
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

PageRank

K. Ming Leung

Abstract: The basic ideas behind Google’s PageRank
algorithm is discussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: December 2, 2004

mailto:mleung@poly.edu

Table of Contents
1. Introduction
2. The PageRank Concept
3. Markov Chain Transitional Matrix for PageRank
4. Computing PageRanks
5. An Illustrative Example
6. Moler’s surfer Program

Section 1: Introduction 3

1. Introduction

Within the past few years, Google[1] has become by far the most
utilized search engine worldwide. A decisive factor, besides high per-
formance and ease of use, is the superior quality of search results
compared to other search engines. This quality of search results is
substantially based on a sophisticated method, called PageRank[2],
to rank web documents.

The PageRank algorithm was developed by Google’s founders,
Larry Page and Sergey Brin, when they were graduate students at
Stanford University. PageRank is determined entirely by the link
structure of the World Wide Web. It is recomputed about once a
month and does not involve the actual content of any Web pages or
individual queries. Then, for any particular query, Google finds the
pages on the Web that match that query and lists those pages in the
order of their PageRank.

There is no doubt that within the past years many changes, ad-
justments and modifications regarding the ranking methods of Google
have taken place. Some details of the algorithm are well-kept com-

Toc JJ II J I Back J Doc Doc I

Section 2: The PageRank Concept 4

pany secrets. We will discuss here one particular version of it in the
hope that the basic ideas are still valid today.

2. The PageRank Concept

Since the early stages of the world wide web, search engines have
developed different methods to rank web pages. Until today, the oc-
currence of a search phrase within a document is one major factor
within ranking techniques of virtually any search engine. The occur-
rence of a search phrase can thereby be weighted by the length of a
document (ranking by keyword density) or by its accentuation within
a document by HTML tags.

For the purpose of better search results and especially to make
search engines resistant against automatically generated web pages
based upon the analysis of content specific ranking criteria (doorway
pages), the concept of link popularity was developed. Following this
concept, the number of inbound links for a document measures its
general importance. Hence, a web page is generally more important,
if many other web pages link to it. The concept of link popularity

Toc JJ II J I Back J Doc Doc I

Section 2: The PageRank Concept 5

often avoids good rankings for pages which are only created to deceive
search engines and which don’t have any significance within the web,
but numerous webmasters elude it by creating masses of inbound links
for doorway pages from just as insignificant other web pages.

Contrary to the concept of link popularity, PageRank is not simply
based upon the total number of inbound links. The basic approach
of PageRank is that a document is in fact considered the more im-
portant the more other documents link to it, but those inbound links
do not count equally. First of all, a document ranks high in terms of
PageRank, if other high ranking documents link to it.

So, within the PageRank concept, the rank of a document is given
by the rank of those documents which link to it. Their rank again is
given by the rank of documents which link to them. Hence, the PageR-
ank of a document is always determined recursively by the PageRank
of other documents. In the end, PageRank is based on the linking
structure of the whole web. Although this approach seems to be very
broad and complex, Page and Brin were able to put it into practice
by a relatively trivial algorithm.

Toc JJ II J I Back J Doc Doc I

Section 3: Markov Chain Transitional Matrix for PageRank 6

3. Markov Chain Transitional Matrix for PageRank

Imagine surfing the Web, going from page to page by randomly choos-
ing an outgoing link from one page to get to the next. This can lead
to dead ends at pages with no outgoing links, or cycles around cliques
of interconnected pages. So, a certain fraction of the time, simply
choose a random page from the Web. This theoretical random walk is
known as a Markov chain or Markov process. The limiting probability
that an infinitely dedicated random surfer visits any particular page
is its PageRank. A page has high rank if other pages with high rank
link to it.

Let W be the set of Web pages that can be reached by following
a chain of hyperlinks starting at some root page and let n be the
number of pages in W . For Google, the set W actually varies with
time, but by the end of 2002, n was over 3 billion. Let G be the n-by-n
connectivity matrix of a portion of the Web, that is gij = 1 if there
is a hyperlink to page i from page j and zero otherwise. The matrix
G can be huge, but it is very sparse. Its jth column shows the links
on the jth page. The number of nonzeros in G is the total number of

Toc JJ II J I Back J Doc Doc I

Section 3: Markov Chain Transitional Matrix for PageRank 7

hyperlinks in W . Let ri and cj be the row and column sums of G.

ri =
∑

j

gij cj =
∑

i

gij .

The quantities rj and cj are the in-degree and out-degree of the jth
page. Let p be the probability that the random walk follows a link.
A typical value is p = 0.85. Then 1 − p is the probability that an
arbitrary page is chosen. Let A be the n-by-n matrix whose elements
are

aij = p
gij

cj
+ δ,

where δ = (1− p)/n.
Notice that A comes from scaling the connectivity matrix by its

column sums. The jth column is the probability of jumping from
the jth page to the other pages on the Web. Most of the elements
of A are equal to δ, the probability of jumping from one page to
another without following a link. If n = 3 × 109 and p = 0.85, then
δ = 5 × 10−11. The matrix A is the transition probability matrix of
the Markov chain. Its elements are all strictly between zero and one.

