SOLUTION FOR PROBLEM 5 OF THE MOCK EXAMINATION

Problem 5 (involving linear systems and linear least-squares)
Given a 3×2 matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & q \\
0 & 0 \\
p & r
\end{array}\right]
$$

and a 3×1 vector

$$
\mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

we want to solve the linear least-squares problem

$$
A x \cong b
$$

for the unknown vector

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

1. The system of normal equations for this problem is

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

We find

$$
\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{lll}
0 & 0 & p \\
q & 0 & r
\end{array}\right]\left[\begin{array}{ll}
0 & q \\
0 & 0 \\
p & r
\end{array}\right]=\left[\begin{array}{cc}
p^{2} & p r \\
p r & q^{2}+r^{2}
\end{array}\right]
$$

and

$$
\mathbf{A}^{T} \mathbf{b}=\left[\begin{array}{lll}
0 & 0 & p \\
q & 0 & r
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
p b_{3} \\
q b_{1}+r b_{3}
\end{array}\right]
$$

The set of normal equations is therefore given by

$$
\left[\begin{array}{cc}
p^{2} & p r \\
p r & q^{2}+r^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
p b_{3} \\
q b_{1}+r b_{3}
\end{array}\right]
$$

2. Next we solve the above normal equations using Gaussian elimination. Thus we want to replace the second row by

$$
(\text { row } 2)-\frac{p r}{p^{2}} \times(\text { row } 1) \rightarrow\left[\begin{array}{ll}
0 & q^{2}
\end{array}\right] .
$$

The second element of vector \mathbf{b} must also be transformed exactly the same way:

$$
(\text { element } 2)-\frac{p r}{p^{2}} \times(\text { element } 1) \rightarrow q b_{1}+r b_{3}-r b_{3}=q b_{1} .
$$

We have now transformed the system to upper triangular form

$$
\left[\begin{array}{cc}
p^{2} & p r \\
0 & q^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
p b_{3} \\
q b_{1}
\end{array}\right] .
$$

This can be solved by back-substitution:

$$
q^{2} x_{2}=q b_{1}
$$

and so $x_{2}=\frac{b_{1}}{q}$. Substituting this into the first equation gives

$$
p^{2} x_{1}+p r \frac{b_{1}}{q}=p b_{3}
$$

from which we have $x_{1}=\frac{b_{3}}{p}-\frac{r b_{1}}{p q}$. Thus the solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{b_{3}}{p}-\frac{r b_{1}}{p q} \\
\frac{b_{1}}{q}
\end{array}\right] .
$$

3. Next we want to solve the linear least-squares problem using the Householder $Q R$ factorization. First let us work on the first column of A, which we denote by u

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
0 \\
p
\end{array}\right]
$$

The Euclidean norm of that vector is clearly given by p. Since the first element of \mathbf{u} is zero, to obtain α in Heath's book, the overall sign for α really does not matter (no cancellation can occur either way). So we choose $\alpha=p$. The vector in Householder's matrix is then given by

$$
\mathbf{v}_{1}=\mathbf{u}-\alpha \mathbf{e}_{1}=\left[\begin{array}{l}
0 \\
0 \\
p
\end{array}\right]-\left[\begin{array}{l}
p \\
0 \\
0
\end{array}\right]=p\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Recall that the overall scale for vector \mathbf{v} is irrelevant, so we can drop p and let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Recall that if \mathbf{v} is the vector defining the Householder matrix, and if \mathbf{u} is a column of \mathbf{A} that we want this Householder transformation to operate on, then

$$
\mathbf{H u}=\mathbf{u}-2 \frac{\mathbf{v}^{T} \mathbf{u}}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v}
$$

Note that $\left\|v_{1}\right\|_{2}^{2}=2$. By design, using this \mathbf{v}_{1} in defining the Householder matrix transforms the first column of \mathbf{A} to $\left[\begin{array}{l}p \\ 0 \\ 0\end{array}\right]$, so we can simply skip the algebra. However we need to see how it transforms the second column of \mathbf{A}. So now we let

$$
\mathbf{u}=\left[\begin{array}{l}
q \\
0 \\
r
\end{array}\right]
$$

We find

$$
\mathbf{v}^{T} \mathbf{u}=r-q .
$$

Thus

$$
\mathbf{H}_{1} \mathbf{u}=\left[\begin{array}{l}
q \\
0 \\
r
\end{array}\right]-\frac{2(r-q)}{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
r \\
0 \\
q
\end{array}\right] .
$$

