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1. Introduction

To a certain extend, learning always involves the forming of associa-
tions between stimuli and their corresponding responses. Input stimuli
which are similar to the stimulus for the association will invoke the
associated response pattern. We will consider some relatively simple
single-layer NNs that can learn a set of pattern pairs (or associations):
s(q) : t(q), q = 1, 2, . . . , Q. In general, the training vectors s(q) have N
components,

s(q) =
[
s
(q)
1 s

(q)
2 . . . s

(q)
N

]
,

and their targets t(q) have M components,

t(q) =
[
t
(q)
1 t

(q)
2 . . . t

(q)
M

]
.

Unlike classification problems, we cannot expect that N �M here for
pattern association. We use bipolar neurons so that the components
of s(q) and t(q) have values of ±1 only.

We assume here that our NNs have an input layer, an output layer,
and no hidden layer. The transfer functions are assumed to be given
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Section 1: Introduction 4

by

fθ(x) =


+1, if x > θ,

0, if − θ ≤ x ≤ θ,
−1, if x < −θ.

where θ = 0.
There are two types of associations:
1. The case where s(q) = t(q), q = 1, 2, . . . , Q, are referred to as an

auto-associative memory.

2. otherwise it is referred to as hetero-associative memory.
There are two types of architectures:
1. feedforward: signals go from the input layer to the output layer

in one direction only.

2. recurrent: closed loops exist within the NN enable signals to
circulate among neurons or even within single neurons.

Some remarks:
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Section 2: Hebb rule Training 5

1. An associative memory net may serve as a simplified model of
human memory.

2. Associative memory also provides an approach to storing and
retrieving data based on content rather than storage address
(i.e. content addressable memory).

3. Information stored are distributed throughout the NN (in the
weights and biases).

4. Associative memory is naturally fault-tolerant without explicit
redundancy.

2. Hebb rule Training

We assume that the initial weights and biases are zero, and that the
biases are absorbed by introducing an extra neuron, X0. We assume
also that the NN is trained using Hebb’s rule, and so the weight matrix

Toc JJ II J I Back J Doc Doc I
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(which may contain the biases as well) after training is

W =
Q∑
q=1

s(q)T t(q) =
Q∑
q=1


s
(q)
1

s
(q)
2

. . .

s
(q)
N

[ t(q)1 t
(q)
2 . . . t

(q)
M

]
.

Now we check to see whether this NN can correctly produce the output
pattern if one of the training vector, say x = s(k) is presented to it.
Using matrix notation, we have

yin = s(k)

Q∑
q=1

s(q)T t(q) = s(k)s(k)T t(k) +
Q∑
q 6=k

(
s(k)s(q)T

)
t(q).

If the training vectors are uncorrelated (that means that they are
mutually orthogonal), then the dot-product

s(k)s(q)T = 0, if q 6= k.

In that case,

yin = ‖s(k)‖2t(k).
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Since ‖s(k)‖2 is positive, we have

y = f(yin) = t(k),

and this is the desired output. Thus if the training vectors are uncor-
related then the NN can always make the correct associations.

If the training vectors are not uncorrelated, but if the correlations
are small enough that the dot-products between training vectors are
not large enough to alter the sign of the first term in yin, then the
network may still produce the correct outputs. Notice that in the case
of bipolar neurons, ‖s(k)‖2 = N , which is typically a large positive
number. If the training vectors are not too highly correlated, then the
dot-products are relatively small. They are expected to have different
signs and therefore partially cancellation is expected among the terms
in the above sum.

2.1. An Example for Heteroassociative Memory

We now consider using Hebb’s rule for the following training set.

Toc JJ II J I Back J Doc Doc I
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q s(q) t(q)

1
[

1 −1 −1 −1
] [

1 −1
]

2
[

1 1 −1 −1
] [

1 −1
]

3
[
−1 −1 −1 1

] [
−1 1

]
4

[
−1 −1 1 1

] [
−1 1

]
From the set of targets, it is clear that the two biases are zero.
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Hebb’s rule gives the weight matrix

W =


1
−1
−1
−1

 [ 1 −1
]

+


1
1
−1
−1

 [ 1 −1
]

+


−1
−1
−1

1

 [ −1 1
]

+


−1
−1

1
1

 [ −1 1
]

=


4 −4
2 −2
−2 2
−4 4


We check to see if the correct output will be produced when the

Toc JJ II J I Back J Doc Doc I
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training vectors are presented to the NN. We find that for q = 1

yin =
[

1 −1 −1 −1
] 

4 −4
2 −2
−2 2
−4 4

 =
[

8 −8
]
⇒
[

1 −1
]
,

for q = 2

yin =
[

1 1 −1 −1
] 

4 −4
2 −2
−2 2
−4 4

 =
[

12 −12
]
⇒
[

1 −1
]
,

for q = 3

yin =
[
−1 −1 −1 1

] 
4 −4
2 −2
−2 2
−4 4

 =
[
−8 8

]
⇒
[
−1 1

]
,
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and for q = 4

yin =
[
−1 −1 1 1

] 
4 −4
2 −2
−2 2
−4 4

 =
[
−12 12

]
⇒
[
−1 1

]
.

