
IMPLEMENTATION OF ADAPTIVE STREAMING OF STORED MPEG-4 FGS VIDEO
OVER TCP

Philippe de CuetosÁ, Philippe Guillotel�, Keith W. RossÁ, Dominique Thoreau�

 Institut EURECOMÁ THOMSON Multimedia R&D France�
2229, Route des Cretes Av. de Belle Fontaine, B.P. 19

06904 Sophia-Antipolis, France 35511 Cesson Sevigne Cedex, France
{decuetos,ross}@eurecom.fr {guillotelp, thoreaud}@thmulti.com

ABSTRACT

This paper presents an implementation of an end-to-end
application for streaming stored MPEG-4 Fine-Grained Scalable
(FGS) videos over the best-effort Internet. Our current
implementation runs over TCP but can also be run over TCP-
friendly RTP/UDP with an error recovery mechanism. Our
scheme adapts the coding rate of the streaming video to the
variations of the available bandwidth for the connection, while
smoothing changes in image quality between consecutive video
scenes. We justify our design choices and present the results of
the simulations obtained from our testbed. Our combined use of
FGS-encoded video with a simple network-adaptation heuristic
gives a system of low complexity, which is suitable for high
performing video servers.

1. INTRODUCTION

In today’s best-effort Internet, heterogeneity in Internet access
and dynamic variability in network conditions have brought the
need to design network-adaptive video applications. Recently,
bit-plane based FGS-coding has been added to the MPEG-4
standard [3], so that it can be used in such applications. FGS-
coding is a new form of video hierarchical encoding.
Hierarchical, or scalable, videos are encoded into one Base
Layer (BL) and one or several Enhancement Layers (EL). The
server can choose the number of EL layers to stream to the client
in addition to the BL, as a function of network conditions [5].
However, with FGS coding, any number of bits of the FGS-
encoded EL can be suppressed at the server before transmission,
and the achieved image quality is directly proportional to the
number of bits decoded at the client [6].

In this paper, we study streaming of long videos (from tens
of seconds to hours), which are composed of several video
scenes. Our current implementation runs over TCP. TCP is still
ubiquitous in the Internet, it has been proven to be stable and is
available to use. Moreover, although TCP bandwidth is more
varying than recent TCP-Friendly UDP protocols such as TFRC
[10], bandwidth fluctuations can be accommodated by sufficient
playback buffering as shown in [1]. As does Krasic et al. [9], we
believe that TCP is a viable choice for quality-adaptive video
streaming. Nevertheless, full-reliability of TCP is not necessary
for video streaming applications that could benefit from

partially-reliable schemes such as selective retransmissions.
Therefore, our application has been designed to be potentially
run also over any partially reliable TCP-Friendly RTP/UDP
connection.

To our knowledge, our system is one of the first
implementations of an Internet streaming application which
combines the use of FGS-encoded video, a network-adaptive
algorithm, and video scene-based segmentation, in order to
smooth perceptual changes in image quality, while maintaining
high bandwidth efficiency. In [4], Zhang et al. also present a
complete end-to-end system that streams FGS-encoded videos,
but using a specific smooth TCP-Friendly protocol (MSTFP).
The system from Radha et al. [8] does not aim to smooth
fluctuations in image quality between consecutive images.

This paper is organized as follows. We first describe the
complete architecture of our system. Then, we present separately
the MPEG-4 FGS encoder that was used to encode the video
sequences, and the streaming algorithm that was implemented to
adapt to network bandwidth variations in real time. Finally, we
present our tests and results to show the performance of our
system.

2. ARCHITECTURE

The end-to-end architecture of our system is depicted in
Figure_1. At the server, BL and EL data are stored in separate
files. Each data file is associated with a meta-file containing
pointers to the individual Access Units (AUs), or frames, as well
as their composition and decoding timestamp. Video pumps
push the AUs and their associated information to the network
module. The server network module encapsulates the AUs into
RTP packets in order to stay compatible with implementations
over RTP/UDP. (This brings some overhead, although relatively
small since AUs do not need to be fragmented into several RTP
packets in the case of transmission over TCP.) The RTP payload
format we used is the Group Payload (GP) format defined in [2].
Both BL and EL RTP packets are multiplexed over the same
TCP connection to the client. Our server streams the video data
at the maximum TCP available bandwidth, denoted by X(t) at
time t. To reduce server complexity, we require that the server
always send both layers of the same frame together.

