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Abstract

Over the last few years, most major search engines have integrated link-based ranking
techniques in order to provide more accurate search results. One widely known approach
is the Pagerank technique, which forms the basis of the Google ranking scheme, and which
assigns a global importance measure to each page based on the importance of other pages
pointing to it. The main advantage of the Pagerank measure is that it is independent of the
query posed by a user; this means that it can be precomputed and then used to optimize the
layout of the inverted index structure accordingly. However, computing the Pagerank measure
requires implementing an iterative process on a massive graph corresponding to hundreds of
millions of web pages and billions of hyperlinks.

In this paper, we study I/O-efficient techniques to perform this iterative computation. We
derive two algorithms for Pagerank based on techniques proposed for out-of-core graph al-
gorithms, and compare them to two existing algorithms proposed by Haveliwala. We also
consider the implementation of a recently proposed topic-sensitive version of Pagerank. Our
experimental results show that for very large data sets, significant improvements over previous
results can be achieved on machines with moderate amounts of memory. On the other hand, at
most minor improvements are possible on data sets that are only moderately larger than mem-
ory, which is the case in many practical scenarios.

A shorter version of this paper appears in the Proceedings of the Eleventh International
Conference on Information and Knowledge Management (CIKM), November 2002.



1 Introduction

The World Wide Web has grown from a few thousand pages in 1993 to more than two billion pages
at present. Due to this explosion in size, web search engines are becoming increasingly important
as the primary means of locating relevant information. Given the large number of web pages on
popular topics, one of the main challenges for a search engine is to provide a good ranking function
that can efficiently identify the most useful results from among the many relevant pages. Most
current engines perform ranking through a combination of term-based (or simply Boolean) query
evaluation techniques, link-based techniques, and possibly user feedback (plus a healthy dose of
preprocessing to fight search engine spam). We refer to [3, 11] for an overview of search engines
architectures and ranking techniques, and to [8, 42] for background on information retrieval.

A significant amount of research has recently focused on link-based ranking techniques, i.e.,
techniques that use the hyperlink (or graph) structure of the web to identify interesting pages or
relationships between pages. One such technique is the Pagerank technique underlying the Google
search engine [11], which assigns a global importance measure to each page on the web based on
the number and importance of other pages linking to it. Another basic approach, introduced by the
HITS algorithm of Kleinberg [27] and subsequently modified and extended, e.g., in [5, 13, 30, 43],
first identifies pages of interest through term-based techniques and then performs an analysis of
only the graph neighborhood of these pages. The success of such link-based ranking techniques
has also motivated a large amount of research focusing on the basic structure of the web [12],
efficient computation with massive web graphs [9, 37, 40], and other applications of link-based
techniques such as finding related pages [10], classifying pages [14], crawling important pages
[19] or pages on a particular topic [16], or web data mining [28, 29], to name just a few.

Both Pagerank and HITS are based on an iterative process defined on the web graph (or a
closely related graph) that assigns higher scores to pages that are more “central”. One primary
difference is that HITS is run at query time; this has the advantage of allowing the process to be
tuned towards a particular query, e.g., by incorporating term-based techniques. The main drawback
is the significant overhead in performing an iterative process for each of the thousands of queries
per second that are submitted to the major engines. Pagerank, on the other hand, is independent
of the query posed by a user; this means that it can be precomputed and then used to optimize the
layout of the inverted index structure accordingly.

However, precomputing the Pagerank measure requires performing an iterative process on a
massive graph corresponding to hundreds of millions of web pages and billions of hyperlinks.
Such a large graph will not fit into the main memory of most machines if we use standard graph
data structures, and there are two approaches to overcoming this problem. The first approach is to
try to fit the graph structure into main memory by using compression techniques for the web graph
proposed in [9, 37, 40]; this results in very fast running times but still requires substantial amounts
of memory. The second approach, taken by Haveliwala [23], implements the Pagerank computa-
tion in an I/O-efficient manner through a sequence of scan operations on data files containing the
graph structure and the intermediate values of the computation. In principle, this approach can
work even if the data is significantly larger than the available memory.

In this paper, we follow this second approach and study techniques for the I/O-efficient compu-
tation of Pagerank in the case where the graph structure is significantly larger than main memory.
We derive new algorithms for Pagerank based on techniques proposed for out-of-core graph algo-
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rithms, and compare them to two existing algorithms proposed by Haveliwala. We also consider
the implementation of a recently proposed topic-sensitive version of Pagerank [24], which greatly
increases the amount of processing that needs to be performed. Our results show that significant
improvements over previous results can be achieved in certain cases.

The remainder of this paper is organized as follows. The next section describes the Pagerank
technique in detail. Section 3 discusses related work, and Section 4 gives an overview of our
results. Section 5 provides a detailed description of the previous and new algorithms for Pagerank
that we study. Section 6 presents and discusses our experimental results. Finally, Section 7 offers
some open problems and concluding remarks.

2 Fundamentals

We now review the Pagerank technique proposed in [11] in more detail. We will not yet discuss
how to implement the computation in an I/O-efficient way; this is done in Section 5. We also de-
scribe an extension of Pagerank called Topic Sensitive Pagerank recently proposed by Haveliwala
[24].

