
 
 
 
 
 
 
 
 
 
 
 

Testing Web Database Applications

 
 

                  Yuetang Deng     Phyllis Frankl     Jiong Wang
 

 
 

     Department of Computer and Information Science 
 
 
 

            Technical Report 
            TR -CIS-2004-01 

04/28/2004 
 
 
 

 



Testing Web Database Applications

Yuetang Deng
Phyllis Frankl

Polytechnic University
Six Metrotech Center
Brooklyn NY 11201 ∗

{ytdeng, pfrankl}@cis.poly.edu

Jiong Wang
Information Science and Technology Dept

Donghua University
Shanghai, P. R. CHINA

wangj30@mail.dhu.edu.cn

Abstract

Commercial, scientific, and social activities are increas-
ingly becoming dependent on Web database applications.
New testing techniques that handle the unique features of
these systems are needed. To that end, we have extended
AGENDA, a tool set for testing relational database applica-
tions, to test web database applications. Application source
code is analyzed to extract relevant information about the
URLs and their parameters. This information is used to
construct and simplify a graph in which nodes represent
URLs and edges represent links between URLs. A set of
paths through the graph is selected and test cases are gen-
erated for each path. The extracted information about the
parameters to each URL (e.g., values that an application
user would enter into a form), is used to guide AGENDA
to generate inputs for the URLs. The URLs on a path and
their inputs are stored in an XML file, which is then au-
tomatically executed. The current implementation is tar-
geted toward web applications written as Java Servlets and
uses an algorithm based on cyclomatic complexity to gener-
ate paths. Preliminary empirically evaluation based on the
TPC-W benchmark is presented.

1. Introduction

Along with the tremendous growth of the World Wide
Web (WWW) over the past decade, there has been a growth
and transformation in the nature of services accessible over
the Web. Many new services are web sites that are driven
from data stored in databases. Examples of such web
applications include services that provide access to large
data repositories, E-commerce applications such as online
stores, and business-to-business(B2B) support products. It
is essential that these applications function correctly and

∗Supported in part by NSF Grants CCR-9988354

provide suitable protection to customer data and enterprise
assets.

Most web database applications consist of three layers
of application logic. At the base is a Database Management
System (DBMS) and a database. At the top is the client web
browser used as an interface to the application. Between the
two lies most of the application logic, usually developed
with a web server-side scripting language or Java extended
with library that can interface with the DBMSs, and can de-
code and produce HTML used for presentation in the client
web browser.

Application development is often driven by time-to-
market concerns, with insufficient attention to correctness
and security concerns. The Business Internet Group of San
Francisco undertook a study to capture, assess and quantify
the integrity of Web applications on 41 specific Web sites
under the management of the U.S. Government. Accord-
ing to the report, of those 41 sites, 28 sites contained Web
application failures [2].

Web applications pose new challenges to software test-
ing. They are highly dynamic and interactive, with unpred-
icatable control flow, as users jump to arbitrary URLs [17].
Although they are based on the stateless HTTP protocol,
application behavior is often influenced by the state of the
database with which the interaction interacts and/or the
value of stored cookies. They have a vast user base with
varying levels of technical sophistication. (Among these,
there may be malicious users submiting unexpected inputs
to the applications, with the intent of comprimising other
users and/or the enterprise deploying the application.)

To illustrate some of the difficulties of testing a web ap-
plication, consider an online bookstore with a ”search for
books” page prompting the user to search for a book by en-
tering keywords and a price threshold. The application gen-
erates an SQL SELECT statement based on the input values
and submits that query to the database. Suppose, due to a
programming error, the a faulty SQL query is generated,
which only considers the keywords and ignores the price



threshold. Then the response to the user might show some
extra books which do not meet the user’s requirements (i.e.,
the price is too high). We would like to expose this fault
during testing. To do so, we need a test case which models
a user goes to the ”search for books” page and entering key-
words, say k1, k2, and a price threshhold, say p. Note that
in order to get to the ”search for books” page, the user may
need to pass through a sequence of other pages, such as a
login page. In order to expose the fault, the database must
be populated with at least one book that matches keywords
k1, k2 and has price greater than p. Thus, effective testing
of web applications requires integration of techniques for
navigating through a web site, supplying values for forms,
selecting links, etc., with techniques for testing database ap-
plications.

To our knowledge, no previous approach to testing
web applications explicitly considers the effect of the
database(s) the application is using. Since the outputs gen-
erated in response to a given input are strongly affected by
the contents of the database, more thorough testing can be
achieved by controlling and observing the database state,
along with the user inputs and application outputs. In addi-
tion, in some cases it will be easier to check that an applica-
tion has responded correctly to a given input to a given form
by checking the database state, rather than by checking the
HTML page output by the application.

