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Abstract. Compression-based text classification methods are easy to
apply, requiring virtually no preprocessing of the data. Most such meth-
ods are character-based, and thus have the potential to automatically
capture non-word features of a document, such as punctuation, word-
stems, and features spanning more than one word. However, compression-
based classification methods have drawbacks (such as slow running time),
and not all such methods are equally effective. We present the results
of a number of experiments designed to evaluate the effectiveness and
behavior of different compression-based text classification methods on
English text. Among our experiments are some specifically designed to
test whether the ability to capture non-word (including super-word) fea-
tures causes character-based text compression methods to achieve more
accurate classification.

1 Introduction

Text classification is the task of taking a set of input documents that are la-
beled according to some classification (e.g. by topic, author, or style) and using
that information to classify other, unlabeled documents. Many different methods
have been used for text classification, including support vector machines (SVM),
logistic regression, boosting, Naive Bayes, nearest neighbor (kNN), and language
modeling (cf.[30, 39, 38, 23]).

Compression-based classification is a non-standard approach to classification.
It was discovered independently by different researchers, and has been explored
by proponents as well as opponents [16, 34, 1, 13, 8, 33, 11, 19]. Compression pro-
grams build a model or dictionary of the files they process. Thus compression
can be used to “train” classifiers on the labeled documents for each class. Clas-
sification of a new document is done by compressing it multiple times, each
time using a different class model or dictionary obtained during “training”. The
new document is assigned to the class that yielded the highest compression rate.
This procedure can be viewed from an information-theoretic perspective: the
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compression rate measures the cross-entropy between the training text and the
new document, and the new document is assigned to the class whose training
text minimizes that cross-entropy (see e.g. [33]).

A main attraction of compression-based methods for classification is that they
are extremely easy to apply. They require virtually no preprocessing of the input
documents. Moreover, the compression-based classification procedures used by
Khmelev, in [16], and by Benedetto et al. [1] enable average computer users
with access to off-the-shelf compression programs to easily perform classification.
These procedures run quite slowly, however, and thus are not suitable when speed
is important.

Most text classification methods are word-based; they treat a text docu-
ment as a collection of words (or stems). In contrast, nearly all research on
compression-based classification has been done using byte/character-based com-
pression methods ( [34] is an exception). Researchers have noted that character-
based classification methods have a potential advantage over word-based meth-
ods, in that they are able to automatically capture document features other
than words (cf. [24, 8]). Such non-word features include subword features such
as stems, superword features that span more than one word, and punctuation.

In this paper, we present a variety of experiments using compression-based
classification methods on English text. For simplicity, we restrict our experiments
to problems in which each document belongs to exactly one class. We measure
performance in terms of micro-averaged accuracy (total number of correct clas-
sifications over total number of tests), which is a useful measure for problems
with single-class labels, and classifiers with no tuning parameters [38]. We per-
form our experiments using three standard off-the-shelf compression methods,
RAR, gzip, and LZW, on topic classification and authorship attribution tasks.
We compare the procedure of Kukushkina et al. [16] (which builds one model or
dictionary per class) to the procedure of Benedetto et al. [1] (which is a nearest
neighbor approach). We present novel experiments designed to address the ques-
tion of whether compression methods do, in fact, benefit from their potential to
capture non-word features. We believe these experiments are also relevant to
the study of other character-based classification methods. We also examine the
change in classification accuracy as the amount of training data increases, and
explore the effect of imbalanced class size.

We begin with the history of compression-based text classification in Sec-
tion 2; we then discuss three classification procedures (SMDL, AMDL, and BCN)
in Section 3 , the compression programs used here for classification in Section 4,
and the corpora they were tested on in Section 5; we present our experiments in
Section 6, and our conclusions in Section 7.

