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Abstract
To optimize network performance, cloud service providers
have a number of options available to them, including
co-locating production servers in well-connected Inter-
net eXchange (IX) points, deploying data centers in ad-
ditional locations, or contracting with external Content
Distribution Networks (CDNs). Some of these options
can be very costly, and some may or may not improve
performance significantly. Cloud service providers would
clearly like to be able to estimate a priori performance
gain of the various options before sinking significant
capital expenditures into major infrastructure changes.

In this paper we take a measurement-oriented ap-
proach and develop methodologies that accurately pre-
dict the performance improvement for making major
infrastructure changes. Our methodology leverages ac-
tive Web content, existing large-scale CDN infrastruc-
tures, and the SpeedTest network. We then apply our
methodology and tools to the problem of locating satel-
lite data centers throughout the world. The results
show that for North America, a deployment limited to
11 locations will be sufficient. However, in order to
provide good latency and throughput performance on
a global scale, somewhere between a total of 36 and 72
cloud-service locations with good peering connections is
most likely needed.

1. INTRODUCTION
Today cloud service providers (such as Google, Mi-

crosoft, and Amazon) host a broad range of services, in-
cluding e-commerce, search, portal services, web mail,
shared calendars, social networking, remote computa-
tion, word processing, spreadsheet applications, and so
on. Data centers hosting such services are often in re-
mote locations and can involve non-negligible latency
for access. End-users, on the other hand, are extremely
sensitive to the responsiveness of the services. Large-
scale A/B experiments, for instance, have shown that
100 ms extra delay can cost 1% drop in sales [10].

Therefore, an important goal of cloud service providers
is, to the greatest extent possible, hide the network from
the user – that is, to give the user the illusion that be-

tween the user and the cloud the delay is zero and the
bandwidth is infinite. One aggressive strategy is to de-
ploy satellite data centers in addition to the traditional
mega “backbone data centers,” so as to construct an
acceleration platform close to the end-users. Based on
these satellite data centers, planet-scale edge networks,
such as Amazon’s CloudFront, Google’s private CDN,
and Microsoft’s Edge Computing Network, go beyond
distributing static content and speeding up large down-
loads. They are increasingly important for accelerat-
ing dynamic cloud services [16], including search, email,
maps, online office productivity software, etc.

An edge network deployment may consist of many
(tens to a few hundred) satellite data centers. The
important questions to be answered are 1) how many
satellite data centers are needed? 2) where should they
be deployed? and 3) what kind of peering connectiv-
ity should they have? In terms of deployment, cloud
service providers have a number of options available
to them, including co-locating production servers in
well-connected Internet eXchange (IX) points, deploy-
ing satellite data centers in additional locations (beyond
their mega backbone data centers), or contracting with
external Content Distribution Networks (CDNs). Some
of these options can be very costly, and some may or
may not improve performance significantly. Cloud ser-
vice providers would clearly like to be able to estimate
a priori performance gain of the various options before
sinking significant capital expenditures into major in-
frastructure changes.

The goal of this paper is to answer these questions.
Analytical and queuing methods will not be sufficient,
since they don’t accurately capture the complex traf-
fic patterns that arise in cloud services. Hence, in this
study, we take a measurement-oriented approach. There
are two key challenges. First, how do we design the
experiments so that the measurements capture the per-
ceived performance of real end-users? Second, how can
we accurately measure the performance of a hypotheti-
cal deployment before physically deploying the satellite
data centers? To address the first challenge, we leverage
the ubiquity of web browsers and develop a JavaScript-



2

based measurement tool – CloudBeacon. CloudBeacon
can be embedded in any web page served by the cloud
providers or by partners of the cloud provider. It is
launched and executed within the end-users’s browser
and thus takes measurements from behind the “last
mile”. With our CloudBeacon tool, we can measure
delay and throughput from users in the wild, dispersed
over the entire globe, to any set of target hosts. To
address the second challenge, we need to identify can-
didate target hosts that are not only broadly geograph-
ically dispersed but also have ISP peering arrangements
that are similar to those that satellite data centers would
have. Our key idea here is to leverage the widely de-
ployed commercial CDNs. To this end, we develop a
novel latency measurement methodology, called Reflec-
tion Ping, specifically designed for CDN servers. We
show that by combining several large scale infrastruc-
tures together, cloud providers can compare virtually all
the potential locations for satellite data centers; evalu-
ate different performance metrics (such as latency vs.
throughput); and examine peering connectivity options
at the candidate locations.