Most prior research on testing web applications takes a
black box testing approach, adapting crawler technology to
discover links/forms in the application under test and gen-
erating (or replaying) values for form inputs. In this pa-
per, we describe a white box approach, in which applica-
tion source is analyzed to discover the salient features of
the application. This information is used, in concert with
the AGENDA [4, 5] database testing tool, to populate the
database with appropriate values and select inputs that are
related to the database contents.

The white box approach can potentially provide:

1. better coverage of those aspects of the application that
might not be “found” by a crawler or by user data, and

2. more appropriate input values for forms.

3. better targeting of test effort, by using static analysis
to determine that certain tests are necessary and/or un-
necessary.

One disadvantage of white box testing is that the tools
must be targeted to particular source languages. This is
a particular problem in the domain of web applications,
which is characterized by a wide variety of languages and
rapidly changing technology. In this paper, we describe
a prototype tool targeted to applications written as Java
Servlets, subject to certain limitations. However, the un-
derlying techniques are broadly applicable.

The rest of the paper is organized as follows. Section
2 introduces the background. Section 3 presents our tech-
niques to test web database applications and describes our
prototype testing tool implementation. Section 4 presents
experience applying our technique to the TPC-W Bench-
mark. Section 5 describes related work. Section 6 con-
cludes with our contributions and discusses the future work.

2. Background

2.1. AGENDA Tool Set

In previous work [4, 5], the authors and others have dis-
cussed issues arising in testing database systems, presented
an approach to testing database applications, and described
AGENDA, a set of tools based on this approach. In testing
such applications, the states of the database before and after
application’s execution play an important role, along with
the user’s input and the system output. A framework for
testing database applications was introduced. A complete
tool set based on the framework was prototyped. The com-
ponents of this system are: Agenda Parser, State Generator,
Input Generator, State Validator, and Output Validator.

AGENDA takes as input the database schema of the
database on which the application runs; the application
source code; and “sample value files”, containing some sug-
gested values for attributes. The tester interactively selects
test heuristics and provides information about expected be-
haviors of test cases. Using this information, AGENDA
populates the database, generates inputs to the application,
executes the application on those inputs and checks some
aspects of correctness of the resulting database state and the
application output. This approach is loosely based on the
Category-Partition method [13]: the user supplies suggested
values for attributes, partitioned into groups, which we call
data groups. This data is provided in the sample value files.
The tool then produces meaningful combinations of these
values in order to fill database tables and provide input pa-
rameters to the application program. Data groups are used
to distinguish values that are expected to result in differ-
ent application behaviors. For example, in a payroll system,
different categories of employees may be treated differently.
Additional information about data groups, such as probabil-
ity for selecting a value from the list of values that follows,
can also be provided via sample value files.

Using these data groups and guided by heuristics se-
lected by the tester, AGENDA produces a collection of test
templates representing abstract test cases. The tester then
provides information about the expected behavior of the ap-
plication on tests represented by each test template. For ex-
ample, the tester might specify that the application should
increase the salaries of employees in the “faculty” group by
10% and should not change any other attributes. In order



SQL

Database Server

Internet
HTTP HTTP

Browser Web Server

Figure 1. Typical Web Database Application
Configuration

to control the explosion in the number of test templates and
to force the generation of particular kinds of templates, the
tester selects heuristics. Finally, AGENDA instantiates the
templates with specific test values, executes the test cases
and checks that the output and new database state are con-
sistent with the expected behavior indicated by the tester.

2.2. Web application programming model

Web content is increasingly generated dynamically, a de-
parture from the early days of the Web when virtually all
content consisted of static HTML, or image files. Figure
1 is a typical web application configuration. Dynamic Web
content is typically generated by a front-end Web server and
a back-end database. The (dynamic) content of the site is
stored in the database. The application logic provides ac-
cess to that content. The client sends an HTTP request to
the Web server containing the appropriate URL and some
parameters. The Web server causes the application logic to
be executed. Typically, the application logic issues a num-
ber of queries to the database and formats the results as an
HTML page. The Web server finally returns this page as
an HTTP response to the client. The application logic may
take various forms, including scripting languages such as
PHP, that execute as modules in the Apache Web Server;
Microsoft Active Server pages that are integrated with Mi-
crosoft’s IIS server; and Java-based systems that execute
in a separate Java Virtual Machine. In a static Web page,
the content is determined at the time the page is created.
When any user accesses a static page, it always displays
the same information. In a dynamic Web page, the content
varies based on user inputs and data retrieved from exter-
nal sources. In this article, the term data based Web pages
[12] refers to dynamic Web pages that derive some or all
of their content from data files or databases. It is useful
to separate data based Web pages from pages created us-
ing client-side scripting technologies such as JavaScript or
VBScript. These technologies support tasks like data ver-
ification, displaying new browser windows, and providing
animated graphics and sounds, rather than interaction with
files or databases.

