Problem 1 [30 pts]

What does each of the following three programs do? How many lines of output does each program produce? What are the last two values of x printed? (No need to give numerical values. An answer such as $3^{-1.98}$ is fine.)

```
% program 1
x = 1;
while 1+x > 1
    x = x/2;
    disp(x);
end

% program 2
x = 1;
while x+x > x
    x = 2*x;
    disp(x);
end

% program 3
x = 1;
while x+x > x
    x = x/2;
    disp(x);
end
```
Problem 2 [50 pts]

1. Use Gaussian elimination without pivoting to solve the linear system

\[Ax = b, \]

where

\[A = \begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 + \epsilon \\ 2 \end{bmatrix} \quad \text{and} \quad 0 \leq \epsilon \leq \epsilon_{\text{mach}}/4. \]

Give the multiplier and matrices \(L \) and \(U \) in terms of \(\epsilon \). Show how the solution is obtained from \(L \) and \(U \).

2. Repeat part 1 using Gaussian elimination with partial row pivoting. Explain the differences with the results obtain in part 1.

Problem 3 [20 pts]

Let \(x \) be the solution to the linear least squares problem \(Ax = b \), where

\[A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}. \]

Let \(r = b - Ax \) be the corresponding residual vector. Which of the following three vectors is a possible value for \(r \)? Why?

\[\begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}. \]

Hint: There is no need to actually find the solution \(x \) in order to answer this question. So we do not need to specify \(b \) either.