SOLUTION FOR ASSIGNMENT 3

Problem 3

Let A be an n X n real symmetric matrix with eigenvalues \; < Ay < --- < \,,.
The Rayleigh quotient defines a function f: R™ — R given by

T
x' Ax
X) = .
fo ="
It can be shown that the critical points of f are eigenvectors of A, in particular
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with the minimum and maximum occurring at the corresponding eigenvectors, x;
and x,,.

(a) We can therefore compute the extreme eigenvectors and their corresponding
eigenvalues using methods for optimization. To find x;, we can use uncon-
strained minimization method such as the steepest descent method.

In order to use the steepest descent method, we need to compute the gradient
of f. Using Einstein convention we can write

A
f(x) = D5t
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and so for m =1,2,---n we have
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Since A is a symmetric matrix, A;,, = A,,;, we find that
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If we set the gradient to zero, we see that the optimal solutions are the eigenvec-
tors of A, and the optimal function values are the corresponding eigenvectors.



Notice also that the Rayleigh quotient does not change if x is replaced by ax
where a is any nonzero scalar. Thus the eigenvectors x can only be determined
up to a normalization constant.

This method is implemented in Matlab program CP6p10a.m. The function and
its gradient are computed in Matlab functions fenCP6p10a and gradCP6p10a,
respectively. The starting point for steepest descent is chosen randomly. We
use a variable sign to control the overall sign of matrix A. To compute x; we
set sign=1 since we want to perform a minimization. But to compute x,, we
set sign=-1 since we want to perform a maximization.

A typical run to compute x; produces the following results:

>> x1 X2 x3 f
0.660228 0.341971 0.289726 7.120161
0.043298 -0.188262 2.321432 0.884749
-0.311244 -0.517178 2.301370 0.620216
-0.083468 -0.767706 2.275875 0.583716
-0.128353 -0.807231 2.260896 0.579487
-0.101451 -0.834664 2.252629 0.578997
-0.106635 -0.839175 2.250724 0.578941
-0.103525 -0.842317 2.249700 0.578934
-0.104124 -0.842837 2.249477 0.578933
it =
8
eVector =
-0.0433046166996218
-0.350532743219326
0.935548772701687
eValue =
0.578933484185869
evec =
-0.0431682042947913 -0.497425032351127 -0.866432249704755
-0.350731446032482 0.819589100011505 -0.453057567982585
0.935480603167125 0.284327354176152 -0.209842790596346
eval =
0.578933385691052 0 0
0 2.13307447534853 0
0 0 7.28799213896042
>>



The computed results for the eigenvectors and the eigenvalues using Matlab’s
built-in eig function are given by evec and eval, respectively. We see that
the agreements with our results computed using optimization are rather good.

A typical run to compute x,, gives the following results:

>> x1 x2 x3 f
0.172956 0.979747 0.271447 -4.171586
3.280899 0.332458 0.627469 -6.585472
3.148243 1.598308 0.650401 -7.281934
3.118135 1.614738 0.755763 -7.287908
3.112651 1.626945 0.752308 -7.287991
3.112194 1.627150 0.753756 -7.287992
3.112118 1.627318 0.753708 -7.287992

it =

6
eVector =
0.866434327969241
0.453056118161441
0.209837339653779
eValue =
7.28799213874011
evec =

-0.0431682042947913 -0.497425032351127 -0.866432249704755
-0.350731446032482 0.819589100011505 -0.453057567982585
0.935480603167125 0.284327354176152 -0.209842790596346

eval =

0.578933385691052 0 0
0 2.13307447534853 0
0 0 7.28799213896042

>>

The results agree very well with those obtained using Matlab’s eig function.

Any normalization condition can be handled using constraints in the optimiza-
tion. Here we will be using the Euclidean norm and so x’x = 1. We have only
one equality constraint and so function g(x) is a scalar function, and so is the
unknown Lagrange multiplier A (not to be confused with the eigenvalue).