Thus the NN makes the correct associations for each of the vectors in
the training set.

Note that the matrix, whose ij element is the dot-product between
the training vectors, s(i) and s(j), is given by

4 2 0 −2
2 4 −2 −4
0 −2 4 2
−2 −4 2 4


The diagonal elements 4 are the square of the magnitudes of the train-
ing vectors. Only the first and the third training vectors are orthog-
onal to each other. Thus there are cross talks, but their presence
are not significant enough to destroy the correct association for the
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original training set.
Next we consider input vector that the NN has not seen before. For

example, we take the second training vector s(2) =
[

1 1 −1 −1
]

and flip its third element to obtain
[

1 1 1 −1
]
. Presenting this

vector to the NN gives yin =
[

8 −8
]
, and therefore the output is

y =
[

1 −1
]
. This is the correct association for training vector 2.

Suppose we zeroth out the first and the third element of s(2)

(to indicate uncertainties in those values), to obtain an input vec-
tor

[
0 1 0 −1

]
, then we find yin =

[
6 −6

]
. This gives the

correct associated output y =
[

1 −1
]
. Notice that this is the most

reasonable association that can be make (by a NN or by a human).
However, if we zeroth out the first and the fourth element of s(2), to

obtain an input vector
[

0 1 −1 0
]
, then we find yin =

[
0 0

]
,

which gives a totally uncertain output y =
[

0 0
]
. For this input

vector, the NN or any human has no way of knowing what the correct
associated output should be. It resembles some of the training vectors
whose associated output is y =

[
1 −1

]
, as well as some of the

training vectors whose associated output is y =
[
−1 1

]
.
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3. Extended Delta Rule for Multiple Output Neurons

The Delta rule can also be used to train a NN for pattern association.
We now extend the previous Delta rule for single layer NN with mul-
tiple output neurons to the case where the transfer function during
training is not an identity function. Thus the output by neuron Yj is

yj = f(yin,j) = f(
N∑
i=0

si(k)wij(k)),

where f may no longer be the identity function. The derivation of
the Delta rule involves the taking of partial derivatives. Thus during
training at least, we cannot use Heaviside step functions as transfer
functions, we need to use some other functions that possess deriva-
tives.

We will absorb the biases as we did before. Suppose at the k-th
step in the training process, the current weight matrix and bias vector
are given by W (k) and b(k), respectively, and one of the training
vectors s(k) = s(q), for some integer q between 1 and Q, is presented
to the NN. Since the target is tj(k) = t

(q)
j , and so the error is yj−tj(k)
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for the j-th output component. Thus for the Delta rule, we want to
find a set of wmn that minimizes the quantity

E(W(k)) =
M∑
j=1

(yj(k)− tj(k))2 =

(
f(

N∑
i=0

si(k)wij(k))− tj(k)

)2

.

We take the gradient of this function with respect to wmn

∂wmn
E(W(k)) = ∂wmn

M∑
j=1

(yj(k)− tj(k))2

= 2
M∑
j=1

(yj(k)− tj(k)) ∂wmn
yj(k).

Using the chain rule for differentiation, we have

∂wmn
yj(k) = ∂wmn

f(
N∑
i=0

si(k)wij(k)) = f ′(yin,j)
N∑
i=0

si(k)∂wmn
wij(k)

Since

∂wmn
wij(k) = δi,mδj,n,
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thus

∂wmnyj(k) = f ′(yin,j)
N∑
i=0

si(k)δi,mδj,n = δj,nf
′(yin,j)sm(k)

we have

∂wmn
E(W(k)) = 2

M∑
j=1

(yj(k)− tj(k)) δj,nf ′(yin,j)sm(k)

= 2sm(k) (yn(k)− tn(k)) f ′(yin,j).
Therefore if the steepest descent method is used to adjust the

weights and biases, then we have

wij(k + 1) = wij(k)− 2αsi(k) (yj(k)− tj(k)) f ′(yin,j).