The client extracts the AUs and their associated information
from the incoming RTP packets and sends them in the
corresponding playback buffers. In our implementation we used
four playback buffers at the client: two for the BL and EL data

and two for the BL and EL meta-information. Because the server
streams both layers of the same frame together, BL and EL
buffers always contain the same number of frames. We denote
by �W� the contents of the client buffers in seconds-worth of
video data at time t. The client sends back periodically to the
server the value of �W�. Individual AUs and their meta-
information are then given to the decoder as SL packets,
according to the MPEG-4 specification [7].

We assume that the stored video has been partitioned into n
video sequences, where images within the same sequence are
supposed to have similar visual characteristics (e.g. same video
shot, same motion, or same image complexity). The BL is VBR-
encoded, with coding rate rb(t), and the FGS-EL CBR-encoded
with coding rate re. According to the FGS property, the server
can cut the EL bitstream anywhere. In our system, the rate
control module fixes the coding rate of EL to stream to the client
for a given video sequence k, denoted by re(k) between 0 and re.
Then, the EL video pump cuts the EL bitstream according to this
rate. The server computes the value of re(k) as a function of the
observed available bandwidth X(t) and the contents of the client
buffers �W�.

3. FGS CODEC

In bit-plane FGS-encoding the EL is obtained by encoding the
DCT residue between the BL DCT coefficients and the source
video DCT coefficients using a bit-plane approach [6]. DCT
residues are encoded bit-plane by bit-plane, from the most
significant bit to the least significant bit, and each bit-plane is
encoded on a 8x8 block basis. Depending on the BL encoded
quality, the residue needs more or less bits to achieve a given
image quality. Figure 2 shows the evolution of the video average
PSNR for the figure skating sequence when the FGS rate is
increased from 0 to 1536 Kbps. We see that here is a clear
tradeoff between BL bit-rate and EL quality.

FGS-scalability has two main advantages. First it is very
simple to implement at the encoder as well as at the decoder
side. Secondly the FGS-EL can be truncated anywhere: the
longer the truncated stream, the more bit-planes are decoded.
This property allows the EL bit-stream to be cut and packetized

during transmission according to the varying available bit-rate
for the connection. The FGS enhancement may be spatial (also
called SNR scalability) or temporal (the EL increases the frame
rate of the BL). In this paper, we only consider SNR scalability.

4. ADAPTIVE STREAMING ALGORITHM

A transmission policy, denoted by (re(0), …, re(n)), is a set of
successive EL coding rates streamed by the server for all
sequences 0,...,n of the video. In previous work [1], we derived,
under complete knowledge of bandwidth evolution, an optimal
transmission policy for a criterion that involves both image
quality and quality variability during playback. Based on this
ideal optimal policy, we developed a real-time heuristic, for
CBR-encoded videos, that was shown to perform almost as well
as the ideal optimal policy for a wide range of bandwidth
scenarios. In this paper, we adapted our heuristic for the more
general case of VBR-encoded Base Layers.

The real-time heuristic is given in Figure 3. The constant C
(expressed in seconds-worth of video data) is chosen empirically
and allows us to trade off video quality with playout
interactivity. The content of the client playback buffers when
beginning to stream video sequence number k is denoted by k.
It is estimated at the server from the periodic feedback received
from the client. We denote by Xavg(k) the average available
bandwidth during the streaming of the previous sequences, and
by rb(k) the average BL coding rate of video sequence number k.
(This is known in advance at the server since the video is pre-
encoded.) In our heuristic, we suppose that the client starts the
playout of video data after having received 0 = C sec. of data.
The server decides, for each new video sequence, the coding rate
to stream for this sequence, i.e., re(k). As shown in Figure 3, it
operates according to the value of k. The heuristic tries to
maintain playback buffers with a least C sec. of video, in order
to accommodate short-term bandwidth fluctuations and to avoid
losses of video data due to buffer starvation. Then, when buffers
are sufficiently filled, the coding rate of the EL to stream
follows the evolution of the available average bandwidth that
remains after streaming the BL data. We include a smoothing
factor , which aims to smooth the variations of Xavg(k), so that