2 Related Work

It is difficult to determine who first suggested using compression for classifi-
cation (cf. [8, 11, 19]). Here we review previous experimental work on the ap-
proach. Khmelev [16] performed experiments using a large variety of compres-



sion methods to classify a large corpus of Russian literary works by author.
Thaper used LZ78, character-based PPM, and word-based PPM to classify En-
glish literary works by author [34]. Frank et al. applied PPM to topic classifi-
cation [8]. They concluded that compression methods are handicapped by their
inability to exploit a handful of highly informative terms. Subsequently, Teahan
and Harper [33] applied variants of PPM to topic classification. They concluded
that compression could, in fact, be an effective method of classification.

Benedetto et al. used gzip and a nearest neighbor procedure for authorship
classification [1]. Their paper received media attention (e.g., [28]), and generated
some controversy [14, 3, 11, 2]. In this paper we examine one question raised by a
critic of the paper, and contested by the authors – whether gzip and the nearest
neighbor procedure do, in fact, perform accurate classification [2, 11].

Recently, Khmelev and Teahan tested a number of classification methods
on the Reuters corpus, including both SVM and compression-based classifica-
tion (with gzip and RAR) [13]. RAR outperformed all other methods, including
SVM. (However, the authors noted that their method of using SVM for multi-
class problems might not be optimal). Khmelev and Teahan hypothesized that
SVM and other methods using “bag-of-words” models are handicapped by their
inability to capture word sequences.

Peng et al. proposed the use of character-based language modeling methods
for text classification and achieved excellent results [23, 24]. As they noted, their
work is related to Teahan’s work on classification with PPM compression [32,
33]. Both PPM compression and language modeling work by building n-gram
Markov models of the text. Both calculate the degree of match between the
learned model and the test document via a cross-entropy calculation.

Other previous approaches to character-based text classification include the
work of Damashek [6], Cavnar and Trenkle [4], and Khmelev and Tweedie [15].

3 Classification procedures

We discuss three different compression-based classification procedures from the
literature. We refer to them as the standard MDL (minimum description length),
the approximate MDL, and the best-compression neighbor procedures.

The standard MDL procedure (SMDL) was used in [8, 34, 33]. It is analo-
gous to the procedures used in Multinomial Naive Bayes text classification (e.g.,
[18]) and language-modeling methods [23], but typically does not allow the use
of off-the-shelf compression methods. Given training documents for categories
C1, . . . , Cn SMDL forms for each Ci a single file Ai consisting of all documents
in that category. It then runs the compression algorithm on each Ai to obtain a
model (or dictionary) Mi. Then, for each Mi, it runs the compression algorithm
“statically” on a test file T , i.e., it uses model Mi as input and doesn’t update it
as T is processed. Finally, it assigns test document T to the class i whose model
Mi achieves the best compression of T . We define SMDL here for completeness,
but in this paper we do not present any experimental results using SMDL.



In most of our experiments, we use the approximate MDL procedure (AMDL)
proposed by Khmelev [16] and used by Khmelev and Teahan [13]. Suppose the
input documents are from categories C1, . . . , Cn. AMDL, like SMDL, forms for
each Ci a single training file Ai consisting of all training documents in Ci. It
then runs the compression program on each Ai to produce a compressed file Ai

of length |Ai|. Given a test file T , AMDL appends T to each Ai, producing AiT .
It then runs the compression program on each AiT to produce a compressed file
AiT . Finally, it assigns T to the class Ci that minimizes the compressed size
difference vi = |AiT | − |Ai|. The value vi can be viewed as an estimate of the
cross-entropy of text T with respect to text Ai. AMDL can be viewed as an
attempt to approximate SMDL with off-the-shelf compression methods, which
are “adaptive” with regard to test documents, rather than “static” as above.

The best-compression neighbor (BCN) procedure was developed by Benedetto
et al. [1]. They use a similar approach to AMDL, but instead of concatenating
all the training documents in a class into a single input file, they keep each
training document D in a separate file. They concatenate test document T to
each D, forming DT , and calculate vDT = |DT | − |D|, the difference between
the sizes of the compressed versions of DT and D. Then they assign T to the
class containing the document D that minimizes vDT . Their procedure is thus
a nearest-neighbor approach, using vDT as the distance measure. As we discuss
in Section 6.2 the BCN procedure can require significantly more running time
than AMDL.

