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Abstract

We propose a multiclass fluid model for BitTorrent-like content distribution systems. The

new model can model heterogeneous peers, in which peers have different access bandwidths.

The model can also model BitTorrent-like systems which provide differential service (for

example, first class and second class service) to the participating peers. The fluid model

leads to a non-linear system of differential equations with special structure. For the service

differentiation problem, we prove that the system of differential equations admits a unique

stable equilibrium, that we compute in closed-form. We also give the average download

times for both classes. For the bandwidth diversity problem, we show that the system of

differential equations has a stable state that may depend on the initial conditions. We give

the average download time of both classes for each reachable steady-state.

Keywords: P2P networks, fluid models, service differentiation

1 Introduction

In a traditional client-server content distribution system, such as distribution from an or-

dinary Web server, a large number of clients download content from a single server. If the

single server cannot keep up with the demand from all the clients, the load can potentially
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be handled by replacing the server with a server farm and increasing the access bandwidth

from the server farm. Although it is possible in theory to match any demand with a sufficient

number of servers and sufficiently wide access pipes, the cost can easily become prohibitive.

BitTorrent is a content-distribution booster which enables a content provider to distribute

popular content to large number of clients without the need of large server farms and ex-

pensive high-speed Internet connections. The idea in essence is to split the file into small

chunks, distribute different chunks to different downloading peers, and then have the different

downloading peers obtain their missing chunks from each other. In this manner, the clients

become servers, contributing bandwidth to the content-distribution system. This approach

has proved to be a highly successful mechanism to distribute popular content at low cost.

In BitTorrent terminology, the servers that make available the entire file are called “seeds”.

The clients that are collecting and sharing chunks are called “leechers”. Once a leecher has

downloaded the entire file, it becomes a seed for as long as it continues to distribute chunks

to other clients. The BitTorrent protocol includes a “tit-for-tat” mechanism to ensure that

leechers not only download content but also upload content [1]. BitTorrent is a peer-to-peer

system since clients (peers) upload chunks directly to each other.

Qiu and Srikant [7] developed a tractable fluid model for BitTorrent-like content distribu-

tion systems. The model sheds insight on throughput, average download times, and stability

of BitTorrent-like systems. Although the model is elegant and tractable, it has limited appli-

cability. First, the model assumes that all peers are homogeneous, with all peers having the

same upload and download capacity. In actuality, peers have diverse bandwidth characteris-

tics, including dial-up modem access, broadband access (cable and ADSL), and high-speed

Ethernet access. Second, the model does not allow for the exploration of distribution systems

that provide application-layer differentiated services. Indeed, it is natural to conceive of a

BitTorrent-like system in which there are, say, first-class peers and second-class peers. The

first-class peers pay more (in some sense) and should receive better service – that is, shorter

average download times – than the second-class peers. This is a form of “application-layer

differentiated-service” as the service differentiation would be provided by the BitTorrent-like

application rather than by the core of the Internet. Intuitively, BitTorrent-like systems could

provide differentiated service by having the seeds and leechers allocate more of their upload
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bandwidth to first-class peers.

In this paper we propose a multiclass fluid model for BitTorrent-like content distribution

systems. The new fluid model can model both heterogeneous peer access and multiple

differentiated service classes. Our multiclass fluid model results in a system of differential

equations which generalize the single-class equation in [7]. The equations are significantly

more complex and difficult to resolve, as they explicitly distinguish between the various

classes. The system of differential equations are so-called “linear switched systems” which

are nonlinear differential equations with special structure. Nevertheless, for a number of

important special cases, we explicitly resolve the equations, obtaining closed-form solutions

for average download times for each of the classes.

In particular, we consider the special case where downloaders leave the system immedi-

ately after completing their download. This is a worst-case scenario since altruistic seeds

could instead stay in the system when they have completed their download, contributing

bandwidth and providing any missing chunk to other peers. For the service differentiation

problem we prove that the system of differential equations governing the system dynamics

admits a unique stable equilibrium, that we compute in closed-form. From this result, we

find the average download time for each class of peers and show how this result can be used to

achieve service differentiation among the peers. We also indicate to what extent our results

remain valid when seeds stay in the system for a non-negligible amount of time.

In the second part of the paper, we address the bandwidth diversity problem. We show

that the system of differential has a stable stationary state that may depend on the initial

conditions. We identify all stationary solutions and compute the average download time

associated with each solution. Last, we minimize the maximum average download time of

both classes, regardless of the initial conditions.

The paper is organized as follows. In Section 2 we introduce the multiclass model and

derive the equations governing the system dynamics. Section 3 and Section 4 provide results

for the service differentiation problem and bandwidth diversity problem, respectively. Section

5 concludes the paper.
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2 Multiclass Model

In this paper we consider a BitTorrent-like system with two classes of peers, with the classes

denoted by i = 1 and i = 2. All the peers in both classes want to obtain the single file F .