Thus

$$
\mathbf{H}_{1} \mathbf{A}=\left[\begin{array}{ll}
p & r \\
0 & 0 \\
0 & q
\end{array}\right]
$$

We also need to transform vector \mathbf{b}. We find

$$
\mathbf{v}^{T} \mathbf{b}=b_{3}-b_{1} .
$$

Thus

$$
\mathbf{H}_{1} \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]-\frac{2\left(b_{3}-b_{1}\right)}{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
b_{3} \\
0 \\
b_{1}
\end{array}\right]
$$

We now need to repeat the above procedure to eliminant the elements below the main diagonal of the second column of $\mathbf{H}_{1} \mathbf{A}$. To find α we must ignore the first element of that column. The result is $\alpha=q$.

The vector in Householder's matrix is then given by

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
q
\end{array}\right]-\left[\begin{array}{l}
0 \\
q \\
0
\end{array}\right]=q\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] .
$$

Again we can drop the scale factor q to write

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] .
$$

Note that $\left\|v_{2}\right\|_{2}^{2}=2$.
So letting

$$
\mathbf{u}=\left[\begin{array}{l}
r \\
0 \\
q
\end{array}\right]
$$

We find that

$$
\mathbf{v}_{2}{ }^{T} \mathbf{u}=q,
$$

and so

$$
\mathbf{H}_{2} \mathbf{u}=\left[\begin{array}{c}
r \\
0 \\
q
\end{array}\right]-\frac{2 q}{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
r \\
q \\
0
\end{array}\right] .
$$

Therefore we have

$$
\mathbf{H}_{2} \mathbf{H}_{1} \mathbf{A}=\left[\begin{array}{cc}
p & r \\
0 & q \\
0 & 0
\end{array}\right]
$$

From this equation we identify

$$
\mathbf{R}=\left[\begin{array}{cc}
p & r \\
0 & q
\end{array}\right]
$$

We also need to transform the vector $\mathbf{H}_{1} \mathbf{b}$. We find

$$
\mathbf{v}^{T} \mathbf{H}_{1} \mathbf{b}=b_{1} .
$$

Thus

$$
\mathbf{H}_{2} \mathbf{H}_{1} \mathbf{b}=\left[\begin{array}{c}
b_{3} \\
0 \\
b_{1}
\end{array}\right]-\frac{2 b_{1}}{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
b_{3} \\
b_{1} \\
0
\end{array}\right] .
$$

Therefore the solution of the linear least-squares problem obeys the equation

$$
\left[\begin{array}{ll}
p & r \\
0 & q
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{3} \\
b_{1}
\end{array}\right] .
$$

This can be solved by back-substitution:

$$
q x_{2}=b_{1}
$$

and so $x_{2}=\frac{b_{1}}{q}$. Substituting this into the first equation gives

$$
p x_{1}+r \frac{b_{1}}{q}=b_{3}
$$

from which we have $x_{1}=\frac{b_{3}}{p}-\frac{r b_{1}}{p q}$. Thus the solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{b_{3}}{p}-\frac{r b_{1}}{p q} \\
\\
\frac{b_{1}}{q}
\end{array}\right]
$$

We see that the solution is exactly the same as what we obtained before by solving the normal equations.

We can also calculate the residual vector, since

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
0 & q \\
0 & 0 \\
p & r
\end{array}\right]\left[\begin{array}{c}
\frac{b_{3}}{p}-\frac{r b_{1}}{p q} \\
\frac{b_{1}}{q}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
0 \\
b_{3}
\end{array}\right]
$$

Therefore

$$
\mathbf{r}=\mathbf{A} \mathbf{x}-\mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
0 \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
b_{2} \\
0
\end{array}\right],
$$

thus $\|r\|_{2}=\left|b_{2}\right|$.

