
Interpolation using Cubic Spline

Given N + 1 data points in the interval [a, b],
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Cubic Spline

we want to construct a cubic spline S(x) to interpolate the table of values presumably of a
function f(x). We assume that the points are ordered so that

a = t0 < t1 < · · · < tN = b.

S(x) is given by a different cubic polynomial in each interval [t0, t1], [t1, t2], · · · , [tN−1, tN ]. Let
S(x) be given by Si(x) if x ∈ [ti, ti+1]. Each cubic polynomial is defined by 4 coefficients and so
we have a total of 4N parameters. These are determined by the following conditions:

1. S(x) must interpolate the data points and so in each subinterval i = 0, · · · , N −1, we must
have Si(ti) = yi and Si(ti+1) = yi+1.

2. S′(x) must be continuous at each of the internal knots. Therefore for i = 1, 2, · · · , N − 1
we must have S′

i−1(ti) = S′
i(ti).

3. S′′(x) must be continuous at each of the internal knots. Therefore for i = 1, 2, · · · , N − 1
we must have S′′

i−1(ti) = S′′
i (ti).

4. A choice of one of the following 2 conditions at the 2 end points a and b:

(a) The natural spline: S′′
0 (a) = 0 = S′′

N−1(b),

(b) The clamped cubic spline: S′
0(a) = f ′(a) and S′

N−1(b) = f ′(b).

The clamped cubic spline gives more accurate approximation to the function f(x), but requires
knowledge of the derivative at the endpoints. Condition 1 gives 2N relations. Conditions 2 and
3 each gives N − 1 relations. Together with the 2 relations from condition 4, we have a total
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of 2N + 2(N − 1) + 2 = 4N conditions. Thus we have just the right number of relations to
determined all the parameters uniquely.

The best way to express the cubic polynomial within each subinterval is to note that since
Si(x) is a cubic polynomial, then S′′

i (x) must be a linear function of the form

S′′
i (x) = αx + β.

Next we denote S′′
i (ti) = zi and S′′

i (ti+1) = zi+1, so that replacing i by i − 1 in the second
expression gives S′′

i−1(ti) = zi, and therefore condition 3 is automatically satisfied. We then
evaluate S′′

i (x) at the endpoint of the subinterval to get

S′′
i (ti) = zi = αti + β

S′′
i (ti+1) = zi+1 = αti+1 + β.

We can then solve for α and β to obtain

α =
zi+1 − zi

hi
β =

ziti+1 − zi+1ti
hi

,

where we define hi = ti+1 − ti for i = 0, · · · , N − 1. Inserting these back to the expression for
S′′

i (x) gives
S′′

i (x) =
zi

hi
(ti+1 − x) +

zi+1

hi
(x− ti).

Integrating this expression, we have

S′
i(x) = − zi

2hi
(ti+1 − x)2 +

zi+1

2hi
(x− ti)2 + p,

where p is a constant. Integrating one more time, we have

Si(x) = − zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x− ti)3 + px + q,

where q is another constant. Instead of using constants p and q, it is better to use constants C
and D so that

Si(x) = − zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x− ti)3 + C(x− ti) + D(ti+1 − x).

Evaluating this at ti gives
Si(ti) = yi =

zi

6
h2

i + Dhi,

from which we get D = yi

hi
− zihi

6 . Similarly, evaluating Si(x) at ti+1 gives

Si(ti+1) = yi+1 =
zi+1

6
h2

i + Chi,

from which we get C = yi+1
hi

− zi+1hi

6 . Using these results for C and D, we finally have the
expression for Si(x):

Si(x) = − zi

6hi
(ti+1−x)3+

zi+1

6hi
(x−ti)3+

(
yi+1

hi
− zi+1hi

6

)
(x−ti)+

(
yi

hi
− zihi

6

)
(ti+1−x). (1)
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Next we have to impose condition 2 on S′
i(x) which can be obtained from the above equation

by differentiation:

S′
i(x) = − zi

3hi
(ti+1 − x)2 +

zi+1

2hi
(x− ti)2 +

yi+1

hi
− zi+1hi

6
+

yi

hi
− zihi

6
. (2)

We are going to apply the condition S′
i(ti) = S′

i−1(ti), for i = 1, 2, · · · , N − 1 (at all internal
knots). First at t = ti we have

S′
i(ti) = −zihi

3
+

yi+1

hi
− zi+1hi

6
− yi

hi
+

zihi

6

= −zihi

3
+

yi+1

hi
− zi+1hi

6
− yi

hi

By replacing the index i by i− 1 in Eq. (2), we have

S′
i−1(x) = − zi−1

3hi−1
(ti − x)2 +

zi

2hi−1
(x− ti−1)2 +

yi

hi−1
− zihi−1

6
+

yi−1

hi−1
− zi−1hi−1

6
. (3)

Substituting t = ti yields

S′
i−1(ti) = −zihi−1

3
+

yi

hi−1
− zihi−1

6
− yi−1

hi−1
+

zi−1hi−1

6

= −zihi−1

3
+

yi

hi−1
− yi−1

hi−1
+

zi−1hi−1

6

The condition S′
i(ti) = S′

i−1(ti) then gives the result

hi−1zi−1 + uizi + hizi+1 = vi, (4)

where

ui = 2(hi + hi−1) bi = 6
(yi+1 − yi)

hi
vi = bi − bi−1, (5)

and i = 1, 2, · · · , N − 1.
In the case of the natural cubic spline, we set z0 = 0 = zN to obtain the following linear

system of equations:
u1 h1

h1 u2 h2

h2 u3 h3

. . .
hN−3 uN−2 hN−2

hN−2 uN−1




z1

z2

z3

.
zN−2

zN−1

 =


v1

v2

v3

.
vN−2

vN−1

 . (6)

It can be solved for the vector (z1, z2, ·, zN−1) using Gaussian elimination without pivoting.
After determining the coefficients (z0, z1, ·, zN ), any value of the cubic spline can then be

computed from Eq. (1). Given any x, it is necessary first to find which of the intervals

(−∞, t1), [t1, t2), · · · , [tN−2, tN−1), [tN−1,∞)

contains x. This determines the Si(x) to be used for that interval. Si(x) can be computed
efficiently using Horner’s nested procedure. We need to rewrite Si(x) in a nested form:

Si(x) = yi + (x− ti) [Ci + (x− ti)[Bi + (x− ti)Ai]] .
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One can easily see that

Ai =
zi+1 − zi

6hi
Bi =

zi

2
Ci = −hizi+1

6
− hizi

3
+

yi+1 − yi

hi
.
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