SMDL will typically be faster than both AMDL and BCN in classifying a
new file, because it uses saved models or dictionaries for each class. In AMDL
and BCN, the new file is concatenated to the training files, causing models or
dictionaries for the training files to be recomputed. Note that if one can alter
the compression program’s source code, runtime can be dramatically decreased
by not actually writing compressed files to disk. One can instead just calculate
the number of bytes that would be written into in each compressed file.

4 Classification Methods

Gzip [12] is a compression program available on most UNIX systems. It uses
Lempel-Ziv compression (LZ77), a dictionary-based scheme. We used the com-
mand line option “-9fc”, for best compression. Its efficacy in classification is
limited by its use of a sliding window. Although we were not able to definitely
ascertain the size of our gzip version’s window, we assume it is of size 32K;
this is a typical size of a gzip sliding window, and our experimental results are
consistent with that size.

LZW is a well-known, dictionary-based compression method. We used a
straightforward implementation of LZW, based on published source code [21],
which we modified slightly, to increase the dictionary size from 14 to 16 bits. On
large datasets, even the increased 16-bit dictionary becomes full, usually after
processing approximately 300KB of text.



RAR is a proprietary shareware program [25]. In the reported experiments,
we used the default mode (no command line options). Current versions of RAR,
such as the one we experimented with, can use either LZ (Lempel-Ziv) based
or PPM based compression, and chooses between them based on the input data
(early versions of RAR used only LZ compression) [27]. For text, it usually uses
PPM based compression, in particular, a version of the PPMII algorithm due to
Shkarin [29]. In classification experiments performed by Khmelev and Teahan,
the performance of RAR was similar to the performance of PPMC [13].

5 Corpora

As mentioned in the introduction, for simplicity we restricted our experiments
to problems in which each document belongs to exactly one class. We used the
following corpora.
20 Newsgroups (20news)3 – This widely-used corpus consists of approxi-
mately 20,000 postings that are labeled by the Usenet discussion groups to which
they were posted (around 1000 postings in each of the corpus’ 20 newsgroups).
We used J. Rennie’s version of the corpus 4, in which duplicate postings to more
than one newsgroup were removed, and in each posting most headers were re-
moved, while Subject and From fields were retained. This subset contains 18828
documents. We used 5 random splits of 80/20 training/testing. We also used
10 Newsgroups (10news), a subset of the 20news corpus, consisting of the
10 categories containing the most documents (and also the most bytes), as in
[33]. This subset contains 8998 documents, many of which are 2-6K bytes long,
although some are as short as 100 bytes or as long as 51K bytes. No class has
fewer than 700KB of training data. We used one random split: 80% training,
20% testing.
Industry Sector5 – This dataset consists of approximately 6000 company web
pages classified by industry sector. Many of the web pages are 10-20K long,
although some are as small as 370 bytes, and others as long as 128K. Training
data per sector varies from about 100KB to over 700KB. The 105 sectors are
arranged in a 2-level hierarchy, which we ignored. This corpus has been used
previously in other text classification experiments (cf. [18, 38, 9, 26]). According
to [9], 15 of the web pages in this corpus appear in more than one category. We
did not remove these. We used one random 80% training, 20% testing split, and
excluded the 0.3% of the test documents that were empty.
Reuters-10 (R10) – This corpus is a subset of the popular Reuters-21578 cor-
pus6. We used the ModApte split for dividing the documents into training and
test sets. We removed any articles appearing in more than one class. We then

3 Some researchers use this corpus for what they call “genre classification” - a coarser
resolution than the usual topic classification problem [18, 32]

4 http://people.csail.mit.edu/people/jrennie/20Newsgroups/20news-18828.tar.gz
5 http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-4/text-learning/www/

sector-data.tar.gz, made available by Market Guide Inc. (www.marketguide.com)
6 At http://www.daviddlewis.com/resources/testcollections/reuters21578



removed all articles from classes that lacked either training or testing articles. Fi-
nally, we selected the 10 classes containing the most documents (and bytes). The
resulting corpus has 5444 training documents (4MB), and 2150 tests (1.4MB).
Document size ranges from 84 bytes to 6.4K. Training data per class varies from
91KB to 1.27MB.