A data based Web page is requested when a user clicks a
hyperlink or a “Submit” button on a web page form. If the
request comes from clicking a hyperlink, the link must ei-
ther specify a web server program or a web page that calls a
web server program. If the request is generated when the
user clicks a web page form’s “Submit” button, the web
server program usually uses the form inputs to dynamically
create a database query, based on parameter values supplied
via the URL’s parameters. In some cases, the program per-
forms a static query. Although this query requires no user
inputs, the results may vary depending on when the query
is made. In either case, the web server program is responsi-
ble for formatting the query results by adding HTML tags.
The web server then sends the program’s output back to the
client’s browser as a web page.

2.3. Java Servlet and JDBC

Our tool is currently targeted toward web applications
written as Java Servlets using JDBC for database access.
A Servlet is a Java program that runs as part of a network
service, typically an HTTP server and responds to requests
from clients. The most common use for a Servlet is to
extend a web server by generating web content dynami-
cally. For example, a client may need information from a
database.

Servlets are typically built upon a request-response
model by extending the doGet/doPost method to per-
form the particular actions needed in response to an HTTP
get or post request. A Servlet can be written that receives
the request, gets and processes the data as needed by the
client and then returns the result to the client.

A Servlet may access a database via Java Database Con-
nectivity (JDBC). JDBC is part of the Java Development
Kit which defines an application programming interface for
Java for standard SQL access to databases from Java pro-
grams.

2.3.1 Example

Figure 2 shows a sample HTML file, which has one hy-
perlink index.html, hyperlink (anchor) tags are used to link
the text/graphic in one web page to another web page. The
HTML file has a FORM with two input parameters, with
names uname and upasswd. When the user click the SUB-
MIT button, the form action specifies a web server program
(in this case, it is a UserValidate Servelet, ) to deal with the
HTTP request. Figure 3 is the UserValidate Servlet which
takes an input, accesses a database, and outputs different
HTML links for different type of inputs. It has two private
data members username and password. The Servlet
deals with the HTTP request in the doGet method. Here
we briefly explain this method. AgendaDbBean in line 1 is



<html>
<head> <title> University Information System </title> </head>
<body>

<A HREF="index.html">Return to university home page </A> <BR>
<FORM ACTION="UserValidate_servlet" METHOD="GET" >

Please Enter your ID and Password to log in <BR>
ID <INPUT TYPE=TEXT NAME="uname" VALUE="" SIZE=20> <BR>
PASSWORD <INPUT TYPE=PASSWORD NAME="passwd" VALUE="" SIZE=20> <BR>

<INPUT TYPE="SUBMIT" VALUE="Login">
</FORM>

</body>
</html>

Figure 2. Sample HTML file

a Java Bean class which handles the access to the database.
Java Bean is a component technology for Java that allows
developers to create reusable objects that can be shared
among applications. From line 2 to line 3, the Servlet sets
up the response’s PrintWriter to return text to the client. Pa-
rameters are passed in via name-value pairs. In line 5 and
line 6, the values of two parameters, with names uname and
upasswd in Figure 2, are passed to this Servlet and stored
in instance variables username and password. From line 7
to line 9 the Servlet generates some necessary HTML tags
in order to respond to the client. The database has a table
called user whose attributes include name, password,
and type. In line 10 the Servlet generates an SQL SE-
LECT statement to query the database in order to deter-
mine the user’s type (student or faculty) based on the val-
ues of variables username and password. These vari-
ables in the host language that are used as parameters in
SQL queries are called host variables. From line 11 to line
17, if the inputs matches some record in the database, it re-
turns the type and outputs a URL link (student.html or fac-
ulty.html) for this type. Line 18 is the exception handler. In
line 19 the Servlet generates a home URL link (index.html).
Finally in line 20 and line 21 it generates some more nec-
essary HTML tags for a complete HTML page and closes
the writer; the response is done. A sample output for legal
student inputs uname and upasswd is shown in Figure 4.

2.4. TPC-W Benchmark

We illustrate our technique with examples based on
TPCBenchmarkTM W (TPC-W) [15], an eBusiness
benchmark that models an online bookstore. There are
8 tables: customer, address, order, order line, credit info,
items, author, and country in the database. The order line,
order and credit info tables store information about orders
that have been placed. The item and author tables contain
information about the books and authors. The customer and

address tables include information about customers.
There are 14 web interactions defined in the TPC-W

specification. 6 of them are read only, while the other 8
update the database. The read only interactions include
accessing the homepage, listing of new products and best
sellers, request for product detail, and two interactions in-
volving searches. Read-write interactions include user reg-
istration, updates to the shopping cart, two purchase inter-
actions, two involving order inquiry and display, and two
administrative tasks.