Without loss of generality, we take the file size to be equal to 1. Each class has seeds and

downloaders (leechers). Seeds have all of the file, whereas downloaders have only portions

of the file. When a downloader obtains the whole file, it immediately becomes a seed. Let

yi(t) and xi(t) denote the number of seeds and downloaders, respectively, for class-i peers at

time t. In this paper, we are particularly interested in the steady-state behavior of yi and

xi, i = 1, 2. We need to also define the following:

• Let λi be the rate at which new class-i downloaders arrive. Whenever a new class-i

downloader arrives, then xi is incremented by 1.

• Let µi be the upload bandwidth of a peer from class i.

• Let ci be the download bandwidth of a peer from class i. We make the realistic

assumption that ci ≥ µi, which is consistent with the contemporary access technologies.

Whenever a class-i peer has fully downloaded the file, xi is decremented by 1 and yi is

incremented by 1.

• As in [7], we allow downloaders to abort downloading before fully obtaining the file.

Let θi be the rate at which class-i downloaders abort. Whenever a class-i downloader

aborts, xi is decremented by 1.

• Let γi denote the rate at which class-i seeds leave the system. Whenever a class-i seed

leaves the system, yi is decremented by 1.

• Let ηi ∈ (0, 1) denote the efficiency of class-i downloaders, which is the average amount

of a downloader’s upload bandwidth that is being used for content distribution. This

parameter was first introduced in [7] in the single-class case.

We now discuss the resource allocation policy. A peer (seed or downloader) will upload

chunks to multiple peers simultaneously. The aggregate rate at which a class-i seed peer

uploads is µi; the aggregate rate at which a class-i downloader peer uploads is ηiµi. A peer

will allocate its upload rate between the two classes of peers. For a class-i peer, let αi(x1, x2)
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(resp. 1−αi(x1, x2)) be the fraction of its upload rate that is allocated to class-i peers, that

is, to peers in its own class (resp. to peers in the other class) when there are x1 class-1

downloaders present and x2 class-2 downloaders present. Thus, αi(x1, x2) lies between 0 and

1. We refer to (α1(x1, x2), α2(x1, x2)) as a dynamic allocation policy.

In this paper we limit our attention to static allocation policies, namely, policies of

the form αi(x1, x2) = αi for all x1 and x2 for i = 1, 2. We will consider dynamic policies in

a future work.

Our model of the two-class multiclass P2P network is now complete. Figure 1 summarizes

the states and rates in the system.
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Figure 1: General model for a two-class P2P file dissemination system.

We now develop a system of differential equations for the fluid-version of the above

multiclass model.

At time t, the total upload rate provided by class-i peers to peers of class i is αiµi(ηixi(t)+

yi(t)) and to peers of the other class is (1−αi)µi(ηixi(t)+yi(t)). Therefore, the total upload

rate provided by class-i peers is µi(ηixi(t) + yi(t)). Let k = 3 − j designate the other class.

The total download rate provided to peers of class i cannot exceed cixi(t) so that the total

flow rate out of state xi(t) is min(cixi(t), αiµi(ηixi(t)+ yi(t))+ (1−αk)µk(ηkxk(t)+ yk(t))),

to which we must add θixi(t), the total flow rate at which downloaders leave the system

without having downloaded the entire file. By definition, the flow rate into state xi(t) is λi.
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Hence, the time-evolution of (x1(t), x2(t)) is governed by the following differential equations

dxi(t)

dt
= λi−θixi(t)−min (cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))) (1)

for i = 1, 2 and k = 3 − i.

Similarly, we find that the total flow rate into state yi(t) is given by the total rate at

which downloaders become seeds, namely µi(ηixi(t)+ yi(t))+ (1−αk)µk(ηkxk(t)+ yk(t)) as

explained above, while the total flow rate out of state yi(t) is simply γiyi(t). This gives the

following equations for the time-evolution of (y1(t), y2(t))

dyi(t)

dt
= min (cixi(t), αiµi(ηixi(t) + yi(t)) + (1 − αk)µk(ηkxk(t) + yk(t))) − γiyi(t) (2)

for i = 1, 2 and k = 3 − i.

Equations (1)-(2) fully define the system dynamics.

We will be particularly interested in the case where downloaders leave the system at

once when they have completed their download, namely 1/γ1 = 1/γ2 = 0. There are two

reasons why we will be considering this situation. First, it will yield much more tractable

equations, as shown next. Second, this case represents a worst-case situation, where peers

are not willing to cooperate, and leave the system as soon as they have downloaded the file.