Reuters-Author (R9) – This is another subset of the Reuters-21578 corpus,
but with articles labeled by author, rather than topic. We chose the 9 authors
who contributed at least 12 articles, and then included the first 12 articles from
each author. We used 6-fold cross-validation, with 10 training and 2 testing
documents per class in each fold. Training data per author varies from 24KB to
40KB.

Gutenberg-10 (Gu-10) – This dataset, used in experiments by [34] consists
of 4 works of each of 10 well known authors (40 works in total), all taken from
the Gutenberg Project7. We used 4-fold cross-validation, with 3 training and 1
test document per class in each fold. Some works are as short as 123KB, and
some as long as 1.1MB (many are novels). Training data per class ranges from
416KB to 2.5MB.

Federalist Papers (Fed.) – This is a classic corpus in authorship identifi-
cation literature (cf. [20, 33]), and is also available at the Gutenberg Project.
We arbitrarily removed the first of two slightly different versions of Paper 70.
We trained on six Hamilton papers (#65-70), six of Madison’s (#40-45), and
tested on twelve disputed papers (#49-58, 62-63) and on three undisputed pa-
pers of each (#46-48, and #59-61, respectively). Each Paper is 7-21KB long.
The training data sizes for the two classes are 82KB and 109KB.

6 Experiments

6.1 A comparison of RAR, gzip, and LZW on full corpora

We compared RAR, gzip, and LZW on a variety of corpora, using AMDL (de-
scribed in Section 3). Our experimental results are presented in Table 1.

RAR is the best performing method on all but the small Reuters-9 corpus, in
which it correctly classified only 2 test documents fewer than gzip (out of 108).
RAR’s superiority confirms results obtained by Khmelev and Teahan [13].

The poor performance of gzip on Gutenberg-10 is due both to its 32K sliding
window, and to how that window interacts with AMDL. Under AMDL, the
training file for each Gutenberg-10 author consists of the concatenation of three
of the author’s works. After processing the training file, gzip’s sliding window has
information only from the last 32K bytes of the file. Since works in Gutenberg-
10 are longer than 32K bytes, gzip is effectively trained on only 32K bytes from
each author, and those 32K bytes are drawn from only one of the author’s three
training works. We discuss the effect of gzip’s window on its accuracy again in
Sections 6.2 and 6.6.

7 http://gutenberg.net



LZW performs only slightly better than gzip on Gutenberg-10. Like gzip, it is
unable to use all three training documents in each class. Since LZW’s dictionary
becomes full after reading approximately 300KB of text, and no changes to the
dictionary are made after that point, LZW uses information from only the first
300KB of each class training file in doing classification. The shortest documents
in Gutenberg-10 are about 150KB, and many are over 500KB, so for most classes
LZW benefits only from the first (and sometimes the second) document in each
class training file. Note that gzip and LZW effectively use different training
documents, since gzip’s information comes from the third document in each
class training file. In Section 6.6 we present results suggesting that the limited
dictionary size may not be the only reason for LZW’s mediocre performance.

We are not sure what the proprietary RAR does, but as mentioned in Sec-
tion 4, it usually defaults to PPMII when run on text. PPM methods typically
use data to compute estimates for the transition probabilities of the relevant
Markov chains. In contrast to gzip and LZW, RAR has the potential to benefit
from all three training documents in each Gutenberg-10 class.

