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Introduction

Cryptology is the study of the processes used to encode and decode messages for the
purpose keeping the content of the messages secret. Ideas developed in Linear Algebra
can provide techniques to aid in the breaking of these codes.

Of course there are many ways to encode a particular piece of writing, each with
it’s own level of complexity. One of the most basic methods of encoding is the simple
substitution cipher which we will be discussing here.

Methods of Cryptology

When employing the method of a substitution cipher we simply rearrange the order of
the alphabet. To encode a message we map the letters of the un-coded message to the
letter found in the corresponding position of the newly ordered alphabet. For example,
we use a simple reversed alphabet here where a is mapped to z, etc..

a → z, b → y, ..., z → a
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[a b c d e f g h i j k l m n o p q r s t u v w x y z]
[z y x w v u t s r q p o n m l k j i h g f e d c b a]

Then through the use of the permuted alphabet we can encode a simple message,

see spot run

as

hvv hklg ifm.

The recipient of the message has only the simple task of re-mapping the letters to
decode the secret message.

The Digram Frequency Matrix

The digram Frequency Matrix is the n×n array A where aij is the number of occurrences
of the ith letter followed by the jth letter. For demonstration purposes we will use a
restricted alphabet consisting of only,

[a b c d e]

and this short text of gibberish:

aabcd ddab ddace addeca babcbdeba abcdba ebad
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to obtain the digram frequency matrix.

A =

a
b
c
d
e



a b c d e

2 5 1 2 1
4 0 3 2 0
1 1 0 2 1
3 1 0 4 2
1 2 1 0 0


aabcd ddab ddace addeca babcbdeba abcdba ebad

Notice that the a13 entry is 1, the number of the occurrences of a followed by c.
Also, the a14 entry is 2, the number of occurrences of a followed by d.

And of course this idea generalizes to larger texts using the complete alphabet. Here
we use Abraham Lincoln’s Gettysburg Address to exemplify the extension of this idea.

Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to
the proposition that all men are created equal...
.
.
.

and that government of the people, by the people, for the people,
shall not perish from the earth.

This text yields the digram matrix below.
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0 1 2 5 0 1 4 0 2 0 1 9 0 15 0 1 0 10 5 36 1 8 0 0 1 0
1 0 0 0 5 0 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 0 1 0
12 0 0 0 4 0 0 2 1 0 0 0 0 0 7 0 0 4 0 1 0 0 0 0 0 0
2 0 1 6 14 0 0 3 13 0 0 0 0 0 4 1 0 0 4 4 1 1 4 0 0 0
16 3 8 26 3 5 2 7 6 0 0 4 5 10 5 4 1 22 9 12 2 4 8 0 3 0
3 0 0 1 0 1 0 0 5 0 0 0 0 0 10 0 0 3 0 3 1 0 0 0 0 0
5 1 0 0 5 0 1 4 0 0 0 1 0 0 3 1 0 6 0 0 0 0 1 0 0 0
24 0 0 0 32 1 0 0 7 0 0 1 0 0 8 0 0 0 0 5 1 0 0 0 0 0
0 1 8 1 3 0 2 0 0 0 0 2 0 16 9 0 0 2 9 8 0 7 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3 0 0 4 6 0 0 1 6 0 0 8 2 3 3 0 0 1 0 1 0 1 1 0 2 0
2 1 0 0 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
10 0 5 9 4 1 9 0 2 0 0 3 2 4 12 0 0 0 4 8 1 1 0 0 2 0
1 3 1 3 0 6 1 1 0 0 0 1 4 20 2 5 0 17 3 13 7 2 3 0 0 0
0 0 0 0 5 0 0 0 0 0 0 4 0 0 4 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
8 0 0 1 26 4 3 0 1 0 1 3 0 1 6 2 0 0 5 12 3 0 3 0 0 0
4 2 2 0 10 2 1 6 1 0 1 0 0 1 4 0 0 1 0 8 1 0 0 0 0 0
4 1 4 1 11 5 1 47 18 0 0 3 0 2 11 1 0 2 0 9 0 0 5 0 1 0
1 0 0 0 0 0 3 0 0 0 0 2 0 3 0 0 0 5 5 2 0 0 0 0 0 0
2 0 0 0 17 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 11 0 0 8 1 0 0 0 0 1 2 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notice that as in the previous example, the ijth entry is the number of occurrences
of the ith letter followed by the jth letter. While this 26×26 matrix is rather unwieldy,
there is an interesting point to be made. The j, x, and z vectors (both vertically and
horizontally) are all zeros. This follows from the fact that there are no j’s, x’s, or z’s
used in the text.