3. Web database application testing techniques

A test case for a web application is a sequence of pages
to be visited plus the input values to be provided to pages
containing forms [14]. Our approach to testing web appli-
cations involves the following steps:

1. First, useful information such as URL links and inputs
for each URL is extracted from the application source.
Also URLs are partitioned into two categories accord-
ing to their content: static page, and data-based page.

2. An application graph, where nodes represent URLs
and edges represent URL links, is generated and then
simplified according to URL link types.

3. Some paths through the graph are selected. Each path
corresponds to one or more test case.

4. For each path, AGENDA is used to generate inputs for
each URL. The path, along with these inputs consti-
tutes a test case. An XML file representing the test
case is generated.

5. the test case in the XML file is automatically executed
and AGENDA checks the new database state and the
output pages.



// Example 1: A Servlet which has different HMTL links in the output
based on inputs and database state.

public class UserValidate extends HttpServlet {
private String username, password;

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
1. AgendaDbBean con = new AgendaDbBean();
2. response.setContentType("text/html");
3. PrintWriter out =response.getWriter();
4. try {
5. username = request.getParameter("uname");
6. password = request.getParameter("upasswd");
7. out.println("<html> <head>");
8. out.println("<title> University Information System Login </title>");
9. out.println("</head> <body>");
10. String sql="select type from user where name="+username+ " and password="+password;
11. ResultSet rs = con.execSQL(sql) ;

12. if (rs.next()) {
13. int type = rs.getInt("type");
14. if (type ==1 ) {
15. out.println("<A HREF ="student.html"> Welcome to the student page <br></A>");}
16. else if (type ==2) {
17. out.println("<A HREF ="faculty.html"> Welcome to the faculty page </A>");}

}
}

18. catch(Exception e) {out.println("Exception in database operation"); }

19. out.println("<A HREF ="index.html"> Return to main page </A>");
20. out.println("</body> </html>");
21. out.close();
}

}

Figure 3. Sample Servlet

The remainder of this section describes these steps in
more detail and describes the prototype tool we have devel-
oped based on this approach. The tool prototype is currently
targeted to the Java Servlet model, using JDBC for database
access, and makes some assumptions about the program-
ming style, detailed below. However, the basic technique
is applicable to other more general Servlet styles and to
other web application languages. The most fundamental
limitation is the assumption that URLs are static and can
be extracted from the Servlet source code. Some appli-
cations construct URLs dynamically based on user input.
In such cases, our analysis will be incomplete, and conse-
quently, some potential behaviors of the application will not
be tested. Future work will explore integration of our white
box (static analysis) approach with black-box crawler based
approaches, to deal with such situations.

3.1. Information extracted from the application
source

We extract the following information from the Servlet
source:

1. URL content type, which indicates the output of this
Servlet is a static page, or data-based page; request
type (GET/POST).

2. URL links information, which includes all the other
URLs that can be reached from the current page.

3. HTML form and its field information, if there are
HTML forms in the output of this Servlet. We also
extract the name/type for each field and form submis-
sion.

4. Parameter information, which consists of all the name-
value pairs passed to the Servlet.



<html>
<head>

<title> University Information System Login </title>
</head>
<body>

<A HREF="student.html">Welcome to the student page </A> <BR>
<A HREF="index.html">Return to main page </A>

</body>
</html>

Figure 4. Possible Output HTML file in the Sample Servlet

To extract this information, we currently assume that
the Servlet follows some widely-used conventions. The
Servlet’s doGet() and doPost() methods, executed
in response to an HTTP get or post request, are ana-
lyzed. The names in name-value pairs, representing in-
put parameters to the Servlet are identified in the argu-
ments to getParameter() method calls sent to the
HttpServletRequest objects that are parameters to
the Servlet. The URL links we consider include tradition
HTML anchors and form submissions. The Servlet usually
gets the response’s PrintWriter, and generates the content
including HTML anchors and HTML form in its println()
method. We extract information about HTML anchors and
HTML forms in the println() method.

We utilize SOOT [8] in our Java Servlet analysis. SOOT
is a tool for analyzing and transforming Java bytecode. First
SOOT transforms the Servlet class from Java bytecode to
Jimple, a typed 3-address intermediate representation suit-
able for optimization and analysis. Analysis of Jimple is
simpler than analysis of Servlet source. This approach also
allows analysis when source code is not available.