In this case, they never become seeds, which implies yi(t) = 0 for all t > 0. As a result,

system (1) reduces to

dxi(t)

dt
= λi − θixi(t) − min (cixi(t), αiβixi(t) + (1 − αk)βkxk(t)) (3)

for i = 1, 2 and k = 3 − i, where

βi := µiηi. (4)

Note that

ci > βi, i = 1, 2 (5)

since we have assumed that c ≥ µi and 0 < ηi < 1. In matrix form (3) writes

ẋ(t) = Aσ(x(t)) x(t) + b (6)

with x(t) := (x1(t), x2(t))
T and b = (−λ1,−λ2)

T (as usual vT denotes the transpose vector

of the vector v). In (6) σ is an integer-value mapping, taking values in σ ∈ {1, 2, 3, 4}, given
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by

σ(x) = 1+2×1(c1x1 ≥ α1β1x1+(1−α2)β2η2x2)+1(c2x2 ≥ α2β2η2x2+(1−α1)β1η1x1) (7)

for x = (x1, x2), where 1(A) denotes the indicator function of the event A (i.e. 1(A) = 1 if

A holds and zero otherwise). The mapping σ is called a switching condition and a system

like (6) is called a switched system [6, 5]. The 2-by-2 matrices Ai, i = 1, . . . , 4, can easily be

identified from (3).

The model where 1/γ1 = 1/γ2 = 0 will be referred to as the no-seed model. A natural

question is: how do downloaders ever get any chunk if there are no seeds? Here, we make a

distinction between two notions of seeds. A BitTorrent-like system needs, at startup time,

at least one seed, for as long as it needs to upload (at least) a complete copy of the file.

Though this bootstrap seed is mandatory to make the file available, it may leave long before

the system reaches a steady-state. Therefore, its role is limited to starting the torrent, and is

negligible on the long-term. Note that the general system (1)-(2), as well as the single-class

model in [7], also neglect this bootstrap seed, since the system may have a nonzero solution

even if yi(0) = 0 for i = 1, 2. Downloaders which have a complete copy of the file, on

the other hand, will have an impact on the steady-state since they belong to the long-term

dynamics of the system. These regular seeds are considered in (1)-(2), whereas the no-seed

model assumes they leave the system immediately.

We conclude this section by introducing the cost functions that we will consider through-

out the paper. Let φi be the download cost of peers of class i, which is defined as the expected

download time given that the peer completes the download. An analytic expression for φi

can easily be derived as follows. Assume that xi(t) has a stationary regime, denoted by x̄i.

By Little’s formula, the expected download time Ti for peers of class i is given by Ti = x̄i/λi.

On the other hand, the stationary probability pi that a class-i peer completes its download

is pi = (λi − θix̄i)/λi. Therefore, the download cost for peers of class i takes the form

φi =
x̄i

λi − θix̄i

, i = 1, 2. (8)

In the next two sections we shall address two different problems corresponding to different

subsets of (static) allocation policies: (α1, α2) = (α, 1 − α), referred to as the service differ-
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entiation problem (Section 3), and (α1, α2) = (α, α), referred to as the bandwidth diversity

problem (Section 4). Both problems will be considered for no-seed models.

3 Resource Allocation Policy for Service Differentiation

In this section we address the service differentiation problem for the no-seed model (unless

otherwise mentioned). For the sake of simplicity we further restrict the analysis to the

case where all peers have the same download/upload bandwidths and the same efficiency

parameters. In other words, we assume that 1/γi = 0, ci = c, µi = µ and ηi = η for i = 1, 2.

We define β := µη.

We recall that the service differentiation problem corresponds to the situation where

α1 = 1 − α2 = α (see end of Section 2).

Our goal is to resolve the resulting system of differential equations (see below) and de-

termine the download cost (defined in (8)) of the two classes of peers. In particular, we

shall show that differential service can indeed be provided to the two classes of peers via the

allocation parameter α.

Under the above assumptions the system of differential equations (3) governing the dy-

namics of (x1(t), x2(t)) simplifies to

dx1(t)
dt

= λ1 − θ1x1(t)−min (cx1(t), αβ(x1(t) + x2(t)))

dx2(t)
dt

= λ2 − θ2x2(t)−min (cx2(t), (1 − α)β(x1(t) + x2(t))) .
(9)

In matrix notation this system is given by (6) with the switching condition (x = (x1, x2))

σ(x) = 1 + 2 × 1(cx1 ≥ αβ(x1 + x2)) + 1(cx2 ≥ (1 − α)β(x1 + x2)). (10)

We introduce the new parameters

a1 := max

(

0, 1 −
cλ2(θ1 + β)

D

)

a2 := min

(

1,
cλ1(θ2 + β)

D

)

with D := β(λ1(θ2 + c) + λ2(θ1 + c)).

Proposition 3.1 below computes the equilibrium point of the switched system (9).
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Proposition 3.1 (Equilibrium point for service differentiation) Regardless of the

initial condition x(0), the system of equations (9) has a unique equilibrium point x̄ given by

x̄T =































































(

λ1 − α λ2β

θ2+c

θ1 + αβ
,

λ2

θ2 + c

)

if 0 ≤ α < a1

(

λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)

if a1 ≤ α ≤ a2

(

λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)

if a2 < α ≤ 1.

(11)

�

Proof. We first check that if limt→∞ x(t) exists, then it is given by (11).

Assume that limt→∞ x(t) = x̄. Letting t → ∞ in (6) yields

Aσ(x̄) x̄ + b = 0 (12)

where σ is given in (10). We consider separately the four systems of linear equations obtained

from (12) when (a) σ(x̄) = 1, (b) σ(x̄) = 2, (c) σ(x̄) = 3 and (d) σ(x̄) = 4.

