POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Another Algorithm for Computing
m Attributable to Archimedes:
Avoiding Cancellation Errors

K. Ming Leung

Abstract: We illustrate how cancellation error can
limit the accuracy that can be achieved by an algorithm
for computing 7, and how that error can be avoided.

Directory
e Table of Contents
e Begin Article

Copyright (© 2000 mleung@poly.edu
Last Revision Date: February 21, 2004

mailto:mleung@poly.edu

2

In 250 B.C., the Greek mathematician Archimedes estimated the
value of 7 by approximating the circumference of a circle by the
perimeter of a regular polygon having 2n sides, where n = 2,3,.. ..
He knew that the approximation becomes better and better as n in-
creases. In addition he was able to derive a recursion formula relating
the perimeter of a regular polygon to the perimeter of another regular
polygon having twice as many sides. One version of his method is
described here.

He considered a circle with diameter equal to 1, hence its circum-
ference is 7. Inside the circle he inscribed a square. The perimeter
of the square is less than the circumference of the circle, and so it
is a lower bound for . Archimedes then considered an inscribed oc-
tagon, hexadecagon, etc., each time doubling the number of sides of
the inscribed polygon, and producing better and better estimates for
.

Let p, be the perimeter of the inscribed polygon with 27! sides,
wheren = 1,2,.... Let the length of each side be denoted by s,,. Then
p1 is the perimeter of the inscribed square, and from the geometry we
know that s; = 1/ﬂ and so p; = 4s1 = 2v/2. The perimeter of an

<4< | d 2 | > Back <« Doc Doc »

4

inscribed octagon ps is equal to 8s2, and the perimeter of an inscribed
hexadecagon ps is equal to 16sy. In general we see that

pp = 2"1s, for n=12.... (1)

In the limit that n goes to infinity, the regular polygon becomes more
and more like the circle and so we have p,, = m. So far the only
perimeter we know is p; for the square. However Archimedes was
able to obtain a recursive formula for the perimeters of the polygons.
This allowed him to compute py from pq, and p3 from po, and so on.

To obtain such a recursive formula, let us see how to compute po
from p; using geometry only. Since triangle BCD is a right-angled
triangle, Pythagoras theorem gives

2
1 S1 2
n=1(5) - (5)" 2
() - (3 @
Actually it is clear that h = s1/2, however this geometric relation
does not apply to other polygons with a different n. Since we want

a recursive relation that applies to all n, that relation must not be
used. The length AC is 1/2 and so the length AD is 1/2—h. Applying

<4< | d 2 | > Back <« Doc Doc »

Pythagoras theorem to triangle ABD one has

w3+)

Substituting h from Eq. (2) into this equation, expanding and then
simplifying the expression yields the result

1 1\? (31) 2
S = = — - — (=] .
2 2 2
A careful inspection of the diagram reveals that such a relation holds
between s3 and so, etc. Thus in general one has the recursive relation

w5 (3) - (3) ®

for n = 1,2,.... We then obtain a recursive relation involving the

<4< | d 2 | > Back <« Doc Doc »

perimeters using Eq. (1). The result is

n+1 Dn 2
pamrt (- -GE)) @

Starting the iteration with p; = 2/2 and n = 1 we then get po,
etc. One can easily write a program to implement that. The result
computed using MATLAB (in double-precision) is shown below. No-
tice that because of the iterative nature of the algorithm, the program
cannot be vectorized. The computed values for p; to p3; are shown
below.

[

.82842712474619
.06146745892072
.12144515225805
.13654849054594
.14033115695474
.14127725093276
.14151380114415
.14157294036788
.14158772527996

© 00N O WN
W wWwwwwwwwN

<4< | d 2 | > Back <« Doc Doc »

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

O W WWWWwWwwwwwowowowowowowow

A
A

.14159142150464
.14159234561108
.14159257654500
.14159263346325
.14159265480759
.14159264532122
.14159260737572
.14159291093967
.14159412519519
.14159655370482
.14159655370482
.14167426502176
.14182968188920
.14245127249413
.14245127249413
.16227766016838
.16227766016838
.46410161513775

| J

Back

«4 Doc Doc p»

30 0

31 0
Notice that the values at first increase (as expected) and seem to
converge to the correct value for m until p14. Notice that this value
is slightly larger than 7, but how can an inscribed polygon have a
perimeter larger than the inscribing circle! After that the values de-
crease slightly (again this is rather alarming since we do not expect
the perimeters to ever decrease with increasing n.) and gradually in-
crease above 7 and drift further and further away from 7. After the
28th term the computed perimeters all become zero.