The inputs for each Servlet are extracted from getParam-
eter() method in the HttpServletRequest object in the Jimple
file. The HREF tags generated in the PrinterWriter object
are added to the output URL links set. Also we extract for
HTML form field names and types and form submission
information from each page. If there is a database access
(via JDBC method) in the Servlet, this page is classified as
data based page. Otherwise it is treated as a static page.
Since static pages are independent of inputs, they only need
to be tested once; If a page data-based, we need to test it
thoroughly. Our technique focusses attention on this more
difficult problem of testing dynamic pages.

In Example 1, The type of output HTML page is data-
based, since it accesses the database via JDBC methods de-
fined in the bean class. The input parameters are uname
and upasswd. Totally there are three possible URL links
in the output HTML page: student.html, faculty.html, and
index.html. There is no form defined in the output page.

3.2. Web application graph generation and path
selection

We next use some of the information extracted from the
source to construct a graph representing the Web applica-
tion. Each node is a URL and there is a link from URL A to
URL B if URL A produces a link to URL B in the HTML
page it generates.

The graph may be large and complex and may have ref-
erences to URLs outside of the application. We simplify
the graph by removing such external links. If a link has a
domain address which differs from the domain address that
web application runs on, the link is removed. (If testing
paths that leave the application then return is deemed to be
important, such links could selectively be left in the graph at
the cost of increased complexity, provided that their targets
are available for analysis.) To further simplify the graph,
static pages that have been tested by other means can also
be removed, as long as the graph does not become discon-
nected. The graph for TPC-W benchmark is shown in Fig-
ure 5. Figure 6 lists the Servlets corresponding to each node
in the graph and their classification.

Even this simplified application graph might still have a
lot of paths and loops. The next step is selection of a set
of paths that will be tested. In our current implementation
a path selection algorithm based on cyclomatic complexity
is applied to generate some interesting paths. Other path
selection techniques could be applied as well.

Cyclomatic complexity is a software metric that provides
a quantitative measure of the logical complexity of a pro-
gram. The general formula to compute cyclomatic com-
plexity is V(G)=E-N+2, where E is the number of edges,
and N is the number of nodes in the graph. The cyclomatic
number gives the number of independent paths, called basis
paths, through the control flow graph. This means that cy-
clomatic number is precisely the minimal number of paths
that can, in linear combination, generate all possible paths
through the application. The algorithm to identify a set of
basis paths we utilize is from [16]. Note that the set of basis
paths is not unique.



2

14

4

5

6

9 12

0

10
133

8

7

1

11

Figure 5. TPC-W Web Application Graph

id web interaction type
0 tpcw admin request Servlet data-based
1 tpcw search request Servlet data-based
2 tpcw home interaction static
3 tpcw admin response Servlet data-based
4 tpcw best sellers Servlet data-based
5 tpcw product detail Servlet data-based
6 tpcw shopping cart interaction data-based
7 tpcw buy confirm Servlet data-based
8 tpcw buy request Servlet data-based
9 tpcw order inquiry Servlet data-based
10 tpcw customer registration Servlet data-based
11 tpcw execute search static
12 tpcw new products Servlet data-based
13 tpcw order display Servlet data-based

Figure 6. TPCW web interactions

3.3. Input generation

Having selected paths to test, the next step is to generate
inputs for each URL on a path. The parameters for a URL
are name-value pairs. The name-value pairs are divided into
three different types:

1. TYPE A: The name-value pairs are input fields in the
Form. In this case we need to generate input for the
field.

2. TYPE B: The name-value pairs are passed from the
previous page. In this case we do not need to generate
input.

3. TYPE C: The name-value pairs are generated in the
application. We do not need to generate input.

Usually the start page does not have input. For a parame-
ter in other pages in a path, we distinguish these three cases
in the following way: Type A, if the parameter name ap-
pears as a field name in a HTML form in the previous page,
we do generate values for this parameter as input. Type B,
if the parameter name appears in the previous URL in the
path, we think this value of this parameter in the current
URL is passed from the previous page. Type C, If the pa-
rameter does not match the above two cases, we assume it
belongs to TYPE C.



We only need to generate inputs for the TYPE A name-
value pairs. We modified the AGENDA Input Generator
tool for this purpose. In a web database application, some
parameters for a URL are passed to SQL queries as host
variables. Name-value pairs are associated with some at-
tributes/values via host variables in the tables defined in the
schema. Other parameters might not be associated with any
tables. In our previous work Agenda generated values for
the input host variables in SQL queries. Currently, we as-
sociate the parameters names in the URL to host variables
in the SQL queries manually. Eventually, by utilizing pro-
gram analysis techniques, the mapping could be partially
automated. For those parameters which are not associated
with any host variable in the SQL queries, we create a spe-
cial table and make a one-to-one mapping between attribute
name in the special table and these parameters. After these
steps, the AGENDA Input Generator can generate inputs for
web applications.

