
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

The Hill Cipher

K. Ming Leung

Abstract: The Hill cipher in cryptography is used to
illustrate the application of matrices defined over a fi-
nite field, and the handling of characters and strings in
computer programs.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: November 16, 2004

mailto:mleung@poly.edu

Table of Contents
1. Introduction
2. Arithmetic over a finite field
3. Example of a Finite Field
4. Character Set and Strings
5. The m = 2 Hill Cipher

Section 1: Introduction 3

1. Introduction

Cryptography, to most people, is concerned with keeping communica-
tions private. Indeed, the protection of sensitive communications has
been the emphasis of cryptography throughout much of its history.
As we will see, however, this is only one part of today’s cryptography.

Encryption is the transformation of data into some unreadable
form. Its purpose is to ensure privacy by keeping the information
hidden from anyone for whom it is not intended, even those who can
see the encrypted data. Decryption is the reverse of encryption ; it is
the transformation of encrypted data back into some intelligible form.

Encryption and decryption require the use of some secret infor-
mation, usually referred to as a key. Depending on the encryption
mechanism used, the same key might be used for both encryption and
decryption, while for other mechanisms, the keys used for encryption
and decryption might be different.

But today’s cryptography is more than secret writing, more than
encryption and decryption. Authentication is as fundamental a part
of our lives as privacy. We use authentication though out our ev-

Toc JJ II J I Back J Doc Doc I

Section 1: Introduction 4

eryday life, when we sign our name to some document for instance,
and as we move to a world where our decisions and agreements are
communicated electronically, we need to replicate these procedures.

Cryptography provides mechanisms for such procedures. A digital
signature binds a document to the possessor of a particular key, while
a digital timestamp binds a document to its creation at a particular
time. These cryptographic mechanisms can be used for example to
control access to a shared disk drive, a high security installation or to
a pay-per-view TV channel.

While modern cryptography is growing increasingly diverse, cryp-
tography is fundamentally based on problems that are difficult to
solve. A problem may be difficult because its solution requires some
secret knowledge, such as decrypting an encrypted message or sign-
ing some digital document, or the problem may be hard because it
is intrinsically difficult to complete, such as finding a message which
produces a given hash value.

We illustrate here some simple ideas concerning encryption and de-
cryption using the cryptographic technique known as the Hill cipher.
Hill cipher involves the use of n × n matrices defined over a finite

Toc JJ II J I Back J Doc Doc I

Section 2: Arithmetic over a finite field 5

field. We will also take the opportunity to illustrate how characters
and strings can be handled in (Matlab) programs.

2. Arithmetic over a finite field

A field is a set of numbers with an addition operation and a multipli-
cation operation defined so that the set of numbers are closed under
these operations. That means that the result of adding or multiplying
any two numbers in the set has to be in the set as well.

There has to be an identity element for addition (referred to as 0),
such that adding 0 to any element of the set gives exactly the same
element.

And there has to be an identity element for multiplication (referred
to as 1), such that multiplying any element by the unit element, 1,
gives back the same element.

Some other familiar properties are also required: there are addi-
tive and multiplicative inverses for every number (except that zero
has no multiplicative inverse); and the commutative, associative, and
distributive laws are obeyed in exactly the same ways as in ordinary

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 6

arithmetic.
Examples of a field is the set of real numbers with ordinary op-

erations of addition and multiplication. Other examples include the
set of complex numbers and rational numbers with ordinary addition
and multiplication operations. However, all these examples of fields
have an infinite number of elements. A field with a finite number of
elements is called a finite field (also known as a Galois field). It has
the interesting feature that arithmetic could be done exactly by finite
machines, such as computers. Finite-field arithmetic has important
applications such as error-correcting codes and cryptography.

3. Example of a Finite Field

If p is a prime number, then the set of integers 0, 1, 2, . . . , p− 1 with
the usual addition and multiplication constitutes a finite field, if all
arithmetics are carried out modulo p. The order of a field is defined
as the number of elements in the set. This field is denoted by GF (p),
which stands for Galois field of order p. Numbers are considered
identical to each other if they give the same remainders after dividing

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 7

by p. Closure of the set under these operations is therefore evident.
Given any integer m, its integer remainder after dividing by p is given
in C and C++ by m%p, and by mod(m,p) in Matlab.

As an example, let us take p = 5 and consider the set Z5 which
has elements 0, 1, 2, 3, 4. The addition table is

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 5
2 2 3 4 5 6
3 3 4 5 6 7
4 4 5 6 7 8

Taking mod 5 of the result gives

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 8

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The multiplication table is

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 6 8
3 0 3 6 9 12
4 0 4 8 12 16

Taking mod 5 of the result gives

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 9

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

From the table we see that 3 × 2 ≡ 1 and therefore 3 and 2 are
multiplicative inverses of each other. Thus we have

1−1 = 1, 2−1 = 3, 3−1 = 2, 4−1 = 4.