The Basic Idea: The basic goal in Pagerank is to assign to each page � on the web a global
importance measure called its rank value ��� ��� . This rank value is itself determined by the rank
values of all pages pointing to � , or more precisely

��� �����
	�
��� ����� �� ��� ��� (1)

where
� ��� � is the out-degree (number of outgoing hyperlinks) of page � . Writing the resulting

system of equations in matrix form, we obtain�
� ����� �

� �
where

�
� is the vector of rank values over all pages, and � is a “degree-scaled” version of the

adjacency matrix of the graph. Thus, the problem is essentially that of finding an eigenvector of� . As proposed in [11], this can be done by performing a simple and well-known iterative process
that initializes the rank value of every page � (say, to ����� � � �����"!$#&% where % is the total number of
pages) and then iteratively computes

� �(')� � ����� 	�
��� ���('+*-,.�/��� �� ��� � � (2)

for 0 �1! �32��545454 . This is the basic process that is commonly implemented to compute Pagerank. (We
also refer to [4] for a more detailed discussion of alternative formulations and iterative processes.)

Some Technical Issues: The above description of Pagerank ignores some important technical
details. In general, the web graph is not strongly connected, leading to the following two problems:6 Rank leaks are pages with out-degree zero, which result in a loss of total rank value from the

system under the above iterative process.

6 Rank sinks are groups of pages forming a strongly connected component (e.g., a small cycle)
with links entering the component but no links leaving it. These rank sinks act as sinks that
accumulate large amounts of rank value.
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Apart from complicating the underlying mathematics, both of these problems are also clearly un-
desirable from a ranking point of view. For example, rank sinks would result in artificially inflated
ranks, and any outside linking would seriously reduce rank. (Some of these problems persist in the
modified versions of Pagerank described next, though to a lesser degree.) The solution to the first
problem is to repeatedly prune the input graph such that all or most rank leaks are removed , .

To resolve the issue of rank sinks, we appeal to the random surfer model of Pagerank [11],
which observes that the value � � ')� � � � computed by Equation (2) is proportional to the probability
of being at page � after starting at a random page and following random outgoing links for 0 steps.
Note that a rank sink will trap such a surfer forever. The solution taken by Pagerank is to add
random jumps to the iterative process, as follows: with some probability � , the surfer follows a
random outgoing link; otherwise, the surfer jumps to a random page in the graph. Typical values
for � are between

� 4 � and
� 4 � ; thus, after a moderate number of iterations, the surfer is likely to

jump out of a rank sink. (In addition, the parameter � also has the effect of dampening peaks in
the rank values, and of limiting the influence of nodes to their local neighborhoods; a discussion
of these issues is beyond the scope of this paper.)

This leads to the following modification of Equation (2), which is equivalent to the modified
random surfer model if all leaks have been removed:

� � ' � � ��� � � !���� � � � � �% � � � 	� � � ��� '+*-,.� ��� �� ��� � � (3)

where % is the total number of pages and
� ��� � �
	 � ����� � � ��� is the amount of rank initially inserted

into the network. This is the iterative process for Pagerank that we assume in the remainder of the
paper. As discussed in [23, 4], it is usually sufficient to run the process for 2 � to � � iterations, after
which the relative ordering of pages is close to that of the converged state. In this paper, we are
not concerned with this rate of convergence, but instead focus on optimizing the time needed per
iteration. We describe the I/O-efficient implementation of this process in Section 5, and our data
set and preprocessing steps in Section 6.

Topic-Sensitive Pagerank: Recall that Pagerank assigns ranks to pages independent of the
topic of a query, thus allowing efficient preprocessing of the data set. On the other hand, it has
been argued that a link-based ranking scheme that takes the topic of a query into account might
be able to return better results than a query-independent scheme [13, 27]. The Topic-Sensitive
Pagerank approach recently proposed by Haveliwala [24] attempts to combine the advantages of
both approaches. The idea is to perform multiple Pagerank computations, each biased towards a
particular topic taken from a standard hierarchy such as Yahoo or the Open Directory Project, and
to then compute a ranking for a particular query by combining several precomputed rankings from
topics that are relevant to the query.

In this paper, we are interested only in the efficient precomputation of multiple Topic-Sensitive
Pagerank vectors, and do not consider the issue of how to use these vectors in query processing.
The algorithm for performing a single Topic-Sensitive Pagerank computation is as follows:

6 Select a limited number of special pages that are highly relevant to the chosen topic, e.g., by
choosing pages listed under the corresponding category of the Open Directory Project.

�
Alternatively, leak nodes can be handled by adding a corrective term that reinserts leaked rank back into the

system by distributing it evenly over all nodes.
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6 Modify the random surfer model so that instead of jumping to a random page with probability� ! � ��� , we perform a jump to a random page among the special pages.

This has the effect of modifying our recurrence to the following:

� �(')� � � ��� �� � � !�� ���������
	� � � � 	 �
���
� ��������	 � � �� � � � if � is a special page, and
� � 	 �
��� � ��������	 � � �� � � � otherwise,

(4)

where � is the number of special pages. As we discuss later, we can modify our algorithms for
Pagerank to simultaneously compute multiple topic-sensitive rankings, resulting in a computation
on a new graph with proportionally more pages that is often more efficient then a separate compu-
tation of each ranking.

3 Discussion of Related Work

As mentioned in the beginning, there is a large amount of recent academic and industrial work on
web search technology. Most closely related to our work is the also quite extensive literature on
the analysis and utilization of the hyperlink structure of the web; see [3, 15, 25] for an overview.
In general, link-based ranking is closely related to other applications of link analysis, such as
clustering, categorization, or data mining, although a discussion of these issues is beyond the
scope of this paper.