Note that when generating inputs, we need to consider
the database state in order to explore various situations. For
example, in the TPC-W benchmark, the order inquiry sce-
nario needs two inputs: user id and password. There are
several situations to consider:
1. invalid user id and password
2. valid user id, invalid password
3. valid user id and password, no order exists
4. valid user id and password, one order exists
5. valid user id and password, multiple orders exist
This is achieved by dividing sample values into different
groups and selecting appropriate heuristics in the Agenda
Input Generator. Leveraging the power of AGENDA to gen-
erate inputs for web application forms allows the tester to
automatically explore a wide variety of situations the web
application could face.

3.4. Test Case as an XML file

XML provides a standard, self-describing data interface
which is a good mechanism to pass information in many
applications. A test case is organized as an XML file. An
example is shown in Figure 7. A test tag corresponds to
a test case, which includes one or more step tags. A step
tag corresponds to a URL link, which includes a url tag
corresponding to a link, a method tag corresponding to a
request type (GET or POST), and parameter tags option-
ally. A parameter tag, which includes a name tag and a
value tag, corresponds to a parameter passed to the URL as
name-value pair.

In Figure 7 there are three URLs:
TPCW home interaction, TPCW order inquiry Servlet,
TPCW order display Servlet in the path. The request type
is GET for all of them. The first two URLs do not have
parameters. The last URL has two parameters, UNAME,

with value myid, and PASSWD, with value mypassword.

3.5. Test execution

There are two approaches to explore the web applica-
tion. The first approach is to use a standard browser or web
crawler to perform the exploration. The second approach is
to implement the exploration using freely available HTTP
libraries, DOM interfaces and JavaScript interpreters. Most
of the previous work is based on the first approach and some
also have techniques for automatically filling forms. In this
paper we choose the second approach. Although the imple-
mentation of this approach is more complicated than that of
the first approach, it is more flexible and provides the full
functionality needed in many applications.

Web services, network-enabled appliances and the
growth of network computing continue to expand the role of
the HTTP protocol beyond user-driven web browsers, while
increasing the number of applications that require HTTP
support. The Jakarta HttpClient component provides an ef-
ficient, up-to-date, and feature-rich package implementing
the client side of the most recent HTTP standards and rec-
ommendations [10]. We integrate the open source Jakarta
HttpClient for the automatic test execution in our AGENDA
system.

After a test case is generated, we utilize an XML parser
to parse the XML file, extract information about URL link
name, request method, and name-value pairs as parame-
ters. Then this information is fed to HttpClient to get the
response. The general process for using HttpClient consists
of a number of steps : Create an instance of HttpClient;
Create an instance of one of the methods (GET or POST).
The URL to connect to is passed in to the the method con-
structor; Tell HttpClient to execute the method; Read the
response; Release the connection; Deal with the response.

4. Case study

We performed a small case study based on the TPC-
W benchmark, which models an online bookstore. Cain
and Rajwar implemented the TPC-W benchmark using Java
Servlet [3]. There are over 6000 LOCs in the implemen-
tation including comments. Our case study is based on this
open source implementation. Each of the 14 web interac-
tions is implemented as a Java Servlet class and is shown
in Figure 6. The third column in the table shows that the
output of the Servlet is a static HTML page or a data-based
page. The tool extracts all the static 14 URL names. There
are static 68 parameter names in the 14 URLs. There is a
loop inside which there are two parameters whose names
are dynamically generated. This information can only be
read during runtime.



0. <?xml version="1.0" encoding="ISO-8859-1"?>
1. <test>
2. <step index="0">
3. <url>http://localhost:8080/tpcw/TPCW_home_interaction</url>
4. <method>get</method>
5. </step>
6. <step index="1">
7. <url>http://localhost:8080/tpcw/TPCW_order_inquiry_Servlet</url>
8. <method>get</method>
9. </step>
10. <step index="2">
11. <url>http://localhost:8080/tpcw/TPCW_order_display_Servlet</url>
12. <method>get</method>
13. <parameter>
14. <name>UNAME</name>
15. <value>myid</value>
16. </parameter>
17. <parameter>
18. <name>PASSWD</name>
19. <value>mypasswd</value>
20. </parameter>
21. </step>
22. </test>

Figure 7. Test Case as XML file

Figure 5 is the simplified TPC-W application graph.
Node 2 is the TPCW-home-interaction page, which is the
entry of the graph. We add a dummy exit node (Node 14).
If a URL has no out links, then we add an edge from this
URL to the exit node. Totally there are 28 edges in the
graph. The cyclomatic complexity V(G) = 28-14+2 = 16.