Despite its 32K window, gzip does perform almost as well as RAR on the
Reuters-9 corpus. One reason may be Reuter-9’s small class sizes; gzip can use
all the class training data for about half the classes, and most of the training
data for the rest. But in fact, as can be seen in gzip’s results for Reuters-10,
gzip doesn’t need a high percentage of the data to perform well in all tasks. It
seems that on some corpora, a 32K window is a limitation for gzip (e.g., Sector;
see Section 6.6), but on others, a 32K window is enough (e.g., Reuters-10). Note
that the particular documents that end up in gzip’s sliding window may happen
to be especially “good” or “bad” ones, potentially making its accuracy unstable.

Our 90.5% result for RAR on 20news is competitive with some of the best
results reported in the literature, such as the 89.23% accuracy reported by Peng
et al. using language modeling techniques [23], the 82.1% obtained by Teahan
and Harper [33], and the 86.2% reported by Rennie et al. using an extended
version of Nave Bayes [26]. The 94.8% accuracy figure reported by Zhang and
Oles [38] should not be compared to the above results, because “Newsgroup:”
headers were not removed in their experiment [37].

Our 89.6% result for RAR on Sector can be compared with the 64.5% ob-
tained by Ghani using Multinomial Nave Bayes [9], but is not as high as the
93.6% reported by Zhang and Oles using SVM [38], or the 92.3% by Rennie et
al. using their extended version of Nave Bayes [26].

6.2 A comparison of AMDL and BCN procedures

In Table 2 we present the results of experiments with gzip and RAR comparing
the AMDL procedure to the BCN procedure.

On Gutenberg-10 and on the small Federalist Papers corpus, gzip performs
better under BCN than it does under AMDL. It performs only slightly worse on
the small Reuters-9 corpus. We also applied gzip to 10news (not shown in the
table), and its accuracy increased dramatically from 0.56 to 0.89 when we used
BCN instead of AMDL. On Gutenberg-10, BCN allows gzip to make use of 32KB



Table 1. RAR, LZW, and gzip using AMDL

Corpus RAR LZW GZIP

Federalist 0.94 0.83 0.67

Gutenberg-10 0.82 0.65 0.62

Reuters-9 0.78 0.66 0.79

Reuters-10 0.87 0.84 0.83

10news (20news) 0.96 (0.90) 0.66 0.56 (0.47)

Sector 0.90 0.61 0.19

from each of an author’s three works, as opposed to 32KB from one of those
works. Similarly, on 10news, gzip can use up to 32KB of each training document,
rather than just a handful of them. On Reuters-9, gzip was already competitive
with RAR in AMDL, and remains competitive with RAR in BCN. From these
results, it seems that gzip’s sliding window size is not a severe handicap under
BCN (as opposed to what is suggested in [13]). In fact, the performance of RAR
and gzip are very similar across these corpora under BCN.

BCN is a 1-nearest-neighbor method. It is well known that 1NN is highly sen-
sitive to noise. BCN might be improved by using a k-nearest-neighbor approach,
for some k > 1 (see e.g. [30, 35] for uses of k-NN in text categorization).

In our experiments, BCN ran much more slowly than AMDL. This is not
surprising, because in BCN, each byte of a test file is compressed as many times
as there are training documents, because the test file is concatenated to each
training file before compression. In contrast, in AMDL, each byte of a test file
is compressed as many times as there are training classes. Thus, for example,
if a Reuters-10 experiment takes several hours using AMDL, it can easily take
over a month using BCN. All remaining experiments reported in this paper use
AMDL.

Table 2. RAR, LZW and gzip in AMDL and BCN procedures

RAR LZW gzip
Corpus AMDL BCN AMDL BCN AMDL BCN

Federalist 0.94 0.78 0.83 0.83 0.67 0.78

Gu-10 0.82 0.75 0.65 0.53 0.62 0.72

R-9 0.78 0.77 0.66 0.49 0.79 0.77

6.3 Testing effect of punctuation

To test whether compression-based classification methods successfully exploit
patterns of punctuation usage, we devised the following experiment. For each
training file, we created a modified version of the file by removing all punctua-
tion and replacing all white spaces (tab, line, paragraph, and page breaks) with



spaces; we call this preprocessing procedure NOP. This kind of preprocessing
is typically done for word-based methods, but not for character-based methods.
We compared the performance of the compression methods on the original files
to their performance on files processed with NOP.