It turns out that a good way to impose this constraint is to let

g(x) = S(x"x 1)



The gradient with respect to x is
Vy(x) = 2(x"x — 1)x.

Instead of working with f, we replace that by the Lagrange function
L(x, ) = f(x) + Ag(x),

which depends on a total of four parameters. Its gradient in a space of dimen-
sion n + 1 =4 is given by
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We set this gradient to zero to find the critical points. The vanishing of the
fourth component of the gradient vector implies that x’x = 1. Using this
result in the remaining components, we see that x is an eigenvector of A and
the corresponding eigenvalue is given by the Rayleigh quotient.

A typical run to compute x; produces the following results:

>>  x1 x2 x3 LagrangeMultiplier f
0.015009 0.767950 0.970845  0.990083  2.932855
-0.485905 0.420468 1.004569  0.968882  1.497954
-0.002664 -0.264726  0.928307  0.922970 0.622869
-0.063362 -0.313426  0.923530 0.922800 0.582183
-0.041245 -0.339017 0.936836  0.922559  0.579431
-0.046911 -0.344692 0.935420 0.922558 0.579015
-0.042935 -0.348797 0.936017 0.922556  0.578947
-0.043847 -0.349729 0.935686  0.922556  0.578936
-0.043130 -0.350398 0.935595  0.922556  0.578934
-0.043289 -0.350559 0.935531  0.922556  0.578933
-0.043162 -0.350673  0.935502  0.9225566  0.578933
-0.043190 -0.350701 0.935490 0.922556  0.578933
it =
11
eVector =
-0.0431895770878849
-0.350701322179119
0.935490360121179
LagrangeMultiplier =



0.922555825727686
functionValue =
0.578933388000384
eValue =
0.578932792177206
evec =
-0.0431682042947913
-0.350731446032482
0.935480603167125

eval =
0.578933385691052
0
0
>>

-0.497425032351127
0.819589100011505
0.284327354176152

0

2.13307447534853

0

-0.866432249704755
-0.453057567982585
-0.209842790596346

0
0
7.28799213896042

A typical run to compute x,, gives the following results:

>> x1 x2
0.933380 0.683332 0
0.947555 0.484426 0
0.905988 0.479191 0
0.889576 0.462989 0
0.879566 0.461346 0
0.874313 0.456482 0
0.871062 0.455954 0
0.869237 0.454280 0
0.868098 0.454097 0
0.867445 0.453499 0
0.867036 0.453434 0
0.866800 0.453218 0
0.866652 0.453194 0
0.866566 0.453116 0
0.866512 0.453107 0

it =

14
eVector =

0.866512072422619

0.453107318641183

0.209839029882331
LagrangeMultiplier =

x3

.212560
.251870
.205891
.221467
.208995
.213748
.209596
.211226
.209761
.210341
.209814
.210024
.209832
.209909
.209839

LagrangeMultiplier f

0.
.829800
.827159
.826661
.826465
.826413
.826392
.826385
.826383
.826382
.826381
.826381
.826381
.826381
.826381

O OO OO OO OO OO o oo

839238

-7.103503
-7.268574
-7.283123
-7.286493
-7.287498
-7.287822
-7.287932
-7.287971
-7.287984
-7.287989
-7.287991
-7.287992
-7.287992
-7.287992
=7.287992



0.826381178569984
functionValue =
7.28799212130127
eValue =
7.28931732749741
evec =
-0.0431682042947913 -0.497425032351127 -0.866432249704755
-0.350731446032482 0.819589100011505 -0.453057567982585
0.935480603167125 0.284327354176152 -0.209842790596346

eval =
0.578933385691052 0 0
0 2.13307447534853 0
0 0 7.28799213896042
>>

For both x; and x,, the results agree very well with those obtained directly
using Matlab’s eig function.

Also notice that there is no special significance to the value of the Lagrange
multiplier. Its value depends on the starting point used in the steepest descent
method.

If instead of the above constraint function g(x), one uses

g(X) = XTX - ]-a

the converged solution must be scaled in order to get a normalized eigenvector.