As a proof of concept, we deploy CloudBeacon on
a number of popular websites. When users in the wild
download pages from these websites, CloudBeacon makes
measurements between the users and servers at three
existing large-scale commercial infrastructures, includ-
ing two Content Distribution Networks [8] and the SpeedTest
network [2]. Using the results of these measurements,
we evaluate how cloud providers should design their
edge networks (that is, locate their satellite data cen-
ters).

We conclude that edge network performance is not
only determined by geographic presence but also crit-
ically by the extent of ISP peering arrangements. We
find that in North America and Europe, when a bigger
CDN is limited to a subset of its deployment locations,
such as the same locations as a smaller CDN, it yields
almost identical perceived latency performance. How-
ever, in Asia, CDN performance can be greatly affected
due to the lack of proper ISP peering connectivity. In
addition, we conduct evaluation of hypothetical deploy-
ments of edge networks for cloud services, for latency
sensitive and throughput sensitive applications. The re-
sults show that it is not difficult to achieve good perfor-
mance in North America – a deployment limited to 11
locations will be sufficient. However, in order to provide
good latency and throughput performance on a global
scale, somewhere between a total of 36 and 72 cloud-
service locations with good peering connectivity is most
likely needed. Finally, our results show that excessive
deployments in the order of several hundred locations
is unnecessary.

2. MEASUREMENT ARCHITECTURE
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Figure 1: Measurement Architecture

Normally, measuring end-to-end performance requires
measurement applications be installed and executed in
thousands of representative clients geographically dis-
tributed around the world. However, today end-users
tend to avoid downloading and installing executables
whenever possible. For example, Joost [1] has publicly
acknowledged that it was a strategic mistake to require
users to install a client before they are able to watch any
video. Client side installation is a huge deployment bar-
rier, even for compelling services such as Joost. Thus,
it is critical that the cloud-service measurement tool be
distributed and executed in end systems without asking
the end-user to download and install programs or even
making minor changes to default system configurations.

As shown in Figure 1, our measurement platform con-
sists of three parts: a CloudBeacon web gadget, partner
web sites (such as the web servers of Polytechnic Insti-
tute of NYU and Microsoft Research), and the Cloud-
Beacon workload server. The CloudBeacon web gadget
is written in JavaScript. It is hosted by multiple part-
ners on their (preferably popular) web sites. When a
client (in the wild) retrieves a web page from a part-
ner’s website, the CloudBeacon gadget is loaded into
the client at the end of the web page (so as not to af-
fect user-perceived page load time). The CloudBeacon
gadget then retrieves a measurement target list from
the CloudBeacon server. After obtaining the target
list, the CloudBeacon gadget performs Internet mea-
surements to hosts in the target list and submits the
results back to the CloudBeacon server. With this ar-
chitecture, the target list can be dynamically modified
by the CloudBeacon server based on the client’s origin.
For example, the CloudBeacon server can return, from
a large set of potential measurement targets, the target
that is the closest to the client. To minimize the visual
impact on the end-users, the CloudBeacon is embedded
in a partner’s web site through an 1-pixel iframe (thus
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“invisible” to the end-users) as follows.

<iframe src=‘http://cloudbeacon.com/measure.htm’
scrolling=no frameborder=0
marginwidth=0 marginheight=0
width=1 height=1>

</iframe>

The CloudBeacon gadget is implemented in the measure-
.htm page. If we update the gadget, we simply modify
this HTML page and the updated gadget will be auto-
matically loaded by clients.