We show the results of our experiments in Table 6.3. The first three lines
of the table correspond to authorship classification tasks, and the last three
to topic classification tasks. Intuitively, punctuation usage seems an important
factor in writing style, and therefore one might expect removal of punctuation
to adversely affect authorship classification accuracy. Although this did happen
in some of our authorship experiments, accuracy remained the same, or even
increased, in many cases.

It is interesting to note that removal of punctuation had a relatively small
effect on the performance of RAR, the best algorithm overall. The only two
corpora in which its performance changed, Federalist and Reuters-9, contain
relatively a small amount of data.

Table 3. Sensitivity to Punctuation Information (Raw files vs. NOP files)

gzip LZW RAR
corpus Raw NOP Raw NOP Raw NOP

Fed. 0.67 0.39 0.83 0.83 0.94 0.83

Gu-10 0.62 0.65 0.65 0.70 0.82 0.82

R-9 0.79 0.81 0.66 0.62 0.78 0.81

R-10 0.83 0.83 0.84 0.85 0.87 0.87

10news 0.56 0.54 0.66 0.73 0.96 0.96

Sector 0.19 0.22 0.61 0.69 0.90 0.90

6.4 Exploitation of sub-words in character-based methods

We devised two related experiments to test whether compression-based methods
exploit sub-word features. Because we wanted to avoid interaction with punc-
tuation effects, we began both experiments using files preprocessed with NOP,
rather than with the original files.

In the first experiment, for each word w in the input corpus, we generated a
random string s containing between 3 and 5 characters, and then replaced each
occurence of w in the documents with s. The purpose of this procedure was to
destroy subword features. For example, “walk” and “walked” might be replaced
by “sxq” and “zvro”, thus eliminating their common stem “walk,” and the suffix
“ed.” We call this procedure Random-String Words (RSW).

We were concerned, however, that such a radical transformation might affect
the compression algorithms in unexpected ways. Therefore, we performed a sec-
ond experiment, in which We generated a random permutation of the words in
the corpus, thus defining a mapping from each word w in the corpus vocabulary



to a unique word w′ also in the vocabulary. We then replaced each occurence
of w in the input with w′. Thus, for example, the words “walk” and “walked”
might be replaced by the words “the” and “met.” We call this procedure Word
Permutation (WP).

The results of our experiments are shown in Table 4. 8 Note first that in many
experiments, the accuracy obtained with RSW is close to the accuracy obtained
with NOP. This suggests that the compression algorithms often behave much
like word-based methods, and have relatively little regard for what’s in a word.
Also, contrary to what one might expect, WP does not consistently achieve
higher accuracy than RSW.

In some experiments, accuracy was higher with NOP than with RSW and
PW, suggesting that the compression methods may exploit subword features to
achieve more accurate classification. However, in other experiments, accuracy
in RSW or PW equaled, or even exceeded, accuracy in NOP. Character-based
compression methods may indeed benefit from exploiting subword features, but
our experiments provide mixed evidence for this phenomenon, and the benefit
may depend both on corpus and on compression method.

The experiments in which RSW or WP accuracy exceeded NOP accuracy
suggest that exploitation of (some) subword features may sometimes have a neg-
ative effect on classification accuracy. This is plausible, since subword relation-
ships can be misleading. For example, “of” is a subword of “offer” and “office”.
Both RSW and WP reduce such misleading relationships. In RSW, one random
word is unlikely to be a a subword of another. In WP, shorter words, which
are typically function words or stop-words, tend to appear more frequently, and
will likely be replaced by longer words. Hence fewer words in a document will
accidentally be substrings of other words.