The reason for that is obvious from Eq. (4). Since p,, is expected
to be around 3, the factor p,/2""1, which is actually the length of
each side of the polygon, decreases as we iterate. As soon as

G

we have

2
17(2310 — 1, andso ppy1 — 0,

due to cancellation in the above iteration formula in Eq. (4).

<4< | d 2 | > Back <« Doc Doc »

9

To estimate the value of n at which that happens, we set p,, ~ 3
in the equation

(Pn)2 _ Smach
ontl) 2 7
and solve for n to get

2 2
ek (\/ emach> (Viix 1016>

This agrees with the results obtained from the program.

Before we deal with the problem associated with cancellation , we
want to address some issues related to numerical efficiency. First,
notice from Eq. (4) that on the right-hand side p,, is divided by
2"+ but p,, ;1 is obtained by multiplying a certain factor with 27+1,
Clearly we can avoid all that if we perform the iteration on s,, instead
of p,, i.e. we iterate using equation Eq. (3). The cancellation problem
is still present since as n increases the length of each segment of the
polygon s, decreases.

Second, notice that s, is being squared but to obtain s,,+1 we need
to take a square root. Clearly all that can be avoided if we work with

<4< | d 2 | > Back <« Doc Doc »

10

a new variable ¢,, = s2. Changing to this new variable, we take the
square of Eq. (3) to obtain

1
tnt1 =5 (1-v1-t,).
We can iterate using this formula starting with ¢; = s = 1/2. The
perimeters are then given by

pn = 2" ts, = 2" /L,

Avoiding the squaring and the taking of a square root actually saves
about 40% of the computing time. Of course the cancellation problem
is still not yet solved.

Now we solve the cancellation problem. The key is to realize that
the above equation looks almost like the quadratic formula. The cure
is of course exactly the same. So we write

b = 5 (0-vVIE) (=) ®)

o 11-(0-t) 1 tn (©)
214++/1—4%, 21+/I-¢,

<4< | d 2 | > Back <« Doc Doc »

11

Now this recursive formula does not have any cancellation problem.
When t,, is small, the denominator simply becomes 2.

Let us do one more thing to see if we can further improve the
efficiency of the above algorithm by a simple re-scaling of the variable.
Let us introduce a scaled variable g,, by writing ¢,, = ag,. One can
see that Eq. (5) becomes

Therefore if we let o = 1/4 so that 2/« = 1, the iterative relation for
gn becomes

g1 = —— (7)
244 —gn

There is one fewer multiplication in this formula than the one in Eq.
(5). Notice that ¢, = g,,/4 = s2, and p,, = 2",/g,,. Thus we start the
iteration with g; = 4s? = 2. The computed values for p; to p3; are
shown below.

1 2.828427124746190

<4< | d 2 | > Back <« Doc Doc »

© 0 NO O WN

[e e S e O e
O O 00O ~NO Ok WN - O

W WWwwwowowwwwowowwowowowwwow

A
A

.061467458920718
.121445152258052
.136548490545939
.140331156954753
.141277250932773
.141513801144301
.141572940367091
.141587725277160
.141591421511200
.141592345570118
.141592576584873
.141592634338563
.141592648776986
.141592652386591
.141592653288993
.141592653514593
.141592653570993
.141592653585093
.141592653588618

| d 2 |

Back

«4 Doc Doc p»

12

13

21 3.141592653589500
22 3.141592653589720
23 3.141592653589775
24 3.141592653589789
25 3.141592653589793
26 3.141592653589794
27 3.141592653589794
28 3.141592653589794
29 3.141592653589794
30 3.141592653589794

After 26 iterations, the result converges to a value as close to 7 as is
possible using IEEE double-precision. The result does not change with
further iterations. If one computes the relative error of this converged
value, the result is eps. That means that we have obtained the most
accurate result as we possibly can on this floating point system.

<4< | d 2 | > Back <« Doc Doc »

