
Creating and Using MATLAB
Functions

Increasing Readability and Usability of Codes



What is a function, and when should I
create one?

<Examples of functions:

• sin, exp, plot, find, +, ./, /

<Functions Simplify a Program

• Move code from one level to another

• Hide ugly details from the programmer

<Use Functions when:

• A series of steps are repeated multiple times

• A complicated procedure must be performed

– eg.  Solving a linear system

Function

INPUT

OUTPUT



Properties of Functions

Function Workspace vs.  MATLAB Workspace

<Scope

• Variables used within the function are different than those used
elsewhere

• Function variables are only defined while the function is
executing!!!

<Types of variables

• Local Variables (default)

– Variables used within a function.  These are completely separate from any
variables defined elsewhere (other functions, main program, etc)

• Global Variables

– These can be seen by all routines (functions) within a program

– Use these cautiously!

• Persistent Variables

– Retain their value after the function is exited



Argument Lists

Getting Variables in and out of Functions

<Order of arguments in function declaration and
function call

• Order is important, names are not

<Number of arguments

• Using “nargin” and “nargout” in programs



Creating User-Defined Functions
The Syntax

< function [result]=fun_name(arg1, arg2, ... argn)

• Function declaration

• result L output from the function

– Could be several variables, i.e. [a,b,c] = fun_name(...)

• fun_name L name of the function

– Should be the same as the file name

– MATLAB doesn’t actually use the function name

• arg1, arg2, ... argn L input parameters for the function

<EXAMPLE: Create a function to compute the
factorial of a number.



Recursive Functions

<What is a recursive function?

• A function that calls itself

– If some condition holds, then the function calls itself.

– f( f( f( f(x) ) ) )

<EXAMPLE: revisit the factorial function.

• Could we write this as a recursive function?

–    f(x) = x * f(x-1),    for x>2    Y  y = f(f(f(f(...f(x))))...)

• Algorithm:

– Input: number to compute factorial of (x)

– If x is larger than 2, then 

– Save the result as x * factorial(x-1)

– Otherwise, the result is equal to x!

– Output: result



y=4*recurFact(3)

y=3*recurFact(2)

y=2

function y = recurFact(x)

if (x > 2)
   y = x * recurFact(x-1);
else
   y = x;
end



Inline Functions

A Fast Way to Create Simple Functions 

< fun = inline(‘function’, ‘arg1’, ‘arg2’, ...);

• Defines a function

• arg1...argn are variables passed into this function

<Example:
    f=inline(‘a*x^2+b*x+c’, ‘a’, ‘b’, ‘c’, ‘x’);
    myNum = f(1,0,0,2);

<More later...