Various heuristics for link-based ranking, such as counting in-degrees of nodes or computing
simple graph measures, have been known since the early days of web search engines [31, 36]. The
Pagerank approach was introduced in 1998 as the basis of the Google ranking scheme [11, 34].
Another related approach to link-based ranking, proposed at around the same time, is the HITS
algorithm of Kleinberg [27]. Over the last few years, numerous extensions and variations of these
basic approaches have been proposed; see [5, 13, 24, 30, 43] for a few examples. We focus here on
the implementation of the basic Pagerank algorithm on massive graphs, and on its topic-sensitive
extension in [24]. We note that many of the extensions of the HITS approach are run on small
subsets of the graph, often at query time, and thus do not fit into the framework in this paper � .

The initial papers on Pagerank [11, 34] did not discuss the efficient implementation of the
algorithm in detail. The I/O-efficient implementation of Pagerank was subsequently studied by
Haveliwala [23], who proposes an algorithm based on techniques from databases and linear al-
gebra. This algorithm (which we will refer to as Haveliwala’s Algorithm, is then compared to a
simpler scheme that assumes that the rank vector for the entire graph fits into main memory (re-
ferred to as the Naive Algorithm). While the results show that Haveliwala’s Algorithm is quite
efficient in many cases, we show in this paper that additional improvements are possible for very
large graphs and for the case of Topic-Sensitive Pagerank.

We note that an alternative approach is to compute Pagerank completely in main memory using
a highly compressed representation of the web graph [2, 9, 22, 37, 40]. In this case, enough main
memory is required to store the rank vector for the entire graph plus the compressed representation
of the hyperlink structure. The currently best compression scheme requires about

� 4�� bytes per�
One challenge faced by the HITS approach is how to retrieve the necessary graph and meta data at query time,

which requires efficient access structures for lookups, as opposed to the off-line out-of-core methods that we study.
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hyperlink [37], resulting in a total space requirement of about 2 � � 4 2 � ��4�2 GB for a graph with
� � � million nodes and � billion edges. In contrast, our techniques are efficient even for machines
with very moderate amounts of main-memory. Of course, it can be argued that an

�
GB machine is

now well within the reach of most organizations involved in large-scale web research; we discuss
this issue again in the next subsection. (Alternatively, the graph could also be partitioned over
several nodes of a cluster, each containing a more moderate amount of memory.)

Very recent work by Arasu et al. [4] considers modifications of the basic iterative process
in Pagerank that might lead to faster convergence. In particular, using a Gauss-Seidel iteration
instead of the basic Jacobi iteration of Equation (3) appears to decrease the number of iterations
needed by about a factor of 2 . We note that Gauss-Seidel iteration would require modifications
in both Haveliwala’s and our algorithms that would likely increase the running time per iteration.
There are a number of other well-known techniques [7, 41] from linear algebra that might improve
convergence; note however that the potential improvement is limited given the modest number
of iterations required even by the basic iterative process. Finally, recent work in [18] proposes
to reduce the cost of computing Pagerank by incrementally recomputing rank values as the link
structure evolves.

4 Contributions of this Paper

In this paper, we study techniques for the I/O-efficient implementation of Pagerank in the case
where the graph is too large to fit in main memory. We describe two new algorithms, and compare
them to those proposed by Haveliwala in [23]. In particular,

(1) We describe an algorithm based on the very general paradigm for I/O-efficient graph algo-
rithms proposed by Chiang et al. in [17]. The algorithm, called the Sort-Merge Algorithm,
is conceptually very simple, and is interesting to contrast to Haveliwala’s Algorithm as both
are closely related to different join algorithms in databases. As we show, this algorithm is
however not very good in practice, and hence primarily of conceptual interest.

(2) We propose another algorithm, called the Split-Accumulate Algorithm, that overcomes the
bad scaling behavior of Haveliwala’s Algorithm on very large data sets, while avoiding the
overhead of the Sort-Merge Algorithm. In fact, the algorithm is somewhat reminiscent of
hash-based join algorithms in databases, and it exploits the locality inherent in the link struc-
ture of the web.

(3) We perform an experimental evaluation of the two new algorithms and the two described in
[23] using a large graph from a recent web crawl. The evaluation shows significant improve-
ments over previous approaches for the Split-Accumulate Algorithm if the graphs are large
compared to the amount of memory. On the other hand, at most minor improvements are
possible on data sets that are only moderately larger than memory, which is the case in many
practical scenarios.

(4) We study the efficient implementation of the recently proposed Topic-Sensitive Pagerank
[24].
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Motivation: We now briefly discuss the motivation for our work. As mentioned earlier, it can be
argued that even for fairly large graphs we could perform the Pagerank computation completely in
memory given access to a machine with

�
GB or more of main memory and a highly optimized

compression scheme for graphs. Moreover, even if the link structure of the graph does not fit in
memory, the Naive Algorithm in [23] will provide an efficient solution as long as we can store one
floating point number for each node of the graph. We believe that our results are nonetheless of
interest because of the following:

6 The new algorithms provide significant benefits for machines with more moderate amounts
of main memory. As discussed by Haveliwala [23], this might be the case if Pagerank is
performed on a client machine rather than at the search engine company, in which case the
computation would also have to share resources with other tasks in the system. We believe
that search and in particular ranking will become increasingly client-based in the future
(although it is not clear that Pagerank would be the method of choice for query-time link
analysis).