Next, we describe actual measurement conducted by
the CloudBeacon gadget. Each measurement task in-
structs the client to fetch a particular object from a
target web server (say example.com). A download time
is calculated as the time elapsed from when the client
initiates the request until the response arrives. To do
this, an “innerHTML” can be embedded into a dynamic
div tag as follows:

div.innerHTML =
"<img src=‘http://example.com/object?rand’

onload=‘endtime()’></img>"

When clients visit the partner’s page, the measure-
ment is triggered through an image event in HTML.
(It does not matter even if the object is not an image.)
The time difference between creating the dynamic tag
and the “endtime” being invoked is the download time.
The measurement is repeated several times and the min-
imum value is reported through a separate web request.
Here, a random sequence is generated on-the-fly for each
dynamic div tag to avoid browser side caching of the
object.

2.1 System Deployment and Data Collection
The measurement system was deployed for more than

2 months. CloudBeacon is currently hosted on multiple
popular partner websites, including the front page for
Microsoft Research, the front page for Polytechnic In-
stitute of NYU, all pages of the Packet Video workshop,
the front pages of three small online gaming websites,
as well as a number of personal home pages belonging
to the authors and their colleagues. The data collection
is summarized in Table 1.

3. METHODOLOGY FOR LATENCY AND
THROUGHPUT MEASUREMENT

Given a target deployment location, the fundamen-
tal performance metrics are latency and throughput.
In this section, we present methodologies for accurate
measurement of both metrics for clients in the wild to
the target location.

3.1 Latency Methodology

The servers in Content Distribution Networks are
ideal target nodes for our study. CDN production servers
are deployed in hundreds of locations. Many of these
locations are densely populated with servers. In addi-
tion, CDNs often establish extensive peering connectiv-
ity with a large number of ISPs. Peering connectiv-
ity establishes a direct network connection between two
lower-tier ISPs. That way, traffic between the two ISPs
does not have to route through higher-tier ISPs, which
helps to improve performance and reduce bandwidth
costs. It is a common practice for CDNs to peer ag-
gressively and extensively, especially to so-called “eye-
ball ISPS,” that is, with ISPs that service end users.
Cloud service providers are expected to follow suit. In
short, the existing locations of CDN servers are excel-
lent candidates for cloud service providers’ satellite data
centers. Thus, we choose the servers of two large-scale
CDNs as targets for our latency measurements.

3.1.1 The Wrong Way to Do Things
Intuitively, latency can be simply measured by down-

loading a small object from a CDN server. However,
practical challenges render accurate latency measure-
ment far more complicated. Here, we first present a
seemingly correct, but misleading, methodology.1 To
measure the latency from a client to CDN Z, we instru-
ment CloudBeacon to retrieve a small object from CDN
Z. For example, if we know that customer.com uses
CDN Z to deliver content, we can instruct CloudBea-
con to request http://customer.com/tiny.gif?rand,
for the file tiny.gif stored in CDN Z’s servers. Note that
it is necessary to append a random string at the end of
each request to avoid browser caching.

Unfortunately, when we instrumented CloudBeacon
to conduct such measurements against two represen-
tative CDNs [8] (anonymized here and simply referred
to as CDN A and CDN B), the results were surpris-
ingly counter-intuitive. Because CDN A has a much
broader geographic presence than CDN B, we expected
CDN A’s performance to be better. However, the re-
sults were completely the opposite. Eventually, we dis-
covered that, in the above measurement for CDN A,
the obtained latency is not between the client and the
CDN, but rather between the client and the original
server (customer.com here) through a CDN server. The
random string appended to each request not only pre-
vents caching in the client browser, but also in the CDN
server. This experiment clearly shows that, if not care-
ful, a seemingly-correct measurement methodology can
lead to completely false conclusions!

3.1.2 Reflection Ping
Now, we describe a new methodology – reflection

1We hope reporting such methodology can help other re-
searchers avoid the same pitfall.
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unique IPs cities countries ASes
CloudBeacon clients in the wild 18,418 2,064 134 1,100+

Table 1: Data Collection Summary

ping, which allows us to measure the latency between
a client and a specified CDN server. Note that, in this
methodology, the chosen CDN server is specified by us.
The CDN’s DNS-based redirection logic is bypassed, as
it is not of interest for our purpose.