Notice that the last element of the set 4 is its own inverse. This is
always true because mod ((p − 1)2, p) = mod (p2 − 2p + 1, p) =
mod (1, p) = 1, that means that p − 1 is its own inverse. It is clear
that this is true even if p is not a prime.

If p is not a prime number, then the set of integers 0, 1, 2, . . . , p− 1
with the usual addition and multiplication carried out modulo p does
not constitute a finite field. To illustrate we consider the case p = 6.
The multiplication table is:

Toc JJ II J I Back J Doc Doc I

Section 3: Example of a Finite Field 10

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 6 8 10
3 0 3 6 9 12 15
4 0 4 8 12 16 20
5 0 5 10 15 20 25

Taking mod 6 of the result gives

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

We see that 2, 3 and 4 have no multiplicative inverses. Thus we

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 11

do not have a finite field.

4. Character Set and Strings

Computers use the ASCII character set to store basic text. The char-
acter set uses seven of the eight bits in a byte to encode 128 charac-
ters. The first 32 characters are non-printing control characters, such
as tab, backspace and end-of-line. The 128th character is another
non-printing character representing the delete key. In between these
control characters are 95 printable characters, including a space, 10
digits, 26 lowercase letters, 26 uppercase letters and 32 punctuation
marks.

Matlab can easily display all the printable characters, in the order
determined by their ASCII encoding. Start with

x = reshape(32:127,32,3)’

This produces a 3-by-32 matrix.
x =

32 33 34 ... 61 62 63

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 12

64 65 66 ... 93 94 95
96 97 98 ... 125 126 127

The char function converts numbers to characters. The statement
c = char(x)

produces
c =

!"#$%&’()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
‘abcdefghijklmnopqrstuvwxyz{|}~

Actually the last element of x is 127, which corresponds to the non-
printing delete character. We have not try to display it here since it
may appear differently depending on your computer.

The first character in c, char(32), is the blank character. The
last printable character in c, char(126), is the tilde. The characters
representing digits are in the first line of c. In fact

d = char(48:57)

displays a ten-character string

Toc JJ II J I Back J Doc Doc I

Section 4: Character Set and Strings 13

d =
0123456789

This string can be converted to the corresponding numerical values
with double or real. The statement

double(d) - ’0’

produces
0 1 2 3 4 5 6 7 8

Comparing the second and third line of c, we see that the ASCII
encoding of the lowercase letters is obtained by adding 32 to the ASCII
encoding of the uppercase letters. Understanding this encoding allows
us to use vector and matrix operations in Matlab to manipulate text.

Our encryption technique involves modular arithmetic. All the
quantities involved are integers and the result of any arithmetic op-
eration is reduced by taking the remainder or modulus with respect
to a prime number, p. The Matlab functions rem(x,y) and mod(x,y)
both compute the remainder if x is divided by y. They produce the
same result if x and y have the same sign; the result also has that
sign. But if x and y have opposite signs, then rem(x,y) has the same

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 14

sign as x, while mod(x,y) has the same sign as y. Thus we will be
using the mod function here. Here is a table.
x = [37 -37 37 -37]’;
y = [10 10 -10 -10]’;
r = [x y rem(x,y) mod(x,y)]

produces
37 10 7 7

-37 10 -7 3
37 -10 7 -3

-37 -10 -7 -7

5. The m = 2 Hill Cipher

We have chosen to encrypt text that uses the entire ASCII character
set, not just the letters. There are 95 such characters. The next
larger prime number is p = 97, so we represent the p characters by the
integers 0:p-1 and do arithmetic mod p. The characters are encoded
two at a time. Each pair of characters is represented by a 2-vector, x.
For example, suppose the text contains the pair of letters ’TV’. The

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 15

ASCII values for this pair of letters are 84 and 86. Subtracting 32 to
make the representation start at 0 produces the column vector

x = 52
54

The encryption is done with a 2-by-2 matrix-vector multiplication
over the integers mod p.

y = Ax; mod p

where A is the matrix
A = 71 2

2 26

For our example, the product Ax is
Ax = 3800

1508

If this is reduced mod p the result is
y = 17

53

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 16

Converting this back to characters by adding 32 produces ’1U’. Now
comes the interesting part. Over the integers modulo p, the matrix A
is its own inverse. That is if

y = Ax; mod p

then
x = Ay; mod p

In other words, in arithmetic mod p, A2 is the identity matrix. You
can check this with Matlab:

p = 97;
A = [71 2; 2 26];
I = mod(A^2,p)

produces
I =

1 0
0 1

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 17

We can also directly find A−1. Since A is a 2×2 matrix, its inverse
is given by

A−1 = (detA)−1

[
a22 −a12

−a21 a11

]
,

where the determinant of A is given by detA = a11a22 − a21a12.
Again remember that all operations must be carried out in mod p
(=97) arithmetic.