6 The situation is somewhat different for Topic-Sensitive Pagerank where the space require-
ment of the rank vector in the Naive Algorithm increases from

� � % � to
� � %�� � , where � is

the number of topics (unless we are willing to perform � distinct Pagerank computations at a
significant cost in time). In this case, I/O-efficient techniques have significant benefits over
the Naive Algorithm. (We note however that for larger numbers of topics, it might be inter-
esting to develop pruning techniques that limit the computation for each topic to a subset of
the graph. We are not aware of published work on this issue.)

6 We believe that the techniques that we study are of more general interest for computations
on massive graphs, which have applications in several other areas besides web search [20].
While a number of theoretical results on massive graphs have been published, there are still
relatively few experimental studies on real data. As we observe, some of the theoretically
good approaches in the literature [17] are not optimal for graphs that are only moderately
larger than memory, and in fact our Split-Accumulate Algorithm attempts to overcome this
issue. We note that iterative processes very similar to Pagerank have, e.g., been proposed
for various multi-commodity flow problems [6, 26, 32], which could be solved in an I/O-
efficient way using the same techniques. Conversely, techniques based on network flow
have also recently been used in the link-based analysis of web pages [21].

5 Algorithms

We now describe the different algorithms that we study in this paper. We begin with the two
algorithms described by Haveliwala [23] and then introduce the two new ones that we propose.
The modifications required to the algorithms to compute Topic-Sensitive Pagerank are discussed
in the relevant subsection of the experimental evaluation.

Assume that the input data exists in the form of two files, a URL file in text format containing
the URLs of all pages in the graph in alphabetical order, and a binary link file containing all edges
in arbitrary order, where each edge is a pair of integers referring to line numbers in the URL file.
This format is obtained through a sequence of preprocessing steps as described in Subsection 6.1.
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The Pagerank algorithms do not access the URL file at all, and in fact each of them expects a
slightly different format for the link file, as described below. Also recall from Equation (3) that
each iteration of the computation can be stated as a vector-matrix multiplication between a vector�

containing the rank values of the nodes before the iteration (also called source) and a matrix
implied by the link structure, resulting in a vector

���
of new rank values after the iteration (also

called destination).
In the descriptions, we state the cost of each algorithm in terms of the total amount of data read

and written in each iteration. Note that all disk I/O is performed in blocks of size at least � ! 2 ��� ,
and that except for the internal sort and the heap-based merge in the Sort-Merge Algorithm, no
extensive internal computations are performed. Thus, this measure provides a reasonable first
estimate of the actual running time.

5.1 The Naive Algorithm

This first algorithm assumes that we can store one floating point number for each node in memory.
The algorithm uses a binary link file � illustrated in Figure 1. The link file contains one record
for each node, identifying the node, its out-degree, and all destination nodes linked by it; the
file is sorted by the line number of the source node. In addition, we have two vectors of � 2 -bit
floating point numbers, a source vector on disk containing the rank values before the iteration, and
a destination vector in memory containing the values afterwards.

In each iteration, we first initialize the destination vector to � ! � ��� �����
	� . Since both source
and link file are sorted by the line numbers of the source nodes, we can scan over both files in
a synchronized fashion, adding for each source and each link some additional rank value to the
appropriate destination in the memory-resident destination vector. Finally, we write out the desti-
nation vector to be used as source in the next iteration. Thus, assuming memory is large enough to
hold the destination vector, the total I/O cost for this strategy is given by

	 ��
 '
��� ��� � � � � � � � � � � �&� 2 ��� � � � � � � �
where � � � is typically by a factor of � to ! � larger than � � � . However, if the main memory is not
large enough, then the time will be far larger due to disk swapping.
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5.2 Haveliwala’s Algorithm

We now review the improved scheme proposed in [23]. The idea is to partition the destination
vector into

�
blocks

� �' that each fit into main memory, and to compute one block at a time.
However, it would be quite expensive to repeatedly scan the large link file in this process. To avoid
this, we preprocess the link file and partition it into

�
files � ' , as illustrated in Figure 2, where � '

only contains the links pointing to nodes in block
���' of the destination vector, sorted by source

node as before.

Thus, before the first iteration we have to perform a preprocessing step to create the � ' . In
each iteration, we then essentially run the Naive Algorithm on

�
and � ' to compute block

� �' of
the destination vector, for

� � 0�� �
. Thus, the cost of each iteration is:

	�� 
 ����� ' � � ��� � � � 	
��� '
	 �

� � �' � � 	
��� '
	 �

� � ' �&� � � � !&� ��� � � � � ! ��� � ��� � � �
where the term � takes into account the slightly less compact format for the � ' [23]. Note that the
source file has to be read

�
times in this scheme; this limits its scalability to massive data sets as the

number
�

of partitions increases. In addition, � also increases slowly with
�
; for moderate values

of
�

we have ��

� 4 ! while the maximum possible (but unlikely) value is 2 � ���� � . As observed

8



in [23], this algorithm is quite similar in structure to the Block Nested-Loop Join algorithm in
database systems. which also performs very well for data sets of moderate size but eventually
loses out to more scalable approaches.