Table 4. Exploitation of subword and superword information

gzip LZW RAR
corpus NOP WP RSW WOS NOP WP RSW WOS NOP WP RSW WOS

Fed. 0.39 0.61 0.39 0.56 0.83 0.83 0.83 0.83 0.83 0.89 0.89 0.83

Gu-10 0.65 0.50 0.45 0.68 0.70 0.78 0.78 0.72 0.82 0.75 0.72 0.72

R-9 0.81 0.76 0.80 0.70 0.62 0.53 0.64 0.66 0.81 0.78 0.81 0.71

R-10 0.83 0.81 0.81 0.78 0.85 0.84 0.84 0.83 0.87 0.87 0.87 0.85

10news 0.54 0.48 0.51 0.56 0.73 0.54 0.64 0.72 0.96 0.96 0.95 0.90

Sector 0.22 0.20 0.24 0.21 0.69 0.58 0.69 0.66 0.90 0.89 0.84 0.77

8 We also performed additional experiments in which we limited the amount of training
data per class to 80K. The pattern of results was similar, although not identical, to
the results shown in Table 4, with one exception. On 10-news, RAR performed
dramatically worse with RSW than with NOP. This result was especially surprising
because in our other experiments, we found RAR’s performance to be relatively
stable under changes to the training data size.



6.5 Exploitation of superwords in character-based methods

To test the effect of capturing superword information in character-based meth-
ods, we devised the following preprocessing procedure: First we preprocessed
all documents with NOP, and then we randomly reordered the words in each
document. We call this procedure Word Order Scrambling (WOS).

WOS leaves subword and word information intact, while destroying super-
word relations. If character-based compression methods rely on superword infor-
mation such as word-based n-gram information, word order scrambling should
result in decreased accuracy. Results for our WOS experiments are presented
in Table 4. Comparing WOS and NOP results reveals that RAR’s accuracy did
decline in all but one corpus after scrambling (the exception is Fed.). Additional
experiments in which we limited the amount of training data to 80K per class
(not shown), show RAR’s accuracy declining in all but one corpus (R-9), but
but the results for LZW and gzip do not show a consistent decline.

6.6 Effects of variable and unbalanced training data size

Methodology There are different ways to artificially vary the amount of train-
ing data available to a class. One option is to concatenate all training documents
in a class into a single file, and then to truncate the concatenated file at differ-
ent points. In preliminary experiments using this procedure, we found that the
learning curves exhibited strange behavior. We then realized that for small data
sizes, the truncated training file contains only a small number of available train-
ing documents. In addition, increasing the amount of training data adds new
documents to the end of the training file, resulting in jagged learning curves
(especially for gzip, with its sliding window). This was especially problematic
for Gutenberg-10, in which documents are long, and different documents by the
same author can be diverse.

We decided instead, for each desired amount of training data, to use small
chunks from as many class training files as possible, within reason. There are
many ways to do this; we used the following procedure. Let t be the original
number of training documents in a given class. Let b = max(ds/te, 0.5K). Trun-
cate each training document Di (i=1..t) in the class to bi = min(b, |Di|) bytes. If∑

bi < s, compensate by restarting this process with the value of b increased by
1. Concatenate the truncated D1 with a (file containing a) single space followed
by the truncated D2, space, D3, space, and so on. This procedure results in a
single mega-document for the class. Truncate the mega-document after s bytes.

To get meaningful results using this approach, one should not use too small
a chunk size b. E.g., one shouldn’t take a single byte from each document. The
0.5K parameter was our choice for a minimum chunk size. (We assumed that no
document was smaller than .5K.)

We used this procedure to obtain the results shown in Figures 1- 6. Note
that, because of the minimum chunk size, not every training document from
a class is necessarily in the mega-document used for a given training size s.
More importantly, it is also possible that length(mega-document) < s, if the



total amount of training data in a class is less than s bytes. The larger s gets,
the more imbalance in the amount of training data per class. For s = 40K,
all corpora except Reuters-9 do get 40K bytes of training data. For s = 80K,
all corpora except Reuters-9 and Reuters-10 have 80K bytes of training data
(Reuters-10 has slightly less).

