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Centered Difference Formula for the
First Derivative

We want to derive a formula that can be used to

compute the first derivative of a function at any given

point. Our interest here is to obtain the so-called

centered difference formula. We start with the Taylor

expansion of the function about the point of interest, x,

f(x± h) ≈ f(x)± f ′(x)h +
f ′′(x)h2

2
± f ′′′(x)h3

3!
+ . . . ,
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assuming that h is small. From this expansion we have

f(x + h)− f(x− h) ≈ 2
[
f ′(x)h +

f ′′′(x)h3

3!
+ . . .

]
.

Solving for f ′(x) gives the formula for the centered

difference scheme:

f ′(x) ≈ f(x + h)− f(x− h)
2h

+
f ′′′(x)h2

3!
+ . . . .

The centered differencing formula is a second order

scheme since the error goes as the second power of h.

[Notice that the truncation error depends only on even
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powers of h. One can actually exploit this fact to obtain

even better approximations.] The truncation error is

bounded by Mh2/3! where M is a bound on |f ′′′(t)| for t

near x. Thus the truncation error decreases with

decreasing h, yielding more and more accurate results.

However one must also consider the effect of rounding

error. Assuming that rounding errors in computing the

function values are bounded by the machine ε, then the

rounding error in evaluating the above formula is

2ε/2h = ε/h. Thus rounding error increases with

decreasing h.
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The total computational error, E, is therefore bounded

by the sum of these two errors

E =
Mh2

6
+

ε

h
.

Since the first term coming from truncation decreases

with decreasing h and the second term coming from

rounding increases with decreasing h, there must be an

optimal value for h that represents the best tradeoffs

between these two sources of error and gives the smallest

total error. To find this optimal value we differentiate E
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and set it to zero:

dE

dh
=

Mh

3
− ε

h2 = 0.

Solving for h gives the optimal value

hmin =
(

3ε

M

)1/3

.

This optimal value is much larger than the corresponding

value obtained for the forward difference formula, which

goes like
√

ε.

Inserting this optimal value for h into the expression for
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E gives the minimum error that is achieved using this

optimal h:

Emin =
M

6

(
3ε

M

)2/3

+ ε

(
M

3ε

)1/3

(1)

=
(

M 3

63

32ε2

M 2

)1/3

+
(

ε3M

3ε

)1/3

=
1
2

(
Mε2

3

)1/3

+
(

Mε2

3

)1/3

=
3
2

(
Mε2

3

)1/3

.

Notice that the minimum computational error scales as
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ε2/3 and is therefore much smaller than the corresponding

value for the case of the forward differencing scheme

whose minimum computational error goes as
√

ε. Also

notice that two-thirds of that error is due to rounding.

Recall that for the first order forward differencing

scheme, both truncation and round contribute equally to

the minimal total computational error.

One can derive even high-order schemes to approximate

the first derivative of a function. The following important

general remarks can be made.
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The higher the order of the scheme is,

1. the more accurate is the result,

2. the larger is the optimal step size h to achieve the

minimum error,

3. the larger is the proportion of the error due to rounding,

4. the more complicated the formula is and the more time-

consuming it is to compute the derivative.

It is not always obvious which order of scheme to use. At
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any rate, it is very seldom that one has to use higher

than fourth order schemes.
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