(a) σ(x̄) = 1 or equivalently cx̄1 < αβ(x̄1 + x̄2) and cx̄2 < (1 − α)β(x̄1 + x̄2).

The download rate is the bottleneck for both classes of peers. We find

x̄T =

(

λ1

θ1 + c
,

λ2

θ2 + c

)

. (13)

(b) σ(x̄) = 2 or equivalently cx̄1 < αβ(x̄1 + x̄2) and cx̄2 ≥ (1 − α)β(x̄1 + x̄2).

The bottleneck is the download rate for class-1 peers and the upload rate for class-2 peers.

We find

x̄T =

(

λ1

θ1 + c
,
λ2 − (1 − α) λ1β

θ1+c

θ2 + (1 − α)β

)

. (14)

(c) σ(x̄) = 3 or equivalently cx̄1 ≥ αβ(x̄1 + x̄2) and cx̄2 < (1 − α)β(x̄1 + x̄2).

The bottleneck is the download rate for peers of class 2 and the upload rate for peers of

class 1. In this case

x̄T =

(

λ1 − α λ2β

θ2+c

θ1 + αβ
,

λ2

θ2 + c

)

. (15)

(d) σ(x̄) = 4 or equivalently cx̄1 ≥ αβ(x̄1 + x̄2) and cx̄2 ≥ (1 − α)β(x̄1 + x̄2).
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The bottleneck is the download rate for both classes of peers. The equilibrium point is

x̄T =

(

λ1(θ2 + (1 − α)β) − λ2αβ

θ2(θ1 + αβ) + θ1(1 − α)β
,
λ2(θ1 + αβ) − λ1(1 − α)β

θ2(θ1 + αβ) + θ1(1 − α)β

)

. (16)

In the following, we call “type-i equilibrium” the equilibrium found when σ(x̄) = i.

The next step is to check if a type-i equilibrium may exist, namely, if σ(x̄) = 1 (resp.

σ(x̄) = 2, σ(x̄) = 3, σ(x̄) = 4) when x̄ is given by (13) (resp. (14), (15), (16)).

It is easily seen that a type-1 equilibrium may only exist if c ≤ β. Since this condition is

never met (use (5) with ci = c and βi = β) we conclude that there is no type-1 equilibrium.

Recall that 0 ≤ α ≤ 1. We prove in Appendix A that a type-2 equilibrium may only exist

if a2 < α ≤ 1. The same type of analysis shows that a type-3 equilibrium may only exist if

0 ≤ α < a1, and that a type-4 equilibrium may only exist if a1 ≤ α ≤ a2.

This concludes the proof that, if limt→∞ x̄(t) = x̄ exists, then x̄ is given by (11) (regard-

less of the initial condition).

We now turn to the proof that limt→∞ x̄(t) exists. To this end, we investigate the nature

of the equilibrium of each of the linear systems ẋ(t) = Ai x(t) + b, for i = 2, 3, 4, with

A2 =





−(θ1 + c) 0

−(1 − α)β − (θ2 + (1 − α)β)



 A3 =





−(θ1 + αβ) −αβ

0 −(θ2 + c)





and

A4 =





−(θ1 + αβ) −αβ

−(1 − α)β − (θ2 + (1 − α)β)



 .

Recall that the equilibrium of the system ẋ(t) = Ai x(t) + b is stable if and only if all

eigenvalues of the matrix Ai have strictly negative real parts [4]. It is easily seen that

A2 and A3 have two strictly negative eigenvalues, given by (−(θ1 + c),−(θ2 + (1 − α)β))

and (−(θ1 + αβ),−(θ2 + c)), respectively. The same property holds for A4. To see this,

denote by D(c, r) the closed disc of center c and radius r in the complex plane. From

Geršgorin circle theorem [2, p. 344] we know that both eigenvalues of A4 lie in the region

D(−θ1 − αβ, αβ) ∪ D(−θ2 − (1 − α)β, (1 − α)β), from which the result follows.

We have now proved the local stability of the equilibrium of each linear subsystem of (9).

However, a rigorous proof of the global stability of (9) would require more attention. For
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brevity, we do not address this problem here. The interested reader can refer to [5] for the

stability of linear switched systems.

In summary, we have shown that for a given value of α, a unique equilibrium exists, is

given in (11), and is stable. This completes the proof.

How can we achieve a target QoS ratio k?

It is now possible to achieve service differentiation using parameter α as follows.

The goal is to differentiate the download costs φ1 and φ2 of class-1 and class-2 peers,

respectively. These costs are given in the next proposition.