For the above A, we have detA = 71 × 26 − 2 × 2 = 1842 = 96.
Since 96 = 97 − 1, and using a result that we proved earlier, we see
that 96−1 = 96. Therefore

A−1 = 96
[

26 −2
−2 71

]
=

[
2496 −192
−192 6816

]
=

[
71 2
2 26

]
.

Thus the inverse of A is indeed A itself.
The fact that A is its own inverse means that the encryption pro-

cess is its own inverse. The same function can be used to both encrypt
and decrypt a message.

The following Matlab function program named crypto97.m is an
implementation of the above m = 2 Hill cipher. The function begins

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 18

with a preamble.

function y = crypto97(x)
% CRYPTO Cryptography example.
% y = crypto97(x) converts an ASCII text string into another
% coded string. The function is its own inverse, so
% crypto97(crypto97(x)) gives x back.

A comment precedes the statement that assigns the prime p.

% Use a two-character Hill cipher with arithmetic
% modulo 97, a prime.
p = 97;

Characters with ASCII values of 169 and 174 are chosen to expand
the character set from 95 to 97.

% Choose two characters above ASCII 128 to expand set from 95 to 97.
c1 = char(169);
c2 = char(174);
x(x==c1) = 127;
x(x==c2) = 128;

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 19

The printable characters are then converted to integers mod p.
% Convert printable ASCII text to integers mod p.
x = mod(real(x-space),p);

Prepare for the matrix-vector product by forming a matrix with two
rows and lots of columns.

% Reshape into a matrix with 2 rows and
% floor(length(x)/2) columns.
n = 2*floor(length(x)/2);
X = reshape(x(1:n),2,n/2);

All this preparation has been so that we can do the actual finite field
arithmetic quickly and easily in Matlab.

% Encode with matrix multiplication modulo p.
A = [71 2; 2 26];
Y = mod(A*X,p);

Finally, convert the numbers back to printable characters.
% Reshape into a single row.
y = reshape(Y,1,n);

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 20

% If length(x) is odd, encode the last character.
% Recall that (p-1) is its own inverse!
if length(x) > n

y(n+1) = mod((p-1)*x(n+1),p);
end
% Convert to printable ASCII characters.
% Convert back to characters.
y = char(y+32);
y(y==127) = c1;
y(y==128) = c2;

As an example, let’s follow the computation of y = crypto97(’Hello
world’). We begin with a character string.

x = ’Hello world’

This is converted to an integer vector.
x =

40 69 76 76 79 0 87 79 82 76 68

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 21

The length(x) is odd, so the reshaping temporarily ignores the last
element.

X =
40 76 79 87 82
69 76 0 79 76

A conventional matrix-vector multiplication A*X produces an inter-
mediate matrix.

2978 5548 5609 6335 5974
1874 2128 158 2228 2140

Then the mod(.,p) operation produces
Y =

68 19 80 30 57
31 91 61 94 6

This is rearranged to a row vector.
y =

68 31 19 91 80 61 30 94 57 6

Now the last element of x is encoded by itself and attached to the end
of y.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 22

y =
68 31 19 91 80 61 30 94 57 6 29

Finally, y is converted back to a character string to produce the en-
crypted result.

y = ’d?3{p]>~Y&=’

If we now compute crypto97(y), we get back our original ’Hello world’
message.

Toc JJ II J I Back J Doc Doc I

Section 5: The m = 2 Hill Cipher 23

References

[1] Most of the materials here are adopted from C. Moler, Numerical
Computing with Matlab at the Mathworks site.

[2] G. Birkhoff, G. and S. MacLane, A Survey of Modern Algebra, 5th
edition New York: Macmillan, p. 413, 1996.

[3] D. Stinson Cryptography: Theory and Practice, 2nd edition, CRC
press, 2002.

Toc JJ II J I Back J Doc Doc I

http://www.mathworks.com/moler/
http://www.cacr.math.uwaterloo.ca/~dstinson/CTAP.html

	Table of Contents
	1 Introduction
	2 Arithmetic over a finite field
	3 Example of a Finite Field
	4 Character Set and Strings
	5 The m=2 Hill Cipher

