
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Differential Evolution

K. Ming Leung

Abstract: The differential evolution algorithm for find-
ing the global minimum of a possibly nonlinear and non-
differential continuous space function is discussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: January 21, 2004

mailto:mleung@poly.edu


Table of Contents
1. Introduction
2. Creating the Initial Population
3. Scheme for generating Potential Off-Springs
4. Selection Scheme for New Off-Springs
5. Termination Condition
6. Other DE Variants or Strategies



Section 1: Introduction 3

1. Introduction

Price and Storn introduced the Differential Evolution (DE) algorithm
several years ago [1, 2, 3] as a new heuristic approach for globally
minimizing possibly nonlinear and non-differentiable continuous space
functions. Problems involving global minimization over continuous
space are ubiquitous throughout the science and engineering commu-
nities. DE is a class of floating-point encoded, evolutionary optimiza-
tion algorithms. It fulfills three very important requirements of any
practical optimization technique. DE

1. has the ability to find the global minimum regardless of the
initial parameter values

2. can give reasonably fast convergence

3. has only a few controlling parameters so that it is easy to use
Although we will not talk about it here. DE can handle integer

and discrete variables, as well as optimization problems where the
parameters must obey a set of constraints.

Toc JJ II J I Back J Doc Doc I



Section 1: Introduction 4

Given a scalar function f that depends on n real parameters, xj ,
where j = 1, 2, . . . , n, we are interested in a function of the form:

f(x) : Rn → R, where x = [x1, x2, . . . , xn]T .

The goal is to find a set of parameters given by a vector x∗ =
[x∗1, x

∗
2, . . . , x

∗
n]T that minimizes the value of this objective (cost) func-

tion f. That means that

x∗ = min
x∈Rn

f(x).

The number of parameters is specified by n. Here we assume that the
parameters are real but are not subject to any other constraints.

As with all evolutionary optimization algorithms, DE works with
a population of potential solutions, rather than with a single potential
solution. Each of the potential solutions in the population is referred
to as an individual. Typically the population size, Np, is held fixed
from one generation to the next.

In each generation, the population therefore contains Np x vectors

x(1),x(2), . . . ,x(Np).

Toc JJ II J I Back J Doc Doc I



Section 1: Introduction 5

Each individual vector in the population, x(i), has n components

x(i) = [x(i)
1 , x

(i)
2 , . . . , x(i)

n ]T , i = 1, 2, . . . , Np.

Each component, x
(i)
j , represents the j-th parameter (chromosome) of

the i-th individual.
The DE algorithm has the following basic steps.
1. Start with an initial population consisting of Np individuals

whose chromosomes are generally chosen randomly.

2. A scheme is used to generate potential off-springs (new x vec-
tors) from the population, and to select them to go onto the
next generation.

3. This process is repeated from one generation to the next until
a chosen termination condition is met.

The solution for the minimization problem we sought for is given by
the fittest individual (the vector x∗ whose function value f(x∗) is the
lowest) of the final generation.

Toc JJ II J I Back J Doc Doc I



Section 2: Creating the Initial Population 6

2. Creating the Initial Population

We start by choosing a population size, Np. It is a fundamental con-
trolling parameter of the DE algorithm, affecting whether the method
will converge or not, and if so, whether it converges to the global min-
imum. The rate of convergence as well as the efficiency, in terms of
the number of function evaluations, are also affected.

It is important to choose Np to be larger than n, otherwise the
population does not have enough genetic diversity and the species
can never be able to generate the fittest individual (the optimized
solution). Selecting too large a value for Np decreases the efficiency
since it will take more computing time to process each generation.

After choosing Np, we need to create the initial population. In case
we have little idea where the optimized parameters, x∗j may be, except

for the fact that it must lie between a lower bound x
(L)
j and an upper

bound x
(U)
j , then we can choose the j-th chromosome randomly in the

interval [x(L)
j , x

(U)
j ]. That is, for i = 1, 2, . . . , Np and j = 1, 2, . . . , n

Toc JJ II J I Back J Doc Doc I



Section 3: Scheme for generating Potential Off-Springs 7

we let
x

(i)
j = x

(L)
j + r

(i)
j · (x(U)

j − x
(L)
j )

where r
(i)
j is a random number distributed statistically randomly and

uniformly in the interval [0, 1]. Note that when r
(i)
j is 0, x

(i)
j = x

(L)
j ,

and when r
(i)
j is 1, x

(i)
j = x

(U)
j . And for r

(i)
j somewhere between 0

and 1, x
(i)
j is between x

(L)
j and x

(U)
j .

If the actual solution has components that lie outside these lower
and upper bounds, it is possible that DE can still converge to the
solution, although the rate of convergence may be very slow.

3. Scheme for generating Potential Off-Springs

For each individual in the population, a potential (trial) off-spring for
the next generation is created according to the scheme:

v
(i)
j =

{
x

(i1)
j + s · (x(i2)

j − x
(i3)
j ) if r

(i)
j <= c or j = n

(i)
j

x
(i)
j otherwise

(1)

Toc JJ II J I Back J Doc Doc I



Section 3: Scheme for generating Potential Off-Springs 8

Here i1, i2 and i3 are 3 randomly chosen indexes referring to 3 ran-
domly chosen individuals in the current population. They are mu-
tually different from each other and from the running index, i. For
each i and j, r

(i)
j is a uniformly distributed random real number in

[0, 1], and n
(i)
j is a randomly chosen integer from 1 to n. The use of

n
(i)
j is to ensure that at least one chromosome of a potential off-spring

differs from its counterpart in the current generation. Parameter s is
a real factor in the range [0, 2] that controls the scale of the difference
(x(i2)

j − x
(i3)
j ) that is added to x

(i1)
j to form a potentially new j-th

chromosome for the i-th individual. Parameter c gives the probabil-
ity that components of a potential off-spring will be accepted. If the
component is not accepted, then its value remain unchanged.

