
POLYTECHNIC UNIVERSITY
Department of Computer and Information Science

Sparse Matrices

K. Ming Leung

Abstract: Sparse matrices are introduced. The han-
dling of these matrices in Matlab is discussed.

Directory
• Table of Contents
• Begin Article

Copyright c© 2000 mleung@poly.edu
Last Revision Date: November 23, 2004

mailto:mleung@poly.edu

Table of Contents
1. Introduction
2. Sparse Matrices in Matlab
3. The Bucky Ball
4. Computational Considerations
5. Matlab’s Documentation on sparse matrices

Section 1: Introduction 3

1. Introduction

Sparse matrices[1, 2] are matrices whose elements are mostly zeros.
Matrices that are not sparse are called full matrices. Of course most
common matrices tend to be full, however sparse matrices do exist in
many areas in science such as graph theory and in numerical treat-
ments of ordinary and partial differential equations. Special treatment
of sparse matrices is needed in order to take advantage of the sparsity.
It makes sense to store only the non-zero elements to save memory
and storage. Of course special indices are needed in order to reference
these elements. Operations and manipulations of sparse matrices can
often be done much faster compare with their full counterparts. There
are slightly different schemes in how sparse matrices are handled. We
will discuss below how they are dealt with in Matlab.

2. Sparse Matrices in Matlab

Suppose we enter the following matrix in Matlab:
F = [0 0 1 0; 2 0 0 3; 0 0 0 0; 0 4 0 5].

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 4

This creates a full matrix

F =

0 0 1 0
2 0 0 3
0 0 0 0
0 4 0 5

 .

This matrix has 11 zero elements out of a total of 16 elements. The
sparcity of a matrix, defined as the ratio of zero elements to the total
number of elements, is 11/16, which is about 70%. The basic idea for
handling sparse matrices is to simply store the values of the non-zero
elements, together with indices giving the row and column positions
of these elements. This can be done in Matlab by entering
S = sparse([1 2 2 4 4],[3 1 4 2 4],[1 2 3 4 5]);

Matlab displays a sparse matrix by listing their position (sorted by
columns) followed by their values. The above sparse matrix , S, will
be displayed as
S =

(2,1) 2
(4,2) 4

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 5

(1,3) 1
(2,4) 3
(4,4) 5

Elements are listed columnwise, it i.e. the first nonzero element in
column 1 is listed first followed by other non-zero elements in that
column, then the first non-zero element in the second column is listed,
followed by other non-zero elements in that column, etc. This colum-
nwise ordering of the elements reflects the internal data structure of
the way matrices are handled in Matlab.. The first column of the
Matlab output shows the row and column indices of these elements.
The values of these elements are shown in the second column.

A full matrix can be converted to a sparse matrix by
SF = sparse(F)

Of course this is not an efficient way to create a sparse matrix. It is
much better to create it directly.

On the other hand, a sparse matrix can be converted into a full
matrix by
FS = full(S)

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 6

The number of non-zeros in a sparse matrix can be obtained by
n = nnz(S)

One can check the amount of storage by matrices S and F
whos S F

The resulting display is
Name Size Bytes Class

F 4x4 128 double array
S 4x4 80 double array (sparse)

Grand total is 21 elements using 208 bytes

With increasing sparcity, much larger saving in memory will result.
The sparse function accepts three extra parameters:

S = sparse(Vi,Vj,Vs,m,n)

constructs a sparse m× n matrix. This form is needed when the last
row or column of the matrix is zero.
S = sparse(Vi,Vj,Vs,m,n,nzmax)

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 7

allocates spaces to store nzmax non-zeros. A sparse matrix for an
m× n matrix of zeroes is given by
sparse(m,n)

This is the same as
sparse([],[],[],m,n,0)

The following ways creates an n× n sparse identity matrix
speye(n)

or
speye(n,n)

Given a sparse matrix S,
spones(S)

creates a sparse matrix having the same sparcity pattern as S and
with ones in the non-zero positions.

The following codes dissects and reconstitutes a sparse matrix S:
[Vi,Vj,Vs[= find(S);
[m,n] = size(S);
S = sparse(Vi,Vj,Vs,m,n);

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 8

The function spy gives an overall view of the location of the non-zero
elements of a sparse matrix. For example
S = gallery(’wathen’,8,8);
subplot(121), spy(S), subplot(122), spy(chol(S)),

Most Matlab matrix operations and functions can be applied to
both full and sparse matrices. The dominant factor in determining the
execution time and memory requirements for sparse matrix operations
is the number of non-zeros, nnz(S), in the various matrices involved.