Toc JJ II J I Back J Doc Doc I

Section 3: Markov Chain Transitional Matrix for PageRank 8

In particular, its column sums are all equal to one since∑
i

aij =
∑

i

[
p
gij

cj
+ δ

]
=

p

cj

∑
i

gij + n
1− p

n
= 1.

An important result known as the Perron-Frobenius Theorem ap-
plies to such matrices. It concludes that a nonzero solution of the
equation

x = Ax

exists and is unique to within a scaling factor. If this scaling factor is
chosen so that ∑

i

xi = 1

then x is uniquely determined and is the state vector of the Markov
chain. This vector is Google’s PageRank. The elements of x are all
positive and less than one.

Toc JJ II J I Back J Doc Doc I

Section 4: Computing PageRanks 9

4. Computing PageRanks

The vector x is the solution to the singular, homogeneous linear sys-
tem

(I−A)x = 0
For modest n, an easy way to compute x in Matlab is to start with
some approximate solution, such as the PageRanks from the previous
month, or
x = ones(n,1)/n

Then simply repeat the assignment statement
x = A*x

until successive vectors agree to within a specified tolerance. This is
known as the power method and is about the only possible approach
for very large n. In practice, the matrices G and A are never actually
formed. One step of the power method would be done by one pass
over a database of Web pages, updating weighted reference counts
generated by the hyperlinks between pages.

Toc JJ II J I Back J Doc Doc I

Section 4: Computing PageRanks 10

The best way to compute PageRank in Matlab is to take advantage
of the particular structure of the Markov matrix. The equation

x = Ax

can be written
x = (pGD + δeeT)x

where e is the n-vector of all ones and D is the diagonal matrix formed
from the reciprocals of the outdegrees, so that

djj =
1
cj

We want to have
eT x = 1

so the equation becomes

(I− pGD)x = δe

As long as p is strictly less than one, the coefficient matrix I−pGD is
nonsingular and these equations can be solved for x. This approach

Toc JJ II J I Back J Doc Doc I

Section 4: Computing PageRanks 11

preserves the sparsity of G, but it breaks down as p → 1 and δ → 0.
Once G has been generated, we need to scale it by its column sums,

c = sum(G)

It has been proposed that future versions of Matlab allow the
expression

G./c

to divide each column of G by the corresponding element of c. Until
this is available, it is best to use the spdiags function to create a
sparse diagonal matrix,

D = spdiags(1./c’,0,n,n)

The sparse matrix product G*D will then be computed efficiently.
The statements

p = .85
delta = (1-p)/n
e = ones(n,1)
I = speye(n,n)
x = (I - p*G*D)\(delta*e)

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 12

compute PageRank by solving the sparse linear system with Gaussian
elimination.

5. An Illustrative Example

The figure here shows the graph for an example involving only n = 6
instead of n = 3 × 109 web pages. Pages on the Web are identified
by strings known as uniform resource locators, or URLs. Most URLs
begin with http because they use the hypertext transfer protocol. In
Matlab we can store the URLs as an array of strings in a cell array.
This example involves a 6-by-1 cell array.
U = {’http://www.alpha.com’
’http://www.beta.com’
’http://www.gamma.com’
’http://www.delta.com’
’http://www.rho.com’
’http://www.sigma.com’}

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 13

1. alpha

6. sigma

4. delta

5. rho

2. beta

3. gamma

Two different kinds of indexing into cell arrays are possible. Paren-
theses denote subarrays, including individual cells, and curly braces
denote the contents of the cells. If k is a scalar, then U(k) is a
1-by-1 cell array consisting of the kth cell in U, while Uk is the
string in that cell. Thus U(1) is a single cell and U1 is the string

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 14

’http://www.alpha.com’. Think of mail boxes with addresses on a
city street. B(502) is the box at number 502, while B502 is the mail
in that box. We can generate the connectivity matrix by specifying
the pairs of indices (i,j) of the nonzero elements. Because there is a
link to beta.com from alpha.com, the (2,1) element of G is nonzero.
The nine connections are described by
i = [2 3 4 4 5 6 1 6 1]
j = [1 2 2 3 3 3 4 5 6]

A sparse matrix is stored in a data structure that requires memory
only for the nonzero elements and their indices. This is hardly nec-
essary for a 6-by-6 matrix with only 27 zero entries, but it becomes
crucially important for larger problems. The statements
n = 6
G = sparse(i,j,1,n,n);
full(G)

generate the sparse representation of an n-by-n matrix with ones in
the positions specified by the vectors i and j and display its full rep-
resentation.