Proposition 3.2 (Download costs for service differentiation) In a no-seed model,

the download cost φi of class-i peers in the service differentiation problem is given by:

φ1 =
λ1(θ2 + c) − αλ2β

αβ(λ2θ1 + λ1(θ2 + c))
, φ2 =

1

c
if 0 ≤ α < a1

φ1 =
λ1(θ2 + β) − αβ(λ1 + λ2)

αβ(λ2θ1 + λ1θ2)
, φ2 =

λ2θ1 − λ1β + αβ(λ1 + λ2)

(1 − α)β(λ2θ1 + λ1θ2)
if a1 ≤ α ≤ a2

φ1 =
1

c
, φ2 =

λ2(θ1 + c) − λ1β + αλ1β

(1 − α)β(θ2λ1 + λ2(θ1 + c))
if a2 < α ≤ 1.

�

First, note that in the service differentiation problem, we considered the static allocation

policy (α, 1−α). Since the two classes have the same bandwidth characteristics (i.e. c1 = c2,

µ1 = µ2) and the same efficiency parameters (η1 = η2), this policy results in a download

cost tradeoff governed by α. This tradeoff is represented in Figure 2.

There are at least two ways to achieve service differentiation. The first one is to guarantee

a subscribed download cost for one class (e.g. φ1 = Φ for peers of class 1) with no constraint

on the download cost of the other class. This can be done by assigning to the parameter α

the (unique) root in [0, 1] of the linear mapping α → φ1−Φ, where φ1 is given in Proposition

3.2.

The second one is to achieve a target download cost ratio k between first- and second-class

peers, namely
φ2

φ1
= k. (17)
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Figure 2: Download cost tradeoff (λ1 =λ2 =10−1, θ1 =θ2 =β = 10−4, c=10−3)

The parameter α is then obtained as the (unique) root in [0, 1] of the (either linear or

quadratic) mapping α → φ2/φ1 − k. For a given set of parameters (see caption), Figure 3

reports the value of α that satisfies (17) as a function of k, for k ∈ [1, 300].

We conclude that service differentiation in BitTorrent-like networks can easily be achieved

through the single parameter α.

What if users stay connected after the download?

All the results obtained so far in this section have been derived under the assumption that

there are no seeds in the system. As already observed this case can be seen as a worst-case

scenario, where peers are selfish and leave the system as soon as they have downloaded the

file.

In this section, we relax the no-seed assumption. In other words, we assume that down-

loaders do not leave the system immediately after they have downloaded the file, but continue

to upload chunks to the other peers for some time of average duration 1/γi > 0 for class-i

peers.

In this more general setting the time-evolution of the system is given by the system of
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differential equations (1)-(2), with (α1, α2) = (α, 1 − α). We still assume that µ1 = µ2,

c1 = c2 and η1 = η2 (these assumptions could be relaxed). The analysis of this system

is much more complex than that of the no-seed model. While it is still easy to compute

the stationary solutions of (1)-(2) in explicit form, it is much more complex to study the

existence and stability of these solutions. However, there is no difficulty to numerically

compute the steady-state of these equations once numerical values have been assigned to the

system parameters.

This has been done for the following set of parameters: λ1 = λ2 = 10−1 peers/s, θ1 =

θ2 = µ = 10−4s−1, c = 10−3s−1, η1 = η2 = 0.9. These parameters are rounded values of

typical values estimated using the statistics in [3] in particular. We also assumed γ1 = γ2 = γ.

For given values of γ and α ∈ (0, 1) we have computed the ratio of download costs

R = φ2/φ1 for the seed model and the ratio of download costs r = φ2/φ1 for the no-seed

model.

We have found that for γ = c, the relative error |R − r|/R averages 1%. For γ ≥ c, this

relative error rapidly decreases, making the no-seed model very-well suited for the service

differentiation problem. For γ < c, the relative error rapidly increases, making a numerical
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estimation of α necessary, using(1)-(2).

4 Bandwidth Diversity

We now address the bandwidth diversity problem for the no-seed model (1/γi = 0 for i =

1, 2). We consider two classes of peers with different bandwidths (e.g., ADSL users and

corporate users). Recall that the bandwidth diversity problem we consider is characterized

by α1 = α2 = α (see Section 2).

Our first objective is to determine the download cost for each class of peers. Then, we

will find a static allocation policy (α, α) that minimizes the maximum download cost of

both classes. With a slight abuse of notation a static allocation policy (α, α) will simply be

referred to as an allocation α from now on.

Under the aforementioned assumptions the system of differential equations (3) becomes

dx1

dt
= λ1 − θ1x1−min (c1x1, αβ1x1 + (1 − α)β2x2)

dx2

dt
= λ2 − θ2x2−min (c2x2, (1 − α)β1x1 + αβ2x2) .