The i = 1, 2, . . . , N components of this equation gives the updating
rule for the weights. The i = 0 component of this equation gives the
updating rule for the biases

bj(k + 1) = bj(k)− 2α (yj(k)− tj(k)) f ′(yin,j).
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Section 4: Autoassociative Net 16

If the transfer function is the identity function, then f ′ = 1, these
equations reduce to those we obtained before.

4. Autoassociative Net

For autoassociative nets, we have s(q) = t(q), q = 1, 2, . . . , Q, and
therefore M = N . Thus the weight matrix is an N by N dimensional
matrix. We will use bipolar neurons and the Hebb’s rule to train the
NN, assuming zero initial weights. We will also assume that the NN
has zero biases.

Sometimes one also assumes that the autoassociative net has no
self-connections. This means that for i = 1, 2, . . . , N , input neuron
Xi has no connection with output neuron Yi. In other words, the
diagonal elements of the weight matrix are set to zeroes.

Let us take N = 4 and consider storing just one vector

s =
[

1 1 1 −1
]
.
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Section 4: Autoassociative Net 17

Hebb rule gives the following weight matrix
1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1


With just one training vector, it is clear that the NN can store that
pattern. Putting pattern s in the NN produces exactly the same
pattern as its output, since there is absolutely no cross talk in this
case.

It is more interesting to consider introducing imperfections in the
input data. We can introduce a single mistake in the input vector
by flipping one of the 4 bits. One finds that the original pattern can
be recalled perfectly (total recall). We can also introduce 2 missing
entries in the pattern by replacing any two of the bits by 0. One finds
perfect recall also. However if 2 or more mistakes are introduced any
where in the input pattern, then their output patterns (all given by
[0 0 0 0]) are no longer the same as the stored pattern.
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Next, we consider storing 2 vectors

s(1) =
[

1 1 −1 −1
]

s(2) =
[
−1 1 1 −1

]
.

Notice that these vectors are orthogonal to each other. One obtains
from Hebb rule the following weight matrix

2 0 −2 0
0 2 0 −2
−2 0 2 0

0 −2 0 2

 ,
or 

0 0 −2 0
0 0 0 −2
−2 0 0 0

0 −2 0 0

 ,
if the diagonal elements of the weight matrix are set to zero. One
can verify that both of the original patterns can be recalled in either
cases.
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Next, we consider storing 2 non-orthogonal vectors

s(1) =
[

1 −1 −1 1
]
, s(2) =

[
1 1 −1 1

]
.

One finds that neither of these 2 vectors can be recalled perfectly if we
zero out the diagonal elements of the weight matrix. (If the diagonal
elements are kept, then both patterns can be recalled perfectly.) The
output vector in either case is

[
1 0 −1 1

]
, with an uncertain second

element. This is precisely the element that distinguishes between the
2 original vectors. Thus the NN has done as much as it can, given the
similarities of the 2 stored vectors.

One finds that the NN can store the following 3 mutually orthog-
onal vectors

s(1) =
[

1 1 −1 −1
]
, s(2) =

[
−1 1 1 −1

]
, s(3) =

[
−1 1 −1 1

]
,

as expected. This is true whether or not the diagonal elements of the
weight matrix are set to zero.

If we try to store one more vector by adding

s(4) =
[

1 1 1 1
]
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Section 5: Capacity of an Autoassociative NN 20

to the training set, we find that the weight matrix becomes a zero
matrix. Thus the NN cannot recall any of the training vectors. Notice
that all 4 training vectors are mutually orthogonal (that is they are
as distinct as can be).

5. Capacity of an Autoassociative NN

The capacity of an autoassociative NN is defined to be the maximum
number of patterns that can be stored.

The capacity of an autoassociative NN depends on
1. the number of components, N , of each of the stored vectors.

The larger N is, the higher is the capacity.

2. the relationship among the stored vectors. The more uncorre-
lated they are, the higher is the capacity.

We have the following theorem proved by Szu concerning the ca-
pacity of an autoassociative NN with bipolar neurons.
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Szu proved that no more than N − 1 mutually orthogonal
bipolar vectors, each with N (even) components, can be
stored using the Hebb rule for the weights if the diagonal
terms are set to zero.

If the patterns are s(q), q = 1, 2, . . . , Q, then Hebb rules gives the
weight matrix

wij =

{
0, if i = j∑Q
q=1 s

(q)
i s

(q)
j , if i 6= j.

We want to know if the NN can recall s(p) if p is one of the stored
vectors. With s(p) as the input, we have

yin,j =
N∑
i=1

s
(p)
i wij =

N∑
i 6=j

s
(p)
i

Q∑
q=1

s
(q)
i s

(q)
j =

Q∑
q=1

s
(q)
j

N∑
i 6=j

s
(p)
i s

(q)
i .