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 15

0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

The statement
c = full(sum(G))

computes the column sums
c =
1 2 3 1 1 1

The diagonal matrices I and D are computed as before

I = speye(n,n)
D = spdiags(1./c’,0,n,n)

The statement
x = (I - p*G*D)\(delta*e)

then solves the sparse linear system to produce

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 16

x =
0.2675
0.2524
0.1323
0.1697
0.0625
0.1156

For this tiny example, the smallest element of the Markov transition
matrix is δ = .15 = 6 = .0250.
A = p*G*D + delta
A =
0.0250 0.0250 0.0250 0.8750 0.0250 0.8750
0.8750 0.0250 0.0250 0.0250 0.0250 0.0250
0.0250 0.4500 0.0250 0.0250 0.0250 0.0250
0.0250 0.4500 0.3083 0.0250 0.0250 0.0250
0.0250 0.0250 0.3083 0.0250 0.0250 0.0250
0.0250 0.0250 0.3083 0.0250 0.8750 0.0250

Toc JJ II J I Back J Doc Doc I

Section 5: An Illustrative Example 17

Notice that the column sums of A are all equal to one. The bar graph
of x is shown in the following figure.

1 2 3 4 5 6
0

0.1

0.2

0.3

P
ag

eR
an

k

Example of a Tiny Web

If the URLs are sorted in PageRank order and listed along with
their in- and out-degrees, the result is

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 18

PageRank in out url
1 0.2675 2 1 http://www.alpha.com
2 0.2524 1 2 http://www.beta.com
4 0.1697 2 1 http://www.delta.com
3 0.1323 1 3 http://www.gamma.com
6 0.1156 2 1 http://www.sigma.com
5 0.0625 1 1 http://www.rho.com

We see that alpha has a higher PageRank than delta or sigma, even
though they all have the same number of links, and that beta is ranked
second because it basks in alpha’s glory. A random surfer will visit
alpha almost 27% of the time and rho just about 6% of the time.

6. Moler’s surfer Program

Moler’s collection of NCM programs includes surfer.m. A statement
like
[U,G] = surfer(’http://www.xxx.zzz’,n)

starts at a specified URL and tries to surf the Web until it has visited
n pages. If successful, it returns an n-by-1 cell array of URLs and an

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 19

n-by-n sparse connectivity matrix. The function uses urlread, which
was introduced in Matlab 6.5, along with underlying Java utilities to
access the Web. Surfing the Web automatically is a dangerous under-
taking and this function must be used with care. Some URLs contain
typographical errors and illegal characters. There is a list of URLs
to avoid that includes .gif files and Web sites known to cause diffi-
culties. Most importantly, surfer can get completely bogged down
trying to read a page from a site that appears to be responding, but
that never delivers the complete page. When this happens, it may be
necessary to have the computer’s operating system ruthlessly termi-
nate Matlab. With these precautions in mind, you can use surfer to
generate your own PageRank examples.

The statement
[U,G] = surfer(’http://www.harvard.edu’,500)

accesses the home page of Harvard University and generates a 500-
by-500 test case. The graph generated in August, 2003, is available
in the NCM directory. The statements
load harvard500

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 20

spy(G)

produce a spy plot that shows the nonzero structure of the connectiv-
ity matrix.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2636

harvard500: spy(G)

The statement
pagerank(U,G)

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 21

computes page ranks, produces a bar graph of the ranks, and prints
the most highly ranked URLs in PageRank order. For the harvard500
data, the dozen most highly ranked pages are

PageRank in out url
1 0.0823 195 26 http://www.harvard.edu

10 0.0161 21 18 http://www.hbs.edu
42 0.0161 42 0 http://search.harvard.edu:8765/custom/query.html
130 0.0160 24 12 http://www.med.harvard.edu
18 0.0135 45 46 http://www.gse.harvard.edu
15 0.0129 16 49 http://www.hms.harvard.edu
9 0.0112 21 27 http://www.ksg.harvard.edu

17 0.0109 13 6 http://www.hsph.harvard.edu
46 0.0097 18 21 http://www.gocrimson.com
13 0.0084 9 1 http://www.hsdm.med.harvard.edu
260 0.0083 26 1 http://search.harvard.edu:8765/query.html
19 0.0081 23 21 http://www.radcliffe.edu

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 22

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
P

ag
eR

an
k

Example of harvard500

The URL where the search began, www.harvard.edu, dominates.
Like most universities, Harvard is organized into various colleges and
institutes, including the Kennedy School of Government, the Harvard
Medical School, the Harvard Business School, and the Radcliffe In-
stitute. You can see that the home pages of these schools have high

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 23

PageRank. With a different sample, such as the one generated by
Google itself, the ranks would be different.

Toc JJ II J I Back J Doc Doc I

Section 6: Moler’s surfer Program 24

References

[1] Google is a trademark of Google inc., Mountain View, CA, USA.
3

[2] PageRank is a trademark of Google inc., Mountain View, CA,
USA. It is protected by US Patent 6,285,999. 3

[3] Some of the materials here are adopted from C. Moler, Numerical
Computing with Matlab at the Mathworks site.

Toc JJ II J I Back J Doc Doc I

http://www.mathworks.com/moler/

	Table of Contents
	1 Introduction
	2 The PageRank Concept
	3 Markov Chain Transitional Matrix for PageRank
	4 Computing PageRanks
	5 An Illustrative Example
	6 Moler's surfer Program