(18)

In matrix notation the system (18) is given by (6), with the switching condition

σ(x) = 1 + 2 × 1(cx1 ≥ αβ1x1+(1 − α)β2x2) + 1(cx2 ≥ (1 − α)β1x1 + αβ2x2). (19)

For the sake of compactness we introduce the new parameters

a3 :=
λ2β2(θ1 + c1) − λ1(c1θ2 + β1β2)

λ2β2(θ1+c1)−λ1(β1θ2+2β1β2− c1β2)
a4 :=

λ1β1(θ2 + c2) − c2λ2(θ1 + c1)

λ1β1(θ2 + c2) − β2λ2(θ1 + c1)
(20a)

a5 :=
λ1β1(θ2 + c2) − λ2(c2θ1 + β2β1)

λ1β1(θ2+c2)−λ2(β2θ1+1β2β1− c2β1)
a6 :=

λ2β2(θ1 + c1) − c1λ1(θ2 + c2)

λ2β2(θ1 + c1) − β1λ1(θ2 + c2)
(20b)

d := (θ2 + αβ2)(θ1 + αβ1) − (1 − α)2β1β2. (20c)

We also define the elementary conditions

(C1) : λ1(c1θ2 + β1β2) ≤ λ2β2(θ1 + c1) and 0 ≤ α < a3 (21)

(C2) : c2λ2(θ1 + c1) ≥ λ1β1(θ2 + c2) or a4 ≤ α ≤ 1 (22)

(C3) : λ2(c2θ1 + β2β1) ≤ λ1β1(θ2 + c2) and 0 ≤ α < a5 (23)

(C4) : c1λ1(θ2 + c2) ≥ λ2β2(θ1 + c1) or a6 ≤ α ≤ 1. (24)
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Furthermore, let us define the following set of conditions

(D2) = (C1) ∪ (C2)

(D3) = (C3) ∪ (C4)

(D4) = (not (C1)) ∪ ( not (C3)).

The above definitions imply that (D4) ∩ (D2) = (D4) ∩ (D3) = ∅, where ∅ denotes the

empty set. However, (D2) ∩ (D3) is not necessarily empty, so that (D2) and (D3) may hold

simultaneously for some sets of parameters. Finally, we define the two-dimensional vectors

xi, i = 2, 3, 4, by

x2 =

(

λ1

c1 + θ1
,
λ2 − (1 − α)β1

λ1

c1+θ1

θ2 + αβ2

)

x3 =

(

λ1 − (1 − α)β2
λ2

c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)

x4 =

(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)

where d is defined in (20c). Proposition 4.1 below investigates the steady-state behavior of

the switched system (18).

Proposition 4.1 (Equilibrium for bandwidth diversity) The system of differential

equations (18) has a unique equilibrium point x̄ given by

x̄ =































xT
2 regardless of x(0), if (D2) holds and (D3) does not hold

xT
3 regardless of x(0), if (D3) holds and (D2) does not hold

xT
4 regardless of x(0), if (D4) holds

xT
2 or xT

3 depending on x(0), if (D2) and (D3) hold simultaneously.

(25)

�

Proof. As in Section 3, we first assume that limt→∞ x(t) exists and check that it is given

by (25). Letting t → ∞ in (6) yields (12), where σ is now given by (19).

We consider separately the four systems of linear equations obtained from (12) when (a)

σ(x̄) = 1, (b) σ(x̄) = 2, (c) σ(x̄) = 3 and (d) σ(x̄) = 4.

(a) σ(x̄) = 1 or equivalently c1x̄1 < αβ1x̄1 + (1 − α)β2x̄2 and c2x̄2 < (1 − α)β1x̄1 + αβ2x̄2.
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The download rate is the bottleneck for both classes of peers. We find

x̄T =

(

λ1

θ1 + c1
,

λ2

θ2 + c2

)

. (26)

(b) σ(x̄) = 2 or equivalently c1x̄1 < αβ1x̄1 + (1 − α)β2x̄2 and c2x̄2 ≥ (1 − α)β1x̄1 + αβ2x̄2.

The bottleneck is the download rate for class-1 peers and the upload rate for class-2 peers.

We find

x̄T =

(

λ1

θ1 + c1
,
λ2 − (1 − α)β1

λ1

c1+θ1

θ2 + αβ2

)

. (27)

(c) σ(x̄) = 3 or equivalently c1x̄1 ≥ αβ1x̄1 + (1 − α)β2x̄2 and c2x̄2 < (1 − α)β1x̄1 + αβ2x̄2.

The bottleneck is the download rate for peers of class 2 and the upload rate for peers of

class 1. In this case

x̄T =

(

λ1 − (1 − α)β2
λ2

c2+θ2

θ1 + αβ1
,

λ2

θ2 + c2

)

. (28)

(d) σ(x̄) = 4 or equivalently c1x̄1 ≥ αβ1x̄1 + (1 − α)β2x̄2 and c2x̄2 ≥ (1 − α)β1x̄1 + αβ2x̄2.

The bottleneck is the download rate for both classes of peers. The stationary solution is

x̄T =

(

λ1(θ2 + αβ2) − (1 − α)λ2β2

d
,
λ2(θ1 + αβ1) − (1 − α)λ1β1

d

)

(29)

where d is defined in (20c).

The next step is to check if a type-i equilibrium may exist, namely, if σ(x̄) = 1 (resp.

σ(x̄) = 2, σ(x̄) = 3, σ(x̄) = 4) when x̄ is given by (26) (resp. (27), (28), (29)).

It is easily seen that a type-1 equilibrium may only exist if c1λ1 + c2λ2 ≤ β1λ1 + β2λ2.