5.3 The Sort-Merge Algorithm

This algorithm is based on the theoretical framework for out-of-core graph algorithms introduced
by Chiang et al. [17]. The basic idea is to partition the computation into repeated sorting steps.
Note that in each iteration of Pagerank, we essentially have to transmit an amount of rank value
from the source to the destination of each link. Using the framework in [17], this can be achieved
by creating for each link a packet that contains the line number of the destination and an amount
of rank value that has to be transmitted to that destination. We can then route these

�
-byte packets

by sorting them by destination and combining the ranks into the destination node. We note that
this approach is reminiscent of packet routing problems in parallel machines, and that the resulting
algorithm is also quite similar to the Sort-Merge Join algorithm in database systems.

A naive implementation of this would first perform a synchronized scan over
�

and the link
file � from the Naive Algorithm to create the packets, i.e., a scan over

�
and � such that matching

records from both files are processed simultaneously. These packets would then have to be written
out to disk, sorted by destination, and then scanned again to create the destination vector

� �
.

We can improve on this by buffering as many newly created packets as possible in memory and
writing them out in a sorted run. This way, we can immediately perform the merge of these
sorted runs of packets in the next phase. From the output of the merge we can directly create the
destination vector without writing the packets out again. The I/O cost of this approach is thus given
by
	 ��� � � � � � � � �

� � � � � � � � 2 � ��� � where � � � is the total size of the generated packets that need to
be written in and out once. Note that in the first iteration, we can directly create the packets from
the initialization values.

There are several further optimizations that we considered. First, after sorting and before writ-
ing out the packets, we can combine packets with the same destination. As it turns out, this signif-
icantly decreases the total number of packets, due to the large degree of locality in the web graph
(see, e.g., [12, 37, 40] for discussions of this issue). Second, instead of directly writing out the
combined packets, we can now continue to generate packets and place them in the freed-up part of
the output buffer. When the buffer is full, we can again sort and combine packets, and repeat this
process. We determined that performance was optimized by repeating this process � times, sorting
each time only the newly generated packets, except for the last time when we applied sorting and
combining to the entire buffer. As a result, the size � � � of the generated packets drops from slightly
larger than � � � to only a fraction of � � � .

There are two further optimizations that we did not include in our implementation. Note that
we write out the result

�
of an iteration, only to read it in again immediately afterwards in the

next iteration. Instead, we could entirely get rid of the source and destination vector files on disk,
and directly create new packets for the next iteration as we process the output of the merge from
the previous iteration. This would remove the term � � � � � � � � from the cost, resulting in savings
of at most � �"! ��� but complicating the code. Finally, we briefly experimented with a simple
encoding scheme for packet destinations that uses a one-byte offset from the previous destination
in most cases. However, an implementation of this scheme in the context of the Split-Accumulate
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Algorithm actually resulted in a slight slowdown due to the need for byte-level operations, and
hence we decided not to delve any deeper into such encoding techniques.

5.4 The Split-Accumulate Algorithm

The second algorithm we propose combines some of the properties of Haveliwala’s Algorithm
and the Sort-Merge Algorithm. In particular, it uses a set of link structure files � ' very similar of
the � ' in Haveliwala’s Algorithm. Instead of performing a local sort followed by a merge as in the
Sort-Merge Algorithm, it performs a split into buckets followed by an aggregation in a table (which
could also be interpreted as a counting-based sort).

The algorithm splits the source vector into
�

blocks
� ' , such that the

�
-byte rank values of all

nodes in a block fit into memory. The blocks
� ' only exist in main-memory, and the algorithm

uses three sets of files � ' , � ' , and
� ' , � � 0 � �

. File � ' contains information on all links with
source node in block

� ' , sorted by destination, as shown in Figure 3. Note that this is essentially
the reverse of the files � ' in Haveliwala’s Algorithm except that the out-degrees of all sources in� ' are not stored in � ' but in a separate file

� ' that is a vector of 2 -byte integers. File � ' is defined
as containing all packets of rank values with destination in block

� ' , in arbitrary order.
In each iteration of the algorithm, we proceed in

�
phases from 0 � � to

� �1! . In the 0 th
phase, we first initialize all values in block

� ' in memory to � ! � � � � ���
	� . We then scan the file � '
of packets with destinations in

� ' , and add the rank values in each packet to the appropriate entry
in
� ' . After � ' has been completely processed, we scan the file

� ' of out-degrees, and divide each
rank value in

� ' by its out-degree. We now start reading � ' , and for each record in � ' consisting
of several sources in

� ' and a destination in
� � , we write one packet with this destination node and

the total amount of rank to be transmitted to it from these sources into output file � �� (which will
become file � � in the next iteration).

The processing of one iteration is illustrated in Figure 4 for
� � � . We first read in � � , then

perform a sort of vector-matrix multiplication with the file � � that is scanned. This creates output
into all three output files � �' , but due to link locality most output is generated for file � �� . Then we
repeat this process for � , and � , , resulting in most output being sent to � �, , and finally for � � and
� � .