But for the time being let’s return to our more manageable example to show you
that the sum of each row of A is found by Ae, where e = (1, 1, 1, 1, 1)T

Ae =


2 5 1 2 1
4 0 3 2 0
1 1 0 2 1
3 1 0 4 2
1 2 1 0 0




1
1
1
1
1

 =


11
9
5
5
4

 = f (1)
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Multiplying on the right by e sums the columns of A, giving the occurrence vector f .
Note that the first entry in f is 11, the total number of occurrences where a is followed
by another letter and thus is the total number of a’s in the text. Similarly, AT e sums
the rows of A, giving the same vector f . This is easily checked by summing straight
across. Row one is,

2 + 5 + 1 + 2 + 1 = 11

as well, summing column one to get,

2 + 4 + 1 + 3 + 1 = 11,

which is equal to the first entry in f .

The Singular Value Decomposition

When faced with the problem of decoding a cipher, often the cryptalalyst’s first approach
is to try a comparison of the frequency of the encoded letters with the known frequencies
of typical un-coded text. We will refer to this as method 1. Another approach to
deciphering an encoded message is to attempt a partitioning of the encoded alphabet
into what we think are the vowel and consonant categories. We will refer to this as
method 2.

An important tool that will aid in both methods is the singular value decomposition,
or svd. Performing the svd on the frequency matrix A factors it into three matrices,
each of which contains useful information about the encoded text.

For some n× n matrix A, the singular value decomposition is

A = X∆Y T ,

where X is an n × n matrix whose columns xj are the left singular vectors, Y is an
n×n matrix whose columns yj are the right singular vectors, and ∆ is a diagonal n×n
matrix whose entries are the singular values δj .
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An expansion gives the following.

A = X∆Y T

=
(
x1 x2 . . . xn

)


δ1

δ2

. . .
δn




yT
1

yT
2
...

yT
n


= δ1x1y

T
1 + δ2x2y

T
2 + · · ·+ δnxnyT

n

The digram frequency matrix A equals the finite series above. The first term of the
series,

δ1x1y
T
1 ,

is called the rank one approximation. If δ1 is significantly larger than the remaining
singular values, then the rank one approximation closely resembles A.

Rank One Approximation

Via the rank one approximation, we can obtain some useful information about the
digram frequency matrix A. Since by equation (1),

Ae = AT e = f,

we can substitute A ≈ δ1x1y
T
1 and write

(δ1x1y
T
1 )e = (δ1x1y

T
1 )T e = f

(δ1x1y
T
1 )e = (δ1y1x

T
1 )e = f
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Reordering,
(δ1y

T
1 e)x1 = (δ1x

T
1 e)y1 = f.

In the last equation the left and right singular vectors are simply being multiplied
by the scalars (δ1y

T
1 e), and (δ1x

T
1 e). This means that x1 and y1 are proportional to f .

Having constructed A from the Gettysburg Address, and performing the svd, we will
now compare the first left and right singular vectors to f (see table 1).

At first glance this is not very impressive. While x1 and y1 show a fair amount of
correlation, f appears to have nothing to do with the other two, although we do have
conformation of the absence of j’s, x’s, and z’s by the zeros in those positions. However,
if we look at the frequencies of these entries the correlation is remarkable.

To obtain the relative frequency of each entry in any vector we just divide it by the
sum of all the entries in that vector (see table 2).

x′
1 =

x1∑
x1

y′
1 =

y1∑
y1

f ′ =
f∑
f

Amazingly x′ and y′ closely approximate f ′. Why is this significant? Given an
encoded text one can generate the digram frequency matrix, and then factor it by
svd. Using the first left and right singular vectors to approximate the frequency of the
occurrence for each letter in the cipher, a skilled cryptanalyst could compare them to
the frequencies of each letter in a typical, un-coded text and begin making guesses as
to what each coded letter might represent. For instance, since e is the most frequently
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x1 =