Since ci > βi for i = 1, 2 (see (5)) we conclude that there is no type-1 equilibrium, where

both classes would saturate their download capacity.

A simple analysis, similar to that in Appendix A, shows that a type-2 equilibrium only

exists if (21) and (22) are true, and that a type-3 equilibrium only exists if (23) and (24) are

true. For the existence conditions of a type-4 equilibrium, we also use the stability condition

(30) below, in addition to σ(x̄) = 4, to get the following condition: (not (21)) and (not (23)).

It happens that conditions for σ = 2 and σ = 3 are not mutually exclusive. When they are

simultaneously satisfied (i.e., (D2)∩ (D3) holds) then the steady-state is given either by (27)

or (28) depending on the initial conditions.
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We now turn to the proof that limt→∞ x̄(t) exists. Namely, we investigate the nature of

the equilibrium of each of the linear systems ẋ(t) = Ai x(t) + b, for i = 2, 3, 4, with

A2 =





−θ1 − c1 0

−(1 − α)β1 −θ2 − αβ2



 A3 =





−θ1 − αβ1 −(1 − α)β2

0 −θ2 − c2





and

A4 =





−θ1 − αβ1 −(1 − α)β2

−(1 − α)β1 −θ2 − αβ2



 .

It is easily seen that the matrices A2 and A3 have two strictly negative eigenvalues. The

eigenvalues of the matrix A4 are the roots in λ of the polynomial

det(A4 − λI) = (θ1 + αβ1 + λ)(θ2 + αβ2 + λ) − (1 − α)2β1β2

= λ2 + λ(θ1 + αβ1 + θ2 + αβ2) + d

where I denotes the 2×2 identity matrix. The roots of this polynomial have strictly negative

real parts if and only if their product is strictly positive and their sum is strictly negative,

which is equivalent to

d > 0. (30)

This shows that all equilibria are stable, which concludes the proof.

We now compute the download costs φ1 and φ2 associated with each equilibrium point

found in Proposition 4.1.

In order to simplify the notation, we introduce the following two-dimensional vectors

ϕ2 =

(

1

c1
,

λ2(θ1 + c1) − (1 − α)λ1β1

θ2λ1β1 + α(λ2β2(θ1 + c1) − λ1β1θ2)

)

ϕ3 =

(

λ1(θ2 + c2) − (1 − α)λ2β2

θ1λ2β2 + α(λ1β1(θ2 + c2) − θ1λ2β2)
,

1

c2

)

ϕ4 =

(

(λ1θ2 − λ2β2 + αβ2(λ1 + λ2))

β2(λ2θ1 − λ1β1) + α(λ1β1(θ2 + 2β2) − θ1λ2β2)
,

λ2θ1 − λ1β1 + αβ1(λ1 + λ2)

β1(λ1θ2 − λ2β2) + α(λ2β2(θ1 + 2β1) − θ2λ1β1)

)

.

The next proposition partially characterizes the download costs φ1 and φ2.
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Proposition 4.2 (Download costs for bandwidth diversity) In a no-seed model, the

vector of download costs (φ1, φ2) in the bandwidth diversity problem is given by

(φ1, φ2) =































ϕ2 regardless of x(0), if (D2) holds and (D3) does not hold

ϕ3 regardless of x(0), if (D3) holds and (D2) does not hold

ϕ4 regardless of x(0), if (D4) holds

ϕ2 or ϕ3 depending on x(0), if (D2) and (D3) hold simultaneously.

�

Proof. The proof directly follows from Proposition 4.1 and (8).

How can we minimize the highest download cost?

In the bandwidth diversity problem, several optimization problems could be considered. For

instance, one may wish to find an allocation α that yields the same download costs. Another

objective could be to minimize a linear combination of the download costs. However, as shown

in Proposition 4.2, it is difficult to analytically determine φ1 and φ2 whenever (D2)∩(D3) 6= ∅,

and thereby to solve the above optimization problems.

Instead, we will seek to minimize the maximum download cost over all initial states and

over all classes. To this end, we introduce the mapping α → E(α), called the envelope

function, defined by

E(α) = max
σ∈{2,3,4}

max
i∈{1,2}

φi.

Our objective is to minimize the envelope function as a function of α.

We now use Proposition 4.2 to calculate the value of α that minimizes E(α). In Figures

4 and 5, the envelope function is represented along with the possible values of (φ1, φ2) for α

in (0, 1), for two different set of physical parameters.

In Figure 4, we observe that E(α) is minimal for a single value of α, when σ = 4 and

φ1 = φ2. In this case, the exact value of α that minimizes the maximum download cost

can be found by solving φ1 = φ2 using Proposition 4.2. Note that in Figure 4, we have

both type-2 and 3 equilibria for α ≤ 0.32. The steady-state is then determined by initial

conditions.
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In Figure 5, E(α) is minimal on a whole interval on which it is equal to the constant

download cost φ1 when σ = 2. In this case, the interval can also be determined using

Proposition 4.2, by solving φ1 = φ2 for σ = 2 for the lower bound, and by determining

the maximum value of α that satisfies (21) and (22) for the upper bound. Note that in

Figure 5, condition (23) and (24) are never satisfied simultaneously with this set of physical

parameters, since we do not have a type-3 equilibrium.