As an example, let us consider setting up the adjacency matrix
of an undirected graph. A graph is a set of points or nodes with
specified connections (represented by a line with no arrows, or with
two arrows pointing in both directions) between them. For example,
let us consider the case where if node 1 is connected to nodes 2 and
4, node 2 is connected to nodes 1 and 3, node 3 is connected to nodes
2 and 4, and node 4 is connected to nodes 3 and 1. The adjacency

Toc JJ II J I Back J Doc Doc I

Section 2: Sparse Matrices in Matlab 9

matrix is given by

F4 =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

This matrix is somewhat sparse, as are most adjacency matrices, since
not every node is connected to every other nodes. The use of sparse
matrices can be very useful. The sparse matrix for this case can be
created by

S4 = sparse([1 1 2 2 3 3 4 4],[2 4 1 3 2 4 1 3],1,4,4)

Of course the last two parameters can be omitted here. We can check
to see that this indeed creates the correct matrix

F4 = full(S4)

MATLAB’s gplot function creates a graph based on an adjacency
matrix and a related array of coordinates. The columns of gplot’s co-
ordinate array contain the Cartesian coordinates for the corresponding

Toc JJ II J I Back J Doc Doc I

Section 3: The Bucky Ball 10

node. For the above diamond example, the xy coordinates are given
by the array
xy = [1 3; 2 1; 3 3; 2 5];

This places the first node at location (1,3), the second at location
(2,1), the third at location (3,3), and the fourth at location (2,5). To
view the resulting graph, enter
gplot(A,xy)

One can import sparse matrices from computations outside MAT-
LAB. This can be done by using the spconvert function in conjunc-
tion with the load command to import text files containing lists of
indices and nonzero elements.

3. The Bucky Ball

One interesting construction for graph analysis is the Bucky ball. This
is composed of 60 points distributed on the surface of a sphere in such
a way that the distance from any point to its nearest neighbors is the
same for all the points. Each point has exactly three neighbors. The
Bucky ball models four different physical objects:

Toc JJ II J I Back J Doc Doc I

Section 3: The Bucky Ball 11

1. The geodesic dome popularized by Buckminster Fuller

2. The C60 molecule, a form of pure carbon with 60 atoms in a
nearly spherical configuration

3. In geometry, the truncated icosahedron

4. In sports, the seams in a soccer ball

The Bucky ball adjacency matrix is a 60-by-60 symmetric matrix
B. B has three nonzero elements in each row and column, for a total
of 180 nonzero values. This matrix has important applications related
to the physical objects listed earlier. For example, the eigenvalues of
B are involved in studying the chemical properties of C60.

To obtain the Bucky ball adjacency matrix, enter
B = bucky;

At order 60, and with a density of 5%, this matrix does not require
sparse techniques, but it does provide an interesting example.

You can also obtain the coordinates of the Bucky ball graph using
[B,v] = bucky;

Toc JJ II J I Back J Doc Doc I

Section 3: The Bucky Ball 12

This statement generates v, a list of xyz-coordinates of the 60 points
in 3-space equidistributed on the unit sphere. The function gplot uses
these points to plot the Bucky ball graph.
gplot(B,v)
axis equal

It is not obvious how to number the nodes in the Bucky ball so that
the resulting adjacency matrix reflects the spherical and combinatorial
symmetries of the graph. The numbering used by bucky.m is based
on the pentagons inherent in the ball’s structure.

The vertices of one pentagon are numbered 1 through 5, the ver-
tices of an adjacent pentagon are numbered 6 through 10, and so
on. One can generate a picture showing the numbering of half of the
nodes (one hemisphere); the numbering of the other hemisphere is
obtained by a reflection about the equator. Use gplot to produce a
graph showing half the nodes. You can add the node numbers using
a for loop.
k = 1:30;
gplot(B(k,k),v);

Toc JJ II J I Back J Doc Doc I

Section 3: The Bucky Ball 13

axis square
for j = 1:30, text(v(j,1),v(j,2), int2str(j)); end

To view a template of the nonzero locations in the Bucky ball’s adja-
cency matrix, use the spy function:
spy(B)

Spy plots of the matrix powers of B illustrate two important concepts
related to sparse matrix operations, fill-in and distance. Spy plots
help illustrate these concepts.
spy(B^2)
spy(B^3)
spy(B^4)
spy(B^8)

Fill-in is generated by operations like matrix multiplication. The
product of two or more matrices usually has more nonzero entries than
the individual terms, and so requires more storage. As p increases,
Bp fills in and their spy plot gets more dense.