SLTCP

RTP/GP

 rate
 control

BL data

BL info

Video
pump

RTP/GP

re(k) X(t)

∆(t)

RTP/
GP-1

SL

∆(t)

D
ecoder

N
etw

ork

Server Client

EL data

EL info

BL

EL

Video
pump

Figure 1: Complete system

Figure skating

30

32

34

36

512 768 1024 1280 1536 1792 2048
Kb/s

PSNR (dB)

BL 512k
BL 768 k
BL 1024k
BL 1280k

Figure 2: PSNR vs. total bit-rate for different BL rates.

the coding rate of successive video sequences varies slowly (in
order to minimize variations in quality between successive video
sequences). The value of � is chosen empirically to trade off
small quality variability (small) with better overall bandwidth
utilization (high). When k > 2C our heuristic is more
aggressive with respect to the available bandwidth, in order to
keep the playback buffers small. Indeed, high playback buffers
make the streaming end well before the end of the rendering,
which does not provide maximum video quality.

5. TESTS AND RESULTS

5.1. LAN simulations

For our experiments, we used a 4-mn video including both high
and low motion scenes, and segmented into 54 video sequences
of various length (in our tests, each sequence corresponds to a
short scene shot). The BL was VBR-encoded, with average
encoding rate of 384 Kbps. The EL was coded at 616 Kbps. The
server and client were located at each end of a dedicated LAN,
and a Linux router was used to limit the end-to-end available
bandwidth. Cross traffic was generated from the server to the
client in order to make the available bandwidth for the streaming
application vary with time, as shown in Figure 4. Figure 4 also
shows the choices made by the server for the EL coding rate
using our real-time heuristic with C=5 sec. and ���. We see
that the variations of the EL coding rate streamed to the client
roughly follow the variations of the available bandwidth. (Note
that the coding rate of the VBR-encoded BL should be added to
the EL coding rate to make the total coding rate of the video.)

Figure 5 depicts the variations of the content of the client
playback buffers, i.e., �W�. We see that it never empties, i.e. no
video data was lost. Finally, Figure 6 shows the PSNR values
after decoding video frames 525 to 1029 with our shot-based
video segmentation (segm), together with the PSNR obtained
when the video segments are of arbitrary length of 200 frames
(no segm). We clearly see that without shot-based segmentation
the image quality can be abruptly changed within a same scene
shot (e.g. around frame number 1000), which may degrade
severly the perceived sequence quality.

5.2. Performance of the heuristic

We have run the same experiment with different parameters for
our real-time adaptation heuristic. We denote by end the content
of the client playback buffers when the server has finished to
stream all AUs. Essentially, lower values of end result in higher
total bit consumption, or bandwidth efficiency, and then
potentially higher overall video quality, since this minimizes the
bandwidth left unused at the end of the streaming. We define a
metric that can account for the variability in quality between
successive video sequences:

∑
=

−−=
n

k
kPSNRkPSNRV

1

2))1()((,

where PSNR(k) is the average PSNR of video sequence number
k. This metric penalizes high differences in quality, which are
more visually disturbing than small ones.

Table 1 shows the performance of our real-time heuristic in
terms of end and V, when C is changed. As we can see, a low
value of C causes higher variations in quality (indeed when C=1
sec. we observe the loss of several video frames because of
playback buffer starvation), whereas a high value for C can
cause low bandwidth efficiency, since the adaptation is not
enough reactive with respect to the variations of the available
bandwidth (this also makes the user wait for a longer time before
he can start watching the video).

