


w(g+w)2


4
, i.e., 32(g+w/2)3 > 27w(g+w)2.


Letting x = g/w, we have (x− 1)(32x2 + 53x + 23) > 0, and thus the same condition


g > w. In summary, the first stage imposes one condition:


g > w. (*)


Note that this is Condition (9). We remark that Condition (9) is also a trivial


requirement to have c clusters (c > 1) in data: Since the starting positions of two


consecutive clusters differ by g, it is necessary that g ≥ w. However, if g = w then


there is no gap between two consecutive clusters and thus all clusters are merged


together into a single cluster. Therefore, it is necessary to have g > w in order to


make c clusters.


Second Stage. Now we proceed with the second stage. Let MK be an integral


partitioning in which some partition contains exactly k clusters (kw items), where


k is an arbitrary integer in the range [2, c]. Note that this partition has length


(k − 1)g + w. The Huffman table cost of MK for this partition is


TMK
= log2


cw


kw
+ log2[(k − 1)g + w] + log2 U,


and the data cost of MK for this partition is


DMK
= kw(log2


cw


kw
+ log2[(k − 1)g + w]).


Recall that the partitioning P has c partitions, each corresponding to a cluster


of w items. For the above k clusters in question, the Huffman table cost of P is


k ·TP = k(log2 c+log2 w+log2 U) and the data cost of P is k ·DP = kw(log2 c+log2 w)


(see Equations (11) and (12) for TP and DP ). We want MK to be more expensive


than P , namely, TMK
+ DMK


> k · TP + k · DP . After some algebraic manipulation,


we have


(kw + 1) log2


(k − 1)g + w


kw
> (k − 1)[log2 U + log2(cw)].


This inequality holds if we impose the condition


f(k) > log2 U + log2(cw), (15)
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where the function f(k) is defined to be


f(k) = (
kw


k − 1
) log2


(k − 1)g + w


kw


= (
kw


k − 1
)(


1


ln 2
) ln


(k − 1)g + w


kw
. (16)


To fulfill Inequality (15), we try to find the minimum value of f(k), and impose


the condition that this minimum value be larger than the right-hand side of (15),


namely,


min f(k) > log2 U + log2(cw). (17)


Recall that k is in the range [2, c]. The minimum value of f(k) occurs when k = 2,


k = c, or when k satisfies df(k)
dk


= 0. The equation df(k)
dk


= 0 gives


(−1)[(k − 1)g + w] ln[
(k − 1)g + w


kw
] + (k − 1)(g − w) = 0. (18)


Letting g = aw where a > 1 (by Condition (9)) and A = (k − 1)a + 1, we have that


(k − 1)(g − w) = w(k − 1)(a − 1) = w(A − k). Note that k > 1 and a > 1, and thus


A > k. Equation (18) then becomes (−1)A ln(A
k
) + (A − k) = 0. Letting x = k/A


(x < 1 since A > k, and also x > 0), the equation is further simplified to


ln x + 1 = x. (19)


It can be shown that x = 1 is the only solution for Equation (19). (Let y(x) =


[ln x + 1]− x; the slope dy
dx


= 1
x
− 1 is 0 when x = 1, is larger than 0 when 0 < x < 1,


and is smaller than 0 when x > 1. Therefore, y = 0 is a maximum value of y(x)


(when x = 1) and this is the only value of y(x) reaching 0; other values of y(x) are


all negative. This means that x = 1 is the only solution for y(x) = 0.) However,


x = k/A ∈ (0, 1), and thus x = 1 is not a valid solution. It remains to examine k = 2


and k = c for the minimum value of f(k).


To determine which of the two values of k (2 or c) gives the minimum value of


f(k), we consider the slope df(k)
dk


of f(k) in the range k ∈ [2, c]. We observe that
df(k)


dk
= ( w


(k−1)2A ln 2
)[(−1)A ln(A


k
) + (A − k)] = ( w


(k−1)2 ln 2
) y(x), where A, x and y(x)


are as defined above. Recall that x = k/A is in the range (0, 1), and from the above


discussions, we have y(x) < 0 when x is in this range. This means that df(k)
dk


< 0, i.e.,


the value of f(k) is monotonically decreasing when k is in [2, c], and hence we have
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min f(k) = f(c). Recalling the definition of f(k) from Equation (16), the desired


condition given in (17) becomes


(
cw


c − 1
) log2(


(c − 1)g + w


cw
) > log2 U + log2(cw). (**)


Note that this is Condition (10). In conclusion, there is no condition imposed from


the results of Section A.1; in this sub-section, the first stage imposes Condition (9)


(namely g > w) and the second stage imposes Condition (10). For datasets satisfying


Conditions (9) and (10), the partitioning P (having c partitions corresponding to the


c clusters) is an optimal alphabet partitioning.
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