The distance between two nodes in a graph is the number of steps
on the graph necessary to get from one node to the other. The spy

Toc JJ II J I Back J Doc Doc I

Section 4: Computational Considerations 14

plot of the p-th power of B shows the nodes that are a distance p
apart. As p increases, it is possible to get to more and more nodes in
p steps. For the Bucky ball, B8 is almost completely full. Only the
antidiagonal is zero, indicating that it is possible to get from any node
to any other node, except the one directly opposite it on the sphere,
in eight steps.

4. Computational Considerations

The computational complexity of sparse operations is proportional to
nnz, the number of nonzero elements in the matrix. Computational
complexity also depends linearly on the row size m and column size
n of the matrix, but is independent of the product m*n, the total
number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solu-
tion of sparse linear equations, involves factors like ordering and fill-in,
requires special discussions. In general, however, the computer time
required for a sparse matrix operation is proportional to the number
of arithmetic operations on nonzero quantities.

Toc JJ II J I Back J Doc Doc I

Section 5: Matlab’s Documentation on sparse matrices 15

5. Matlab’s Documentation on sparse matrices

The following is the documentation on sparse matrices. You can get
such a documentation by typing
help sparse

at the Matlab command prompt.

SPARSE Create sparse matrix.
S = SPARSE(X) converts a sparse or full matrix to
sparse form by squeezing out any zero elements.

S = SPARSE(i,j,s,m,n,nzmax) uses the rows of [i,j,s]
to generate an m-by-n sparse matrix with space
allocated for nzmax nonzeros. The two integer index
vectors, i and j, and the real or complex entries
vector, s, all have the same length, nnz, which is the
number of nonzeros in the resulting sparse matrix S .
Any elements of s which have duplicate values of i and
j are added together.

Toc JJ II J I Back J Doc Doc I

Section 5: Matlab’s Documentation on sparse matrices 16

There are several simplifications of this six argument
call.

S = SPARSE(i,j,s,m,n) uses nzmax = length(s).

S = SPARSE(i,j,s) uses m = max(i) and n = max(j).

S = SPARSE(m,n) abbreviates SPARSE([],[],[],m,n,0).
This generates the ultimate sparse matrix, an m-by-n
all zero matrix.

The argument s and one of the arguments i or j may be
scalars, in which case they are expanded so that the
first three arguments all have the same length.

For example, this dissects and then reassembles a
sparse matrix:

[i,j,s] = find(S);

Toc JJ II J I Back J Doc Doc I

Section 5: Matlab’s Documentation on sparse matrices 17

[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero
entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

All of MATLAB’s built-in arithmetic, logical and
indexing operations can be applied to sparse matrices,
or to mixtures of sparse and full matrices.
Operations on sparse matrices return sparse matrices
and operations on full matrices return full matrices.
In most cases, operations on mixtures of sparse and
full matrices return full matrices. The exceptions
include situations where the result of a mixed
operation is structurally sparse, eg. A .* S is at
least as sparse as S . Some operations, such as

Toc JJ II J I Back J Doc Doc I

Section 5: Matlab’s Documentation on sparse matrices 18

S >= 0, generate "Big Sparse", or "BS", matrices --
matrices with sparse storage organization but few
zero elements.

See also SPALLOC, SPONES, SPEYE, SPCONVERT, FULL,
FIND, SPARFUN.

Toc JJ II J I Back J Doc Doc I

Section 5: Matlab’s Documentation on sparse matrices 19

References

[1] John R. Gilbert, Cleve Moler, and Robert Schreiber, Sparse Ma-
trices in MATLAB: Design and Implementation, SIAM J. Matrix
Anal. Appl., Vol. 13, No. 1, January 1992, pp. 333-356.

[2] A very good tutorial on Matlab’s treatment of sparse functions
can be found at McGill University .

Toc JJ II J I Back J Doc Doc I

http://www.math.mcgill.ca/sysdocs/matlabr12/help/techdoc/math_anal/ch_9_spa.html

	Table of Contents
	1 Introduction
	2 Sparse Matrices in Matlab
	3 The Bucky Ball
	4 Computational Considerations
	5 Matlab's Documentation on sparse matrices