−0.3279
−0.0471
−0.1201
−0.2012
−0.4397
−0.0875
−0.0966
−0.3468
−0.1832
0.0000
−0.0099
−0.1204
−0.0607
−0.2166
−0.2387
−0.0523
−0.0007
−0.2954
−0.1683
−0.4455
−0.0533
−0.1167
−0.1211
0.0000
−0.0340
0.0000



y1 =



−0.3219
−0.0442
−0.1136
−0.2261
−0.4515
−0.1023
−0.0800
−0.3381
−0.2340
−0.0000
−0.0097
−0.1219
−0.0468
−0.2438
−0.2564
−0.0565
−0.0054
−0.2496
−0.1393
−0.4371
−0.0597
−0.0818
−0.1045
0.0000
−0.0344
0.0000



f =



102.0000
14.0000
31.0000
58.0000
165.0000
26.0000
28.0000
80.0000
68.0000
0.0000
3.0000
42.0000
13.0000
77.0000
93.0000
15.0000
1.0000
79.0000
44.0000
126.0000
21.0000
24.0000
28.0000
0.0000
10.0000
0.0000


Table 1: Comparing the first left and right singular vectors with the occurrence vector f .
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x′
1 =



0.0867
0.0124
0.0317
0.0532
0.1162
0.0231
0.0255
0.0917
0.0484
0.0000
0.0026
0.0318
0.0160
0.0572
0.0631
0.0138
0.0002
0.0781
0.0445
0.1177
0.0141
0.0308
0.0320
0.0000
0.0090
0.0000



y′
1 =



0.0856
0.0117
0.0302
0.0602
0.1201
0.0272
0.0213
0.0900
0.0622
0.0000
0.0026
0.0324
0.0125
0.0649
0.0682
0.0150
0.0014
0.0664
0.0371
0.1163
0.0159
0.0218
0.0278
0.0000
0.0092
0.0000



f ′ =



0.0889
0.0122
0.0270
0.0505
0.1437
0.0226
0.0244
0.0697
0.0592
0.0000
0.0026
0.0366
0.0113
0.0671
0.0810
0.0131
0.0009
0.0688
0.0383
0.1098
0.0183
0.0209
0.0244
0.0000
0.0087
0.0000


Table 2: Comparing the frequencies of the first left and right singular vectors with the
frequency of occurrence vector f .
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used letter in English texts, if the rank one approximation of an encoded text shows z
to be the most frequently occurring letter, it would be a pretty safe bet that z should
map to e.

As you might guess, this would be a long, arduous process. However, the crypt-
analyst’s job can be made much easier by looking at the rank two approximation. In
conjunction with what we have learned using the rank one approximation, this second
method will get us much closer to deciphering an encoded message.

Rank Two Approximation

Recall that

A = X∆Y T

=
(
x1 x2 · · · xn

)


δ1

δ2

. . .
δn




yT
1

yT
2
...

yT
n


= δ1x1y

T
1 + δ2x2y

T
2 + · · ·+ δnxnyT

n .

A rank two approximation of A is obtained by keeping only the first two terms of
the series

δ1x1y
T
1 + δ2x2y

T
2 ,

which is even closer to A than the rank one approximation and is integral to our second
method.

However, before we proceed, let’s make this transition into Linear Algebra complete
by thinking of the alphabet as two vectors, v and c. The entries of v signify a vowel as
a 1 and the entries of c signify a consonant as a 1.
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As before, we return to our restricted alphabet to demonstrate.

c =


0
1
1
1
0


a
b
c
d
e

v =


1
0
0
0
1


a
b
c
d
e

With these vectors we can mathematically express some important properties of any
text. For example, vT Av is the number of instances where a vowel is followed by a
vowel.

vT Av =
(
1 0 0 0 1

)


2 5 1 2 1
4 0 3 2 0
1 1 0 2 1
3 1 0 4 2
1 2 1 0 0




1
0
0
0
1



=
(
3 7 2 2 1

)


1
0
0
0
1


= 4

Indeed, as depicted below in red, there are only four instances in our previous example
where a vowel is followed by a vowel.

aabcd ddab ddace addeca babcbdeba abcdba ebad

And in a similar fashion it can be shown that:
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• cT Av is the number of instances where a consonant is followed by a vowel.

aabcd ddab ddace addeca babcbdeba abcdba ebad

• vT A(v + c) is the total number of vowels.

aabcd ddab ddace addeca babcbdeba abcdba ebad

• cT A(v + c) is the total number of consonants.

aabcd ddab ddace addeca babcbdeba abcdba ebad

The vfc rule and partitioning

It is a characteristic of many languages that their texts follow a simple rule called the vfc
rule. The vfc rule says that consonants are followed by vowels more often than vowels
are followed by vowels.