Table 8 lists the 16 basis paths generated on structured
testing criterion. These paths are all feasible. They include
some typical activities that could happen in a web book-
store. For example, path 0 is a scenario for order inquiry.
It has three URLs (2, 9, 13). Table 6 shows that the three
pages are: a home page, an order inquiry page where a cus-
tomer can input his id and password, and an order display
page where the recent order for the given customer is dis-
played. A test case which corresponds to path 0 in Figure 8
is shown in Figure 7.

Path 9 is a scenario for buying books. It includes five
pages: a home page, a shopping cart page where the cus-
tomer can add/update/delete items, a customer registration
page where both new customers and existing customers can
input identification information, a buy request page where
the customer can input billing and address information, and
a buy confirm page.

Path 12 is a scenario for an administration task. It in-
cludes five pages: a home page, a search request page where

the user can search books by title/author/subject, a search
result page, an admin request page where the administrator
can update the book information such as price and image,
and an admin confirm page that shows the result of updates.
The Servlet for searching for a book (node 11 ) generates
different SQL queries depending on what kind of search
is being done (title/author/subject). This suggests that at
least three different test cases should be used for this path.
AGENDA’s test selection heuristics, with appropriate selec-
tion of data groups, could help assure that these different
situations are covered.

Some paths might not happen in a normal execution. But
it might be a good test case for testing the application secu-
rity. We will discuss this issue in our future work.

We ran our tools on a Pentium 1.5Ghz laptop with 512M
main memory. The time for analysis and building the web
graph is 3725 ms. The time to generate all the paths is 40
ms. The time to run the tool for the 16 paths are shown in
Figure 8. The column labeled “input” gives the time to gen-
erate one test case for the path. The column labeled “XML”
is the time to generate the XML file for the test case. The
column labeled “execution” is the time to execute the test
case. The last row indicates the average run time for the 16
paths. As shown in the table, the techniques usually works
in a few seconds.



path URLs input XML execution
0 2,9,13 1449 292 665
1 2,5,0,3 1765 457 835
2 2,12,5,0,3 2039 501 904
3 2,4,5,0,3 2050 451 969
4 2,6,5,0,3 1990 506 1047
5 2,1,5,0,3 1693 461 917
6 2,5,6,5,0,3 1925 550 1188
7 2,12,6,5,0,3 2256 564 1141
8 2,4,6,5,0,3 2190 516 1130
9 2,6,10,8,7 5154 575 1592
10 2,6,6,5,0,3 2100 534 1262
11 2,1,6,5,0,3 1910 512 1126
12 2,1,11,5,0,3 2206 469 1090
13 2,6,10,8,6,5,0,3 3136 748 1790
14 2,6,10,8,9,13 2227 640 1256
15 2,1,11,6,5,0,3 2387 584 1243
avg 2280 523 1135

Figure 8. Path Generation and Overhead(ms)

5. Related work

Liu et al. [11] propose WebTestModel, which consid-
ers each web application component as an object and gen-
erates test cases based on data flow between those objects.
Ricca and Tonella [14] propose a model based on the Uni-
fied Modeling Language (UML), to enable web application
evolution analysis and test case generation. Both these tech-
niques, in essence, extend traditional path- based test gen-
eration and data flow adequacy assessment to the web ap-
plication domain; the second also builds on the existence of
popular UML modelling capabilities.

Reference [17] defines a generic analysis model that
characterizes both static and dynamic aspects of web based
applications. This technique is based on identifying atomic
elements of dynamic web pages that have static structure
and dynamic contents.

Elbaum [6] et al explore the notion that user session data
gathered as users operate web applications can be success-
fully employed in the testing of those applications, partic-
ularly as those applications evolve and experience different
usage profiles

HED [7] is a model for the maintenance of web database
applications. HED model decomposes a web database ap-
plication into three diagrams, hyperlink diagrams, entity-
relationship diagrams, and data-flow diagrams, which are
used to represent different aspects of a web database ap-
plication. Based on the HED model, the program files af-
fected by a program change can be identified precisely via
the structure and database analyses. In addition, a mainte-
nance tool is implemented to demonstrate the capability of

the HED model.
VeriWeb [1] is a tool for automatically discovering and

systematically exploring web-site execution paths that can
be followed by a user in a web application. Unlike tradi-
tional crawlers which are limited to the exploration of static
links, VeriWeb can navigate automatically through dynamic
components of web sites, including form submissions and
execution of client-side script.

Based on a number of software-testing techniques in-
cluding dynamic analysis, black-box testing, fault injection,
and behavior monitoring, WAVES [9] is a tool for assessing
web application security.