When DE converges, a certain fraction of the vectors turn out to
be all very close the best vector. It is important to note that the
potential off-spring created by these vectors are going to be again
almost identical copies of their parents. If this is not true, then the
algorithm will unlikely lead to converging results. This is required of
any other strategies for creating potential off-springs.

Toc JJ II J I Back J Doc Doc I



Section 3: Scheme for generating Potential Off-Springs 9

The above equation actually consists of 2 steps. The first step in-
volves generating a new vector with vectors in the current population,
and it is referred to as mutation. The second step involves a stochas-
tic process that determine if the component is accepted or rejected.
This process is known as crossover.

Np, s, and c are the 3 fundamental controlling parameter of the DE
algorithm. Once their values have been chosen, they remain fixed from
one generation to the next. The choice of values for these 3 parameters
can affect whether the method will converge or not, and if so, whether
it converges to the global minimum. The rate of convergence as well as
the number of function evaluations are also affected. Suitable values
for these controlling parameters can be found by trial-and-error after
a several runs using different values. Fortunately DE is rather robust
in that the global minimum can be obtained for s and c varying by
10−20%, and even much larger variations in Np, as long as it is large
enough.

DE is so robust that sometimes DE still converges to the cor-
rect global minimum even when the computer program contains bugs.
Thus one has to exercise extreme care in debugging a DE computer

Toc JJ II J I Back J Doc Doc I



Section 4: Selection Scheme for New Off-Springs 10

program.
The above scheme or strategy for creating potential off-spring is

known as DE/rand/1/bin. Other strategies exist and have been ex-
plored.

4. Selection Scheme for New Off-Springs

The function value (cost) of each potential off-spring is compared
with its counterpart in the current population. The one with the
lower function value will be included in the population of the next
generation. As a result, all the individuals of the next generation are
at least as good as their counterparts in the current generation. The
interesting point with this selection scheme is that a trial vector is
not compared against all the individuals in the current population,
but only against its own counterpart in the current population. This
selection process is a very greedy one and yet DE can avoid premature
convergence to a local minimum and finds the global minimum.

Toc JJ II J I Back J Doc Doc I



Section 5: Termination Condition 11

5. Termination Condition

One must be careful in choosing a suitable termination condition in
DE. Clearly for each generation one must keep track of the best in-
dividual whose function value is the lowest. The solution of the min-
imization problem is given by the vector of that individual for the
final generation. The key point is that best individual often does not
change for several generations, even when the best vector is no where
close to the ultimate solution. An implementation of the above vari-
ant of DE in MATLAB can be found at the website for this course.
You can find out the termination condition used there.

6. Other DE Variants or Strategies

Other than the DE variant or strategy we considered above in Eq.
(1), many other choices exist for creating potential off-springs. We
will mention a few other strategies here.

For each vector in the current population, x(i), there are a fair
number of strategies for generating trial vectors, u(i). We consider
here the following 5 strategies:

Toc JJ II J I Back J Doc Doc I



Section 6: Other DE Variants or Strategies 12

v
(i)
j = x

(best)
j + s · (x(r1)

j − x
(r2)
j ), (2)

v
(i)
j = x

(r1)
j + s · (x(r2)

j − x
(r3)
j ), (3)

v
(i)
j = x

(i)
j + λ · (x(best)

j − x
(i)
j ) + s · (x(r1)

j − x
(r2)
j ), (4)

v
(i)
j = x

(best)
j + s · (x(r1)

j − x
(r2)
j + x

(r3)
j − x

(r4)
j ), (5)

v
(i)
j = x

(r1)
j + s · (x(r2)

j − x
(r3)
j + x

(r4)
j − x

(r5)
j ), (6)

Here x(r1), x(r2), x(r3), x(r4), and x(r5) are randomly chosen but
mutually distinct vectors in the current population. The current best
vector is x(best). The scales of the difference vectors are controlled
by s. For strategy 3, λ controls the basic vector, given by the original
vector x(i) for λ = 0 and by the best vector x(best) for λ = 1.

Toc JJ II J I Back J Doc Doc I



Section 6: Other DE Variants or Strategies 13

References

[1] Rainer Storn, ”On the usage of differential evolution for function
optimization”, NAFIPS 1996, Berkeley, pp. 519 - 523, (1996). 3

[2] Rainer Storn and Kenneth Price, ”Differential evolution - a sim-
ple and efficient adaptive scheme for global optimization over con-
tinuous spaces”, Technical Report TR-95-012, ICSI, March 1995.
(Available via ftp). 3

[3] Rainer Storn and Kenneth Price, ”Differential Evolution A sim-
ple evolution strategy for fast optimization”, Dr. Dobb’s Journal,
April 97, pp. 1824 and p. 78, (1997). 3

[4] Jouni Lampinen and Ivan Zelinka, ”Mixed Integer-Discrete-
Continuous Optimization By Differential Evolution, Part 1:
the optimization method”, in Proceedings of MENDEL’99, 5th
International Mendel Conference on Soft Computing, June 9.12.
1999, Brno, Czech Republic, ed. by Pavel Osmera.

Toc JJ II J I Back J Doc Doc I

file:ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z

	Table of Contents
	1 Introduction
	2 Creating the Initial Population
	3 Scheme for generating Potential Off-Springs
	4 Selection Scheme for New Off-Springs
	5 Termination Condition
	6 Other DE Variants or Strategies