As in the Sort-Merge Algorithm, we can combine packets with the same destination. In fact,
combining packets is simpler and more efficient in this case, since all packets originating from the
same file � ' are written in sorted order into � �� . Thus, no in-memory sorting of packets is needed
since we can just compare the new destination to that of the packet previously written to the same
output file � �� . (As mentioned before, a ! -byte offset encoding of the destinations did not result in
any further improvements.) The I/O cost of this algorithm is

	 �)� � ' � � 	
��� '
	 �

� � � ' � � � � ' � � 2 ��� � ' ��� � � 4 � � � � � � � ! ���
� ��� � � � 2 � � � � 
 � ! ��� ��� � � � 2 ��� � � �

where the factor � ! � �
� � models the slightly less concise representation of the link files � ' as

compared to � in the Naive Algorithm. The term
� 4 � � � � � � � ! � �

� � � � � for the
� ' and � ' files is

about the same size as the term � ! � � � � � � for the � ' in Haveliwala’s Algorithm (not surprisingly
given the similarity of their structure and content). Moreover, the total size � � � of the packet files

10



is significantly smaller than � � � , and in fact is typically less than � � � � � , due to the effects of
combining.

We note that the Split-Accumulate Algorithm is in fact somewhat reminiscent of the hash-based
join algorithms widely used in database systems. Compared to the Sort-Merge Algorithm, instead
of sorting and merging we are now splitting the packets into different buckets � ' by destination,
and then directly accumulating rank values at the destination using a table. This has several ad-
vantages: it removes the computational overhead of the internal sort and the heap-based merge, it
automatically combines several links into one packet, and it results in slightly smaller (and fewer)
output files � �' .
6 Experimental Results

We now present the experimental evaluation of the different algorithms. We first describe the
machine setup, data sets, and preprocessing steps. Subsection 6.2 to 6.4 present the experimental
results for Pagerank, and Subsection 6.5 presents the results for Topic-Sensitive Pagerank.
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6.1 Experimental Setup

Hardware: For all experiments, we used a Sun Blade 100 workstation running Solaris 8 with a
� � � Mhz UltraSparc IIe CPU and two ! � � GB, � 2 � � RPM Western Digital WD1000BB hard disks.
Only one disk was used for the experiments, and the disk was less than � ��� full during all except
the largest experiments. All algorithms were coded in C++ using the fread, read, fwrite and
write operations provided by the standard libraries, with all disk accesses being of size � ! 2 ���
or larger.

Memory Consumption: We considered machine configurations from � 2 � �
to !�� � of main

memory, and for each configuration we optimized the parameters of the algorithms to minimize
execution time. This involves choosing the best value of

�
for the Split-Accumulate Algorithm and

Haveliwala’s Algorithm, and choosing the output buffer size of the Sort-Merge Algorithm.
We physically modified the amount of memory from ! 2 � � �

to !�� � . The runs for � 2 � �

and � � � �
were performed on a machine with ! 2 � � �

of physical memory, but using parameter
settings for � 2 � �

and � � � �
. One potential problem with this is that the additional physical

memory could be used by the OS for buffering purposes, resulting in unrealistic running times. To
check for this, we ran tests on several larger physical configurations and did not observe significant
differences due to extra memory available for caching. (The reason is probably that the algorithms
are based on scans of very large input files that do not benefit from LRU-type caching approaches.)

Input Data: Our input data was derived from a crawl of ! 2 � million web pages (including
more than ! � � million distinct pages) performed by the PolyBot web crawler [39] in May of 2001.
The crawl started at a hundred homepages of US Universities, and was performed in a breadth-first
manner � . As observed in [33], such a crawl will find most pages with significant Pagerank value.
The total size of the data was around ! 4 ��� � , and the link data was extracted and converted into the

�
Subject to a �
	 second interval between accesses to the same server that may cause reordering from strict breadth-

first.
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URL file and link file format described in Section 5 through a series of I/O-efficient (but not overly
optimized) parsing, sorting, and merging operations on a cluster of Linux and Solaris machines.
We note that the preprocessing of the data took several weeks of CPU time, and thus is much larger
than the actual Pagerank computations that we report. We extracted a graph with � 2 � million URLs
and ! 4 � 2 billion edges, including URLs not crawled but referenced by crawled pages. From this
graph, we generated two types of input graphs.

Pruned Graphs: Following Haveliwala [23], we pruned the graph twice by removing nodes
with no out-going links. This resulted in a highly connected graph with

� � � � � 2�� � � 2 nodes and� � � � � � ! � � ! 2 links, for an average out-degree of ! � 4 � . We created additional artificial graphs of
larger size by concatenating several copies of the above graph, and then connecting the copies by
“rerouting” some of the edges into the other copies, subject to a randomized heuristic that aims to
preserve locality, in-degree, and out-degree distributions. This created graphs of 2 ,

�
, and

�
times

the size of the base graph. We note that while there are formal random graph models that can be
used to generate web graphs, see, e.g., [12], most of these models do not account for link locality,
which is crucial for our experiments. Another problem with the formal models is that the graphs
themselves need to be generated in an I/O-efficient manner given their size.

Graphs with Backlinks: Following the discussion in [35], we generated another input graph
by keeping all nodes and edges, and adding backlinks from every node of out-degree zero to the
nodes pointing to it. This generated a graph with � 2 � million URLs and ! 4 � � billion edges, for an
average out-degree of ��4 � .

Thus, decisions on whether to prune leaks or local and nepotistic links, or to add backlinks, can
significantly impact out-degree and link locality. The first approach of pruning leaks but keeping
all other links results in a smaller but highly connected graph with large out-degree and a high
degree of locality in the link structure. The second approach results in a much larger graph of more
moderate out-degree, We note that a smaller size and high out-degree is a significant disadvantage
for our algorithms compared to Haveliwala’s Algorithm. On the other hand, a high degree of
locality in the link structure is an advantage, as it allows efficient combining of packets in our
algorithms.