C (sec) end (sec) V
1 0 696
5 8.8 375
15 45.7 370

 Table 1 - variations of C for � ����

In Table 2 we varied the smoothing parameter ��$V�ZH�FDQ
see, a high value of gives better bandwidth efficiency, at the
price of a relatively higher variability (although variability is
almost the same here when ����or 1.0).

 (sec) end (sec) V
0.1 11.5 368
0.5 13.5 375
1.0 8.95 373

 Table 2 - variations of for C = 5 sec.

)(kr
C

r(k) r

C

)(krkrkX(k) r

C

(k) r

C

e
k

ee

k

ebavge

k

e

k

1)1(
2

,2 if Else

1)1())()((

,2C if Else

0

 If ,

−⋅−+
∆

⋅⋅=

>∆

−⋅−+−⋅=
≤∆<
=

≤∆

αα

αα

Figure 3: Real-time heuristic

6. FUTURE RESEARCH

We have presented an implementation of an end-to-end
streaming application which uses FGS MPEG-4 videos to adapt
in real-time and with low complexity to varying network
conditions. Tests in realistic network situations have shown that
our system gives good visual performance despite low efficiency
of current FGS-encoding schemes. In addition to working on
more efficient FGS encoders, we plan to improve the rate
adaptation heuristic. In particular, by considering the different
rate-distortion characteristics of the successive video sequences,
we intend to optimize an actual measure of video quality,
instead of bandwidth utilization. Finally, our scheme would also
highly benefit from extensive subjective tests on the visual
impact of quality variability.

7. REFERENCES

[1] P. de Cuetos, K. W. Ross, “Adaptive Rate Control for
Streaming Stored Fine-Grained Scalable Video”, in Proc. of
Nossdav, Miami, Florida, May 2002.

[2] C. Guillemot et al., “RTP Payload for MPEG-4 with
Scalable and Flexible Error Resilience”, Internet draft

[3] ISO/IEC JTC1/SC29/WG11 Information Technology –
Generic Coding of Audio-Visual Objects: Visual ISO/IEC
14496-2 / Amd X, December 1999.

[4] Q. Zhang, W. Zhu and Y-Q. Zhang, “Resource Allocation
for Multimedia Streaming over the Internet”, IEEE Trans. on
Multimedia, September 2001.

[5] R. Rejaie, D. Estrin, and M. Handley, “Quality Adaptation
for Congestion Controlled Video Playback over the Internet”, in
Proc. of ACM SIGCOMM, Cambridge, September 1999.

[6] W. Li, “Overview of Fine Granularity Scalability in MPEG-4
Video Standard”, IEEE Trans. on Circuits and System for Video
Technology, March 2001.

[7] ISO/IEC JTC1/SC29/WG11 Information Technology –
Generic Coding of Audio-Visual Objects: Systems ISO/IEC
14496-1, December 2001

[8] H. Radha, Y. Chen, K. Parthasarathy and R. Cohen,
“Scalable Internet Video Using MPEG-4”, Image
Communications, 15, 1999.

[9] C. Krasic, K. Li and J. Walpole, “The Case for Streaming
Multimedia with TCP”, in Proc. of IDMS, Lancaster, UK,
September 2001.

[10] S. Floyd, M. Handley, J. Padhye and J. Widmer, “Equation-
based Congestion Control for Unicast Applications”, in Proc. of
ACM SIGCOMM, Stockholm, Sweden, August 2001

Figure 4: rate adaptation

0

200

400

600

800

1000

1200

0 21 42 63 84
105

126
147

168
189

210
231

time (sec)

rate (Kbps)

EL coding rate

bandwidth

Figure 5: playback buffers content

0

5

10

15

20

25

30

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

time (sec)

tim
e-

w
or

th
 o

f v
id

eo
 (s

ec
)

Figure 6: PSNR curves

30

31

32

33

34

35

525
583

641
699

757
815

873
931

989
1047

1105
1163

image
 number

PSNR (dB) scene cuts
segm
no segm