6. Discussion and future work

The procedure of most previous work is like this: down-
load a candidate page, analyze its links, choose one of the
links as the next candidate page. Repeat this procedure until
some condition is satisfied.

Instead, in this paper, we use static analysis techniques
to extract useful information in a web database application;
construct the application graph; systematically generate in-
teresting paths based on the graph. A test case is organized
as an XML file and automatically executed.

Compared with the previous work, our white-box ap-
proach has several potential advantages. First, the static
analysis techniques might find more candidate URL links,
since some URL links are dynamically generated, based on
inputs, thus might not be found in a crawling approach.
Second, since the path generation algorithm is based on
the structured testing criterion, each decision is evaluated
independently at least once; thus our approach might ex-
plore some paths that might not be detected in black box
approaches. Third, the test case as XML file greatly facil-
itates the automatic execution. Moreover, in our approach
the database state is carefully constructed to include many
different possible situations and inputs to URLs are gener-
ated to exercise a variety of situations.

Currently, our analysis focuses on web database applica-
tions implemented as Java Servlets and HTML pages. There
are some limitations in our analysis tool.

1. We assume the URL links are static text in the Servlet.
The URL links can be extracted from the Servlets di-
rectly. We did not consider URL rewriting in the
current implementation, and more generally, the URL
links including URL name could be generated dynam-
ically.

2. Parameters are represented as name/value pairs. If the
parameter names are dynamically generated in the ap-
plication, static analysis can not figure out this infor-
mation.



3. The HTML page is generated directly in the do-
Get/doPost method. It is possible the doGet/doPost
could call other methods to generate the HTML page
content.

Preliminary empirical evaluation based on the TPC-W
benchmark is presented and demonstrates that our approach
is efficienct enough to allow automatic generation and exe-
cution of large test suites for large application programs. To
overcome some of the limitations, we are exploring hybrid
techniques that combine static analysis, where it’s practical,
with crawler based approaches for URLs that cannot be de-
duced from the source code. Future work will also consider
the role of session and cookies. Finally we plan to extend
our tool to test web application security.

References

[1] M. Benedikt, J. Freire, and P. Godefroid. Veriweb: Auto-
matically testing dynamic web sites. In 11th International
World Wide Web Conference. ACM Press, 2002.

[2] BIGSF. Government Web Application Integrity. The Busi-
ness Internet Group of San Francisco, 2003.

[3] H. Cain and R. Rajwar. An architectural evaluation of java
tpc-w. In Proceedings of the Seventh International Sym-
posium on High-Performance Computer Architecture. IEEE
Computer Society Press, 2001.

[4] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J.
Weyuker. A framework for testing database applications.
Proceedings of the 2000 International Symposium on Soft-
ware Testing and Analysis, pages 147–157, Aug. 2000.

[5] D. Chays, Y. Deng, S. Dan, P. G. Frankl, F. I. Vokolos, and
E. J. Weyuker. An agenda to test relational database appli-
cation. Journal of Software Testing, Verification and Relia-
bility, Mar. 2004.

[6] S. Elbaum, S. Karre, and G. Rothermel. Improving web ap-
plication testing with user session data. In Proceedings of
the 25rd international conference on Software. IEEE Com-
puter Society Press, 2003.

[7] C.-L. Hsu, H.-C. Liao, J.-L. Chen, and F.-J. Wang. A web
database application model for software maintenance. In
The Fourth International Symposium on Autonomous De-
centralized Systems. IEEE Computer Society Press, 1999.

[8] http://www.sable.mcgill.ca/soot/. Soot: a Java Optimization
Framework. 2002.

[9] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web
application security assessment by fault injection and behav-
ior monitoring. In 12th International World Wide Web Con-
ference. ACM Press, 2003.

[10] Jakarta Commons HttpClient.
http://jakarta.apache.org/commons/httpclient/. 2003.

[11] C.-H. Liu, D. Kung, P. Hsia, and C.-T. Hsu. Structural test-
ing of web applications,. In 11th International Symposium
on Software Reliability Engineering. IEEE Computer Soci-
ety Press, 2000.

[12] M. Morrison and J. Morrison. Database-Driven Web Sites.
2002.

[13] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests. Com-
mun. ACM, 31(6):676–686, June 1988.

[14] F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In Proceedings of the 23rd international conference
on Software. IEEE Computer Society Press, 2001.

[15] Transaction Processing Performance Council. TPC-
Benchmark W. www.tpc.org, 2002.

[16] A. H. Watson. Structured Testing: Analysis and Extensions.
PhD thesis, Computer Science, Princeton University, 1996.

[17] Y. Wu and J. Offutt. Modeling and testing web-based appli-
cations. In CS Technical Report. George Mason University,
2002.