6.2 Results for Pruned Data

In our first set of experiments, we ran all four algorithms on the pruned web graph with
� � million

nodes and � � 2 million edges. We used four different setups, corresponding to different amounts of
available main memory. We report three different results for each experiment: (a) the running time
in seconds, (b) the I/O throughput in megabytes per second, and (c) the running time predicted by
the simple cost estimates in Section 5. The memory sizes of � 2 , � �

, ! 2 � , and 2 � � � �
correspond

to values of � ,
�
, � , and ! , respectively, for the number of partitions

�
in Haveliwala’s Algorithm

and the Split-Accumulate Algorithm.
Figure 5 contains the measured running times for the algorithms under four different memory

configurations. We note that the Naive Algorithm requires at least ! � � � �
of memory to hold

the rank vector. As expected, the Naive Algorithm is the best choice when applicable (we did
not attempt to time the algorithm when the vector does not fit, but the result would obviously be
quite bad). Comparing Haveliwala’s Algorithm and the Split-Accumulate Algorithm, we see that
the latter does significantly better when memory size is much smaller than data size, while being
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Figure 5: Running times in seconds for all four algorithms under different memory settings.

comparable in speed otherwise. Of course, a memory size of � 2 � �
or � � � �

is unrealistically
small given that even the base version of the low-end Blade 100 we used comes with ! 2 � � �

of
memory.

The poor performance of the simple Sort-Merge Algorithm at first was quite disappointing to
us. The primary reason for this performance is the overhead due to the internal sort of the packets
in the output buffers. This step was implemented through a fairly optimized radix sort for

�
-byte

records with � 2 -bit keys that achieves a throughput of about ! � � � # � , comparable to disk speed
�
.

However, this sorting step is applied to the packets before combining, and thus involves a much
larger data set than the one that is actually written out afterwards. Moreover, the number of sorted
runs created by the algorithm, which is proportional to ��� � # � , is larger than the split factor

�
used in the Sort-Accumulate Algorithm, which is proportional to � � � # � , where

�
is the memory

size. This creates additional overhead when the sorted runs are merged, necessitating a move to a
two-level merge at a fairly early point (though not yet in the data set we use here). In summary,
the Sort-Merge Algorithm performs significantly worse than the others, and we decided to drop it
from subsequent experiments on larger graphs.

We now discuss the relationship of these results to the cost estimates established in Section 5.
Table 6.1 shows the I/O throughput per second achieved by the different algorithms, which varies
between � and 2 � � � # � . The low throughput of the Sort-Merge Algorithm is due to the bottleneck
in the internal sort. For the other three algorithms the rates are much closer. To separate the impacts
of disk I/O and internal computations on running times, we observed that a simple C program that
does not perform any calculations achieved a maximum I/O throughput with fread and fwrite

�
We note that sorting performance on UltraSparc IIe processors is significantly worse than on state-of-the-art Intel

processors, and that our � 	 	 Mhz Blade 100 surprisingly did even worse on this than comparable Ultra 5 and 10
machines with slower processors.
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Algorithm 32 MB 64 MB 128 MB 256 MB

Naive - - - 25.09
Haveliwala 18.36 19.45 18.65 21.39
Split-Accumulate 20.69 21.06 20.58 23.75
Sort-Merge 6.01 6.53 6.73 7.04

Table 6.1: I/O throughput in
� � # � for different algorithms and memory consumption levels

of about 2 � � � # � on this machine. A naive estimate
�

could be made that if the internal processing
in the Pagerank algorithms can run at about ! � � � � # � , then the overall throughput is 2 � � � # � ,
about the rate observed in most runs.

Figure 6: Predicted running times in seconds based on I/O cost estimates.

In Figure 6, we show the running times that we would obtain if all algorithms (except the Sort-
Merge Algorithm) processed their data at such a uniform rate of 2 � � � # � , using the cost estimates
from Section 5. Note that we did not attempt to completely optimize the internal computation
rates of the different algorithms; the estimates in the figure indicate that the influence of such
optimizations on the relative performance of the algorithms is likely to be minor except for the
case of the Sort-Merge Algorithm.

Finally, we look at how the split factor
�

and the combining techniques affected the sizes of
�

Assuming that I/O and CPU work cannot be overlapped well on this platform, as indicated by our attempts at
using asynchronous I/O.
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d = 6 d = 4 d = 3 d = 1
� � � - - - 2878
� � � � 	 � � ' � 180 180 180 180	 � � ' � 90 90 90 90	 � � ' � 3241 3169 3131 2966	 � � ' � 2902 2877 2864 2816	 � � ' � 423 399 391 340	 ��� ' � 510 490 472 433
Sort-Merge degree 51 30 19 8

Table 6.2: Sizes of data files in
� �

, and number of sorted runs, for different values of
�
.

the � ' , � ' , � ' , and � ' files. Table 6.2 shows that the overhead in the � ' and � ' files, compared to
the case of

� � ! , is very moderate, particularly for the � ' due to the higher skew in the in-degree
distribution that results in a slightly more compact representation. For the � ' and � ' files, we see
that combining is quite effective even for

� � � , resulting in files that are significantly smaller
than the link files. This is a major reason for the speed of the Split-Accumulate Algorithm. For the
Sort-Merge Algorithm, we also see the relatively high degree in the merge phase; e.g., for � 2 � �

,
� ! sorted runs had to be merged.