number of vowel-vowel pairs
number of vowels

<
number of consonant-vowel pairs

number of consonants

Some languages adhere more strictly to the vfc rule than others. For instance,
Hawaiian texts are completely vfc: every consonant is followed by a vowel. Although
in English vowels do occasionally follow vowels, it is still a predominantly vfc language.
We will use this fact in the next procedure.
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Using the vfc Rule

As stated earlier, a second approach to deciphering an encoded message is to attempt
a partitioning of the encoded alphabet into what we think are the vowel and consonant
categories. For our partition to be correct, the vfc rule must be satisfied. Now that we
have developed the symbolism for the number of consonants, vowels, and pairs, we can
express the vfc rule mathematically.

number of vowel-vowel pairs
number of vowels

<
number of consonant-vowel pairs

number of consonants
and symbolically,

vT Av

vT A(v + c)
<

cT Av

cT A(v + c)

Using the common denominator we can simplify.

(vT Av)(cT Ac)− (vT Ac)(cT Av) < 0

It has been deemed “the cryptanalyst’s problem” to find a partitioning of the en-
coded alphabet such that the above inequality will hold. Returning to the rank two
approximation, we propose to use the signs of the components of x2 and y2 to partition
the alphabet into v, c, and n vectors.

ci =

{
1, if xi2 > 0 and yi2 < 0,

0, otherwise

vi =

{
1, if xi2 < 0 and yi2 > 0,

0, otherwise
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ni =

{
1, if sign xi2 = sign yi2,

0, otherwise

Here n is the vector of letters that we cannot categorize as either vowels or consonants.
The reason why this partitioning scheme works is because we are using the rank two
approximation, A ≈ δ1x1y

T
1 + δ2x2y

T
2 .

Recall the final form of the vfc equation,

D = (vT Av)(cT Ac)− (vT Ac)(cT Av) < 0. (2)

Substituting this approximation in for A gives

D = vT (δ1x1y
T
1 + δ2x2y

T
2 )vcT (δ1x1y

T
1 + δ2x2y

T
2 )c

− vT (δ1x1y
T
1 + δ2x2y

T
2 )ccT (δ1x1y

T
1 + δ2x2y

T
2 )v. (3)

After some messy algebra, of which we will spare you the agony, four of the eight terms
cancel and we are left with

D = δ1δ2[(vT x1)(yT
1 v)(cT x2)(yT

2 c) + (vT x2)(yT
2 v)(cT x1)(yT

1 c)

− (vT x1)(yT
1 c)(cT x2)(yT

2 v)− (vT x2)(yT
2 c)(cT x1)(yT

1 v)]. (4)

Though we have four terms remaining, it is not hard to show that all are negative,
and thus D is negative, satisfying the vfc rule. Notice that each term is grouped into
four factors, a v or a c times an xj or a yj .

First, we know that the c and v are vectors of ones and zeros. Also, notice that the
entries in our first left and right singular vectors, (see table 1) are all negative. This
is explained by the Perron-Frobenius theorem which states that if A is a non-negative
matrix, then the first right and left singular vectors will both have either all non-positive
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entries or all non-negative entries. Since in our case, they are all non-positive any of the
above factors in which x1 or y1 appear will be negative. This takes care of eight of the
factors.

By our definition of the partition vectors you can see that v times a y2 or a c times
an x2 will yield a positive factor. Each of the remaining four factors are either a v times
an x2 or a c times a y2. Both of the these dot products will produce negative answers
by the definition. Observing where each of these factors appears in equation (4) shows
that D will be the sum of 4 negative terms.

v =



1
0
0
0
1
...


, x2 =



−0.5090
0.0413
0.0722
0.1439
−0.3304

...


, c =



0
1
1
1
0
...


, and y2 =



0.1582
−0.0386
−0.0787
−0.2161
0.5316

...


When applied to the Gettysburg Address the rank two approximation yields the

following partitioning (see table (3)).

As you can see the rank two approximation produces a surprisingly accurate parti-
tion. In fact, the chosen text does not contain any x’s, or z’s and consequently the rank
two approximation accurately assigns a zero in each of the categories v, c, and n since
there was no opportunity to test for their categorization. This is nice that it works for
an un-coded text such as the Gettysburg Address, but how can we be sure that it will
work for a coded text?