By assumption, the stored vectors are mutually orthogonal and there-
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fore
N∑
i=1

s
(p)
i s

(q)
i = 0, if p 6= q,

and
N∑
i=1

s
(p)
i s

(q)
i = N, if p = q.

Therefore
N∑
i 6=j

s
(p)
i s

(q)
i = −s(p)j s

(q)
j , if p 6= q,

and
N∑
i 6=j

s
(p)
i s

(q)
i = N − 1, if p = q.
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Section 5: Capacity of an Autoassociative NN 23

Consequently

yin,j = (N − 1)s(p)j −
Q∑
q 6=p

s
(p)
j [s(q)j ]2 = (N −Q)s(p)j .

If the number of stored vectors Q is less than N , then (N −Q) > 0,
and so

yj = s
(p)
j .

This means that we can store no more than N vectors. If Q = N ,
then yin,j = 0, and so yj = 0 (output components are all uncertain).
Of course we cannot have Q > N , since in N dimensions, there cannot
be more than N mutually orthogonal vectors.

Notice that the dot-product of any 2 bipolar vectors cannot be
zero unless N is even. Therefore the above theorem applies only if N
is even, otherwise we do not have any orthogonal vectors at all.

We also have the following theorem:
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A set of 2k mutually orthogonal bipolar vectors can be
constructed for N = 2km with m odd, and no larger set
can be formed.

First some observations:
1. By the fundamental theorem of arithmetic, every positive inte-

ger such as N has a unique prime factorization:

N = p1p2 . . . p`.

Of all the prime numbers, 2 is the only one that is even. Suppose
out of the ` prime factors, the number 2 appears k times, and so
we know that N has a factor 2k. The remaining prime factors
are all odd and therefore their product m is also odd. Thus
any positive integer can be expressed uniquely as 2km, for a
non-negative integer k, and an odd positive integer m.

2. If v is a vector of a certain length, then
[

v v
]
, the con-

catenation of v with itself is a vector having twice the original
length.
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3. If a and b are 2 mutually orthogonal bipolar vectors of the same
length, then

[
a a

]
,
[

a −a
]
,
[

b b
]
,
[

b −b
]
, are

4 mutually orthogonal vectors, each having twice the original
length.

4. It is not possible to construct a pair of orthogonal bipolar vectors
if N is odd (i.e. k = 0), since the dot-product of any two bipolar
N -dimensional vectors must be an odd integer and therefore
cannot be 0.

This theorem is proved by explicitly constructing these vectors for
a given N . N can be written uniquely as 2km, for a non-negative
integer k, and an odd positive integer m. We first start with an m
dimensional bipolar vector vm(1) =

[
1 1 . . . 1

]
. In step i = 1,

we can construct from vm(1) 2i (= 2) orthogonal 2m dimensional
bipolar vectors

v2m(1) =
[

vm(1) vm(1)
]

and

v2m(2) =
[

vm(1) −vm(1)
]
.
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The subscript is used to denote the length of the vectors. The number
inside the parentheses labels the vector constructed at a given step.

One can show that there is no other 2m dimensional bipolar vector
that is orthogonal to both v2m(1) and v2m(2). To see that, let us as-
sume that such a vector exists and write it in the form

[
am bm

]
,

where am and bm are each m dimensional bipolar vectors. The or-
thogonality with both v2m(1) and v2m(2) means that

am · vm(1) + bm · vm(1) = 0,

and

am · vm(1)− bm · vm(1) = 0,

These equations imply that vectors am and bm obey

am · vm(1) = 0 = bm · vm(1).

However since m is odd, it is clear that it impossible to find such
vectors.

In step i = 2, we construct the following 4 (= 2i = 22) mutually
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Section 5: Capacity of an Autoassociative NN 27

orthogonal 4m dimensional vectors:

v4m(1) =
[

v2m(1) v2m(1)
]
,

v4m(2) =
[

v2m(1) −v2m(1)
]
,

v4m(3) =
[

v2m(2) v2m(2)
]
,

and

v4m(4) =
[

v2m(2) −v2m(2)
]
.

At each step, the number of mutually orthogonal vectors doubles,
and the length of each of these vectors also doubles. By using basically
the same argument that we used in step 1, it is easy to see that it
is impossible to have in the i-th step a bipolar vector of length 2im
that is orthogonal to all the 2i mutually orthogonal vectors, v2im(1),
v2im(2), . . . , v2im(2i).

We can continue this way until at the k-th step we have exactly
2k mutually orthogonal bipolar vectors, vN (1), vN (2), . . ., vN (2k).
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