6.3 Results for Scaled Pruned Data

Due to the limited size of the real data, we had to assume fairly small amounts of memory in
order to get interesting trade-offs in the performance. Next, we run experiments on larger data sets
obtained by scaling the real data as described above.

Figure 7: Running times in seconds versus data size for scaled pruned graphs.

Figure 7 shows the running times for the two algorithms on 2 � � � �
of memory as we scale
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the data set to twice and four times its original size, resulting in
� �

million nodes and ! 4 � � � billion
links, ! � � million nodes and 2�4 � ! 2 billion links, and � � � million nodes and � 4�2 2 �

billion links,
respectively. As expected, the advantage of the Split-Accumulate Algorithm becomes more pro-
nounced, and we would expect additional gains over Haveliwala’s Algorithm as we scale the data
size further up. As shown in Figure 8, the advantage of the Split-Accumulate Algorithm over the
others increases with smaller memory size, as we would expect.

Figure 8: Running times on � � � million nodes for various memory sizes.

6.4 Results for Data with Backlinks

We also ran experiments for the case whether we do not prune leaks, but instead add links from
each leak to all pages pointing to it, as suggested in [35]. The resulting graph has � 2 � million
nodes and ! 4 � � billion edges. Note that in this case, the average out-degree is significantly smaller
than in the pruned case.

The results for different memory configurations are shown in Figure 9. Not surprisingly, we see
a larger difference in the running time between the Split-Accumulate Algorithm and Haveliwala’s
Algorithm. This is due to the fact that on graphs with large out-degree, such as the pruned graphs,
the cost of repeatedly scanning the source vector in Haveliwala’s Algorithm is only moderate
compared to the cost of reading the much larger link data, at least on the limited data sizes we are
using, while for sparser graphs it is more significant.

6.5 Results for Topic-Sensitive Pagerank

As described in Section 2, the Topic-Sensitive Pagerank scheme involves running multiple, slightly
modified Pagerank computations on the web graph, where each computation is biased with respect
to a different topic. This bias towards a topic is achieved by a very slight modification of the way in
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Figure 9: Running times in seconds versus memory size for graph with backlinks.

which the random jump with probability � ! � � � is performed, requiring only very minor changes
in the implementations.

Thus, if we have � topics in our Topic-Sensitive Pagerank scheme, then one approach is to run
Pagerank for � times. An alternative approach is to simultaneously perform all � computations,
as follows. We simply maintain for each node not one rank value, but a vector of � rank values,
one for each topic. Since all Pagerank computations are on the same underlying graph, we can
simultaneously update all � values in each iteration. This scheme can be applied to all

�
algorithms

that we described; the net effect is that of a Pagerank computation on a graph with � times as many
nodes but the same number of edges. Thus, we are now dealing with a scenario where even
for larger amounts of memory, we cannot hope to keep the rank vectors for all � topics in main
memory.

We experimented with three different schemes for Topic-Sensitive Pagerank. (1) Haveliwala’s
Algorithm, modified to simultaneously compute Pagerank on all � topics, (2) the Split-Accumulate
Algorithm, modified to simultaneously compute Pagerank on all � topics, and (3) a modified ver-
sion of the Naive Algorithm, where we run ��#�� consecutive computations but where the rank
vectors for � topics are computed simultaneously and thus have to fit in main memory. We used
the real graph with

� � million nodes and � � � million edges for these experiments.
Figure 10 shows the results for ! � and 2 � topics, with the algorithm configured for 2 � � � �

and � ! 2 � �
of memory. (Note that for these runs we did not modify the physical memory of the

machine, similar as in the case of the earlier � 2 � �
and � � � �

runs.) The value � in the modified
Naive Algorithm was ! for the case of 2 � � � �

, and 2 for the case of � ! 2 � �
of memory. We note

that the Split-Accumulate Algorithm is significantly more efficient then Haveliwala’s Algorithm
and the Naive Algorithm.
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Figure 10: Running times in seconds for Topic-Sensitive Pagerank with ! � and 2 � topics on

2 � � � �
and � ! 2 � �

of memory.

7 Conclusions and Future Work

In this paper, we have derived new I/O-efficient algorithms for Pagerank based on techniques pro-
posed for out-of-core graph algorithms. Our experiments show that there is significant benefit over
previous algorithms for Pagerank if the data size is significantly larger than main memory, and
also in the case of the recently proposed topic-sensitive version of Pagerank. However, as we ad-
mit, under many realistic scenarios the existing algorithms will do just fine given the availability
of machines with very large amounts of main memory. Thus, our experimental results show that
techniques designed for massive amounts of data are not always a good choice for the more com-
mon case where the data size is only slightly larger than memory, e.g., by some small constant
factor larger. Most theoretical approaches assume a large gap between data size and memory size;
see [1] for an exception.

There are many open challenges in the general area of link-based ranking, and we expect many
new schemes to be proposed. We are particularly interested in topic-sensitive schemes such as
those in [24, 38] that employ off-line preprocessing in order to allow higher throughput at query
time, as opposed to HITS and related schemes that are processed at query time.
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