Collision Detection

Based on Collision Series
On XNA Creators Club



Collision Detection

Circular

Rectangular

Pixel-based

Rotated rectangles
Pixel-based with rotations
Minimize work (to do)




Circular Collision Detection

Simple
Maintain information about
 the object's center and

 the distance from the center to the furthest point on the
object, i.e. the radius of the circle.

Determine the distance between two objects'
centers and see if it is less than the sum of their
bounding circle's radii.



Rectangular Collision Detection

Determine the “rectangle of intersection”

If that rectangle is “degenerate” then there is
no intersection, otherwise there is.

What’s a degenerate rectangle?

One with a height or width less than or equal
to zero pixels.



Overlapping Rectangles

Left ‘ ‘ Right

Top

Bottom

*Lowest Top
*Highest Bottom
*Rightmost Left
eLeftmost Right



Rectangular Collision Detection

Compute the top of the possible rectangular intersection
e |t will be the top of the two rectangles that is lower on the screen.

Compute the bottom of the possible rectangular intersection
e It will be the bottom that is higher on the screen.
 To get the bottom, we have to add the height of the sprite to the top.

Compute the left side
e |t will be the left side that is furthest to the right.

Compute the right side
e |t will be the right side that is furthest to the left.

When does intersection fail?
e |f the bottom is higher up than the top
e |If the left side is further right than the right side.

Otherwise we have a hit!!



Compute Intersection Rectangle

// Find the bounds of the rectangle intersection

int top = Math.Max(rectangleA.Top, rectangleB.Top);

int bottom = Math.Min(rectangleA.Bottom, rectangleB.Bottom);
int left = Math.Max(rectangleA.Left, rectangleB.Left);

int right = Math.Min(rectangleA.Right, rectangleB.Right);

// Did we intersect?

// Note that XNA Rectangle’s Bottom is Y +Height,
// soitis not part of the rectangle.

return (top > bottom && left > right);



Pixel-based Collision Detection

Rectangular collision can have
annoying results
We would prefer not to report a
collision when none has
occurred yet.
Steps?

e Get pixel data for sprites

e Get the intersection rectangle

* Check its pixels
N




Pixel Data

Which pixels actually intersected?

Compute the rectangular intersection.

Look at the pixels from each sprite.

XNA’s Texture2D has a GetData method that fills a one-
dimensional Color array.

Each Color has 4 properties, R, G, B and A.

If the pixels for each shape have a non-zero alpha channel,
then you have a collision!



Check all Pixels for Collision

for (int y = top; y < bottom; y++) { // top to bottom
for (int x = left; x < right; x++) { // left to right
// Get the Color array indices
int indexA = x - rectangleA.Left
+ (y-rectangleA.Top) * rectangleA.Width;
int indexB = x - rectangleB.Left
+ (y-rectangleB.Top) * rectangleB.Width;
// Get the color of both pixels at this point
Color colorA = dataA[indexA];
Color colorB = dataB indexB];
// If both pixels are not completely transparent,
// then an 1ntersection has been found
if (colorA.A !'= 0 && colorB.A !'= 0) return true;
} // for x

} // fory
// No intersection found

return false;



e What happens when

e But also rotated?

Transformed Collision Detection

the sprites have not
only been translated




Map from A into the world view.
Then map to B’s local view.



ldea

Code is simplified if we can
map from “untransformed”
sprite A (red) to transformed
sprite B (blue)




Representing Transformations

How can we represent
transformations?

Linear algebra!!l
Transformations can be
represented by “matrices”
And “combined” by
multiplication.

(We’'ll talk about this more
later)

Matrix transformAToB = transformA * Matrix.Invert(transformB);




Creating Transformations

// Create the person's transformation matrix each time he moves.
Matrix personTransform =

Matrix.CreateTranslation(new Vector3(personPosition, 0.0f));

// Create the block's transform
// This is tricky!!! (need pictures)
Matrix blockTransform =
Matrix.CreateTranslation(new Vector3(-blockOrigin, 0.0f))
* Matrix.CreateRotationZ(blocks[i].Rotation)
* Matrix.CreateTranslation(newVector3(blocks][i].Position,
0.0f));
// Check collision with person
personHit = IntersectPixels(personTransform, personTexture.Width,
personTexture.Height, personTextureData,
blockTransform, blockTexture.Width,
blockTexture.Height, blockTextureData));



IntersectPixels

Matrix transformAToB = transformA * Matrix.Invert(transformB);
for (int yA = 0; yA < heightA; yA++) { // Looping over rows in A
for (int XA = 0; XA < widthA; xA++) { // Looping over pixel in a row in A
// Calculate this pixel's location in B
// “transform” the A pixel into a location in B’s “space”
Vector2 positioninB =
Vector2.Transform(new Vector2(xA, yA), transformAToB);

// Round to the nearest pixel
int xB = (int)Math.Round(positioninB.X);
int yB = (int)Math.Round(positioninB.Y);

if (0 <=xB && xB < widthB && 0 <=yB && yB < heightB) { // Overlap?
Color colorA = dataA[xA + yA * widthA]; // Get A’s color
Color colorB = dataB[xB + yB * widthB]; // Get B’s color
if (colorA.A =0 && colorB.A !=0) { // Both visible?
return true; // intersection!

b1}

return false; // No intersection.



First Optimization
Rectangular Collision detection
with Rotated Rectangles

* Doing pixel by pixel checking /

e First should do a sanity check

* Rotate just the corners of the

e Then create a bounding box.

transformations is expensive!

sprites

(How? next slide)

* Finally check for rectangular

intersection.



CalculateBoundingRectangle

// Transform all four corners into work space

Vector2.Transform(ref leftTop, ref transform, out leftTop);
Vector2.Transform(ref rightTop, ref transform, out rightTop);
Vector2.Transform(ref leftBottom, ref transform, out leftBottom);
Vector2.Transform(ref rightBottom, ref transform, out rightBottom);

// Find the minimum and maximum extents of the rectangle in world space
// Note that Vector2.Min(v1, v2) = Vector(min(v1.x, v1.y), min(vl.y, v2.y)
Vector2 min = Vector2.Min(Vector2.Min(leftTop, rightTop),
Vector2.Min(leftBottom, rightBottom));
Vector2 max = Vector2.Max(Vector2.Max(leftTop, rightTop),
Vector2.Max(leftBottom, rightBottom));
// Return as a rectangle
return new Rectangle((int)min.X, (int)min.,
(int)(max.X - min.X), (int)(max.Y - min.Y));



Second Optimization
Eliminate Per-Pixel Transformation

* Doing pixel by pixel transformations
is expensive!

* Yes, we said that already.

e Going across a row in A results in a
fixed sized translation in B. Just add
vectors!

* Same for going from row to row.




