ASSIGNMENT 5

April 20, 2004 (before 6:00 pm)

Homework 5: Evaluating a 2-Dimensional Integral Using the QuasiMonte Carlo Method

Evaluate the following 2-dimensional integral:

$$
I=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \frac{\sin x_{2} \sqrt{1-k^{2} \sin ^{2} x_{1} \sin ^{2} x_{2}}}{1-k^{2} \sin ^{2} x_{2}} d x_{1} d x_{2} .
$$

where $k=3 / 5$ and the exact answer is $5 \pi / 8$. Just as you have done in homework 4, use the Sample-Mean Monte Carlo method for various different number of trials, N. For each N, repeat the simulation a dozen or so times and take the average of the mean to smooth out the result.

Now generate the Halton sequence for base 2 and 3. Print out about 50 of these low-discrepancy numbers (so that I can check to see if they are correct). Perform a quasi-Monte Carlo simulation to compute this integral using the Halton sequences with the same number of points as for the Sample-Mean method. Compare and comment on the results that you obtain for these two separate methods.