In any case, finding the value of α that minimizes the worst download cost, amounts to

solve a linear or quadratic equation φ1 = φ2 using the appropriate expression in Proposition

4.2.

We conclude that for a given physical set of parameters, it is possible to account for

bandwidth diversity in BitTorrent-like networks through parameter α.

5 Conclusions and Perspectives

In this paper we presented a simple multiclass fluid model for BitTorrent-like distribution

systems. We successfully applied this model to account for two specific problems: service

differentiation and bandwidth diversity. We mainly focused our attention to the special case

where peers selfishly leave the system immediately after their download (“no-seed case”). For

both the service differentiation and bandwidth diversity problems, we have defined a single

parameter α that defines a resource allocation strategy. We showed how this parameter

affects the steady-state of the system and provided closed-form expressions for the successful

download time in each case. In addition, we showed how this parameter α can be chosen so as

to achieve a target quality of service ratio (download time ratio) for the service differentiation

problem. We also quantified the impact of the no-seed assumption on this result through a

numerical resolution of the general problem. For the bandwidth diversity problem, we also

showed how it is possible to choose parameter α so as to minimize the highest download time

between two classes of peers.

Many open problems remain. In particular, we intend to compare the results of our model

to a simulation of a real P2P file dissemination system. Another problem for further research

is the study of dynamic resource allocation, where α would depend on the class population.
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A Service Differentiation: Type-2 Equilibrium

In this appendix we show that a type-2 equilibrium exists for α ∈ [0, 1] if and only if

a2 < α ≤ 1, where a2 is defined in Section 3.

By definition, a type-2 equilibrium exists if x̄ = (x̄1, x̄2) given in (14) is such that σ(x̄) =

2, to which we need to add the condition that x̄2 ≥ 0 (note that x̄1 is always nonnegative).

Equivalently, we need to find the values of α in [0, 1] such that

cξ < αβ

(

ξ +
λ2 − (1 − α)βξ

θ2 + (1 − α)β

)

c
λ2 − (1 − α)βξ

θ2 + (1 − α)β
≥ (1 − α)β

(

ξ +
λ2 − (1 − α)βξ

θ2 + (1 − α)β

)

λ2 − (1 − α)βξ ≥ 0

where we have set ξ := λ1/(θ1 + c). The first two conditions express the identity σ(x̄) = 2

and the third condition expresses the constraint x̄2 ≥ 0.

Straightforward algebra shows that these conditions are simultaneously met for α ∈ [0, 1]

if and only if

α >
cλ1(θ2 + β)

D
and α ≥ max

(

1 −
cλ2(θ1 + c)

D
, 1 −

λ2(θ1 + c)

λ1β

)

(31)

where we recall that D = β(λ1(θ2 + c) + λ2(θ1 + c)).

Let us first compare cλ1(θ2 + β))/D to 1 − cλ2(θ1 + c))/D. We have

cλ1(θ2 + β)

D
−

(

1 −
cλ2(θ1 + c)

D

)

=
1

D
(cλ1(θ2 + β) + cλ2(θ1 + c) − D)

=
1

D
(c (λ1(θ2 + β) + λ2(θ1 + c)) − β(λ1(θ2 + c) + λ2(θ1 + c)))

=
1

D
(c − β)(λ1θ2 + λ2(θ1 + c)).

We have observed earlier in the proof of Proposition 3.1 that c > β, which shows that

cλ1(θ2 + β))/D > 1 − cλ2(θ1 + c))/D.
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We now compare cλ1(θ2 + β))/D to 1 − λ2(θ1 + c)/(λ1β). We have

cλ1(θ2 + β)

D
−

(

1 −
λ2(θ1 + c)

λ1β

)

=
1

Dλ1β

(

cλ2
1β(θ2 + β) − Dλ1β + λ2(θ1 + c)D

)

=
1

Dλ1β
(λ1β(cλ1(θ2 + β) − βλ1(θ2 + c) − βλ2(θ1 + c) + λ2(θ1 + c)(θ2 + c))

+βλ2
2(θ1 + c)2

)

=
1

Dλ1

(

λ1(λ1θ2(c − β) + λ2(θ1 + c)(θ2 + c − β)) + λ2
2(θ1 + c)2

)

> 0

since c > β.

In summary we have shown that the conditions σ(x̄) = 2 and x̄2 ≥ 0 will simultaneously

hold for α ∈ [0, 1] if and only if α > min(1, cλ1(θ2 + β))/D) = a2, which is the announced

result.
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[6] Morse, A. S., Ed. Control Using Logic-Based Switching. London: Springer-Verlag,

1997.

[7] Qiu, D., and Srikant, R. Modeling and performance analysis of bittorrent-like peer-

to-peer networks. In Proceedings of ACM Sigcomm (Portland, OR, Aug 2004).

22