Discussion of experiments varying amount of training data As seen in
Figures 1- 6, more training data does not always lead to higher accuracy. Gzip’s
increase in accuracy is constrained by the size of its sliding window, and it does
not exhibit much increase in accuracy beyond 40K, The curves for LZW flatten
out somewhere between 300K and 500K, depending on how soon its dictionary
fills up (which varies between corpora). Notice that at 40K (and to some extent
at 80K), LZW’s accuracy is often low compared to RAR’s. Thus LZW’s poor
performance cannot be attributed solely to its small dictionary size, nor to an
inability to handle imbalanced training data.

RAR, on the other hand, seems to improve consistently as the amount of
training data increases. This reflects RAR’s ability to exploit additional data to
obtain more exact probability estimates. At the 20K point, RAR’s results are
similar to gzip’s, but then RAR’s results climb up, while gzip’s do not.

Fig. 1. Federalist Papers
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Fig. 2. Gutenberg-10
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Fig. 3. Reuters-9
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Fig. 4. Reuters-10
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Fig. 5. 10News
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Fig. 6. Sector
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The importance of balanced training data The problem of imbalanced
training data is well-known, and classification methods are often adversely af-



fected by this imbalance (see e.g. [26]). To test how much training data imbalance
affects the accuracy of compression-based classification methods, we performed
the following small experiment on Gutenberg-10. We first created a skewed ver-
sion of the Gutenberg-10 corpus, as follows: we gave classes 1-5 the first 40K of
their training data each, and classes 6-10 the first 70K of their training data each.
We compared the accuracy obtained on this corpus (with 4-fold cross-validation)
to the accuracy obtained on two other versions of the corpus – one in which each
class has 40K of training data, and one in which each class has 70K of training
data. Results are shown in Table 5. All methods perform worse with the skewed
corpus than they do with either the 70K corpus or the 40K corpus. These results
suggest that it may be desirable to equalize the amount of training data per class
by discarding data from larger classes. Such an approach would be analogous to
under-sampling in machine learning.

Table 5. Accuracy of RAR, LZW and gzip on balanced and skewed Gu-10 subset

Method Skewed-40K/70K 40K 70K

RAR 0.50 .78 .80

GZIP 0.55 .65 .57

LZW 0.53 .65 .72

7 Conclusions and Future Work

We tested three compression methods (RAR, gzip and LZW) under two pro-
cedures (AMDL and BCN) on English language topic/genre categorization and
authorship attribution problems. RAR almost always produced more accurate
classification than LZW and gzip, sometimes by a wide margin. LZW often per-
formed poorly, not always because of its limited size dictionary, and gzip was
handicapped by its sliding window on some corpora. We found AMDL to be
superior to BCN for RAR, both in runtime and accuracy, We found BCN to be
superior to AMDL for gzip’s accuracy, although it runs even more slowly than
AMDL. Overall, RAR under AMDL seems to give best results.

There remains a need for careful experiments comparing the current best
compression-based classification methods to state-of-the-art classification meth-
ods, and to methods similar to the ones explored here, namely PPMC with
SMDL (as used by [33]) and the related n-gram language modeling methods
of [22, 23]. Further experiments are also needed to determine when artificially
balancing class sizes (by throwing away data) is desirable.

We presented a new approach to test whether character-based methods can
actually benefit from their ability to capture subword, superword, and other
non-word (punctuation) features. Our approach consisted of applying different
preprocessing procedures to the corpora, and comparing results between the orig-
inal corpora and the preprocessed versions. Our subword experiments indicated



that in some cases, compression algorithms may benefit from subword informa-
tion in performing classification. Our superword experiments provided evidence
that RAR (PPM) benefits from information contained in word sequences, and
thus successfully exploits an ability not shared by more traditional bag-of-words
methods.
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