If a text is encoded using a simple substitution cipher, then the new alphabet is
represented by p. The vector p is a permutation of the numbers 1, 2, . . . 26, representing
letters a, b, . . . z. C is the 26 by 26 identity matrix whose rows have been permuted in
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v c n

a 1 0 0
b 0 1 0
c 0 1 0
d 0 1 0
e 1 0 0
f 0 0 1
g 0 1 0
h 0 0 1
i 1 0 0
j 0 1 0
k 0 1 0
l 0 1 0
m 0 1 0
n 0 0 1
o 1 0 0
p 0 1 0
q 0 0 1
r 0 1 0
s 0 1 0
t 0 1 0
u 0 0 1
v 0 1 0
w 0 1 0
x 0 0 0
y 0 0 1
z 0 0 0

Table 3: Partition attempt based on the rank two approximation.
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the same way as p. If A is the digram frequency matrix for the original text and B is
the digram frequency matrix for the encoded text, then B = CT AC. It can be shown
that the matrices BT B, and AT A have the same eigenvalues. To find the eigenvalues of
any matrix we find the roots of it’s characteristic polynomial. Using BT B = CT AT AC
we can find the characteristic polynomial for BT B.

PBT B(λ) = |BT B − λI|
= |CT AT AC − λI|
= |CT AT AC − CT λIC|
= |CT ||AT A− λI||C|
= |AT A− λI|
= PAT A(λ).

This is important because the eigenvalues for any matrix MT M are the squares of the
singular values of M . Therefore, if BT B and AT A share the same eigenvalues, then we
know that A and B share the same singular values. This allows us to write,

B = CT AC = CT XA∆AY T
A C = (CT XA)∆A(CT YA)T .

But, ∆B = ∆A, so we can write B = (CT XA)∆B(CT YA)T .
Hence, XB = CT XA and YB = CT YA means that the left and right singular vectors

of B are just a permutation of the left and right singular vectors of A. The algorithm
that assigns vowels and consonants depends solely on the relationships between the signs
of the corresponding entries in the x2 and y2 vectors. Because these relationships will be
maintained through the permutation by CT we can use the same partitioning scheme.

Suppose we encode the Gettysburg Address using the simple reversed alphabet as
mentioned earlier.
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[a b c d e f g h i j k l m n o p q r s t u v w x y z]
[z y x w v u t s r q p o n m l k j i h g f e d c b a]

Four score and seven years ago...
Ulfi hxliv zmw hvevm bvzih ztl...

Generating the digram frequency matrix for the cipher and then applying the parti-
tion algorithm produces the following partitioning (see table (4)).

Again, the algorithm has assigned the correct letters as vowels and consonants. We
can check because we know that a has been mapped to z, and z is now assigned as
a vowel. In fact both of the new vowel and consonant columns are just the original
ones inverted. This is what we expected because to encode the Gettysburg Address, we
simply inverted the alphabet.

Therefore, a cryptanalyst’s methodology when confronted with a simple substitution
cipher might go something like this:

• A text is represented by a digram frequency matrix.

• Perform a singular value decomposition.

• Use the rank one approximation to analyze the frequency of occurrence of each
letter.

• Use the rank two approximation to partition the encoded alphabet into vowel and
consonant categories.

Applying this method to the Gettysburg Address we find that eighteen out of the
twenty-six letters are accurately assigned. In conjunction with the frequency of occur-
rence analysis via the rank one approximation, it is plain to see that the cryptanalyst’s
job will prove considerably simpler with the help of the singular value decomposition.

The Matlab functions used herein can be found at the following link:



Introduction

Methods of Cryptology

The Digram . . .

The Digram Function

The Digram . . .

The Singular Value . . .

Rank One Approximation

Rank Two Approximation

The vfc rule and . . .

Using the vfc Rule

Home Page

Title Page

JJ II

J I

Page 19 of 20

Go Back

Full Screen

Close

Quit

v c n

a 0 0 0
b 0 0 1
c 0 0 1
d 0 1 0
e 0 1 0
f 0 0 1
g 0 1 0
h 0 1 0
i 0 1 0
j 0 0 1
k 0 1 0
l 1 0 0
m 0 0 1
n 0 1 0
o 0 1 0
p 0 1 0
q 0 0 1
r 1 0 0
s 0 0 1
t 0 1 0
u 0 0 1
v 1 0 0
w 0 1 0
x 0 1 0
y 0 1 0
z 1 0 0

Table 4: Partition attempt of encoded text
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http://online.redwoods.edu/instruct/darnold/laproj/fall2002/TimSeth/matlab.tar.gz.
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