We construct an HTTP request using the server’s IP
address, instead of its hostname. For example, suppose
customer.com maps to 192.168.0.1, the HTTP re-
quest, instead of http://customer.com/tiny.gif?rand,
is now constructed as

http://192.168.0.1/tiny.gif?rand.

Because the CDN server uses the hostname to as-
sociate a request with its customers (by examining the
“Host” field in an HTTP request header), it cannot map
http://192.168.0.1/tiny.gif?rand to any particu-
lar customer in this case. As a result, it denies such
a request and sends back HTTP/1.x 400 Bad Request.
In addition, the CDN server closes the connection after
such a reply. Hence, each request completes in exactly
2 RTTs (one for TCP establishment and the other for
the request/reply). The final RTT latency is calculated
as half of measured elapsed time.

One subtlety worth pointing out is, to ensure accu-
racy, the client should avoid using a CDN server with
which it currently has a persistent connection (for cases
when the client has recently – say, within the a nor-
mal persistent connection timeout of 5 minutes – re-
quested content from customer.com). We now describe
a randomization technique to minimize the probability
of this occurring. The basic observation is that for a
given CDN provider, each of of its locations typically
has many CDN servers. We will thus have the client
contact different CDN servers when repeatedly visiting
the same CDN location.

3.1.3 Charting CDN Servers
In order to use a CDN’s servers in our measurement

experiments, we need to know their IP addresses. We
now describe our methodology for charting a CDN’s
servers. Our methodology explores the same “DNS
magic” used by all modern CDNs to connect end-users
to their servers. Let’s illustrate this with an example.
Assume BestBuy.com contracts with CDN Z to accel-
erate its website. An end-user visiting http://www.-
BestBuy.com resolves the hostname to an IP address by
querying its local DNS (LDNS) server. The LDNS then
contacts the authoritative DNS server of BestBuy.com,
which returns a CNAME a1105.cdnZ.net to the query.
Here, the CNAME belongs to the domain of CDN Z

and a1105 represents the customer. The LDNS again
resolves a1105.cdnZ.net and eventually obtains the IP
address of a CDN Z server hosting BestBuy’s content.

Depending on the query (representing the CDN cus-
tomer) and the origin of the LDNS (representing the
end-user), CDN Z chooses a (CDN Z) server that hosts
the customer’s content and is nearby the end-user (and
returns the IP address thereof). In addition, due to
load balancing, for the same query and LDNS, CDN Z
returns different servers over time. Therefore, to chart
the complete list of CDN Z’s servers, conceptually, we
can take three steps: 1) finding all the customers that
are using CDN Z; 2) querying a large number of open
LDNSes all over the world (as if the queries were from
geographically dispersed end-users); 3) repeating the
queries over time.

# of Cities CDN A CDN B
TOTAL 411 19
North America 279 11
Europe 72 4
Asia 34 3
South America 11 -
Oceania 9 1
Africa 6 -

Table 2: CDN Locations (by Continent).

Now, we briefly summarize the main discoveries. For
CDN A and CDN B, we eventually compile a list of
more than 27, 000 and 4, 100 servers, respectively. Using
a commercial IP to geolocation database, the servers of
CDN A map to more than 400 locations (i.e., cities)
in 66 different countries over 6 continents and those
of CDN B map to 19 locations over 4 continents, as
summarized in Table 2 and Table 3 (please refer to [8]
for more details).2

3.1.4 Reflection Ping against CDNs
Once we have charted out the complete list of servers

for both CDN A and CDN B, we group all the servers
by their geographic locations. CDN A’s deployment
covers more than 400 locations while CDN B covers 18
locations. The CloudBeacon server maintains a list of
up to 32 active servers for each location (the activeness
of a CDN server is tested by having the CloudBeacon
server attempt a TCP connection with the CDN server
2Note that the single server of CDN B at Sydney does not
respond to probes, so only the other 18 are considered.
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(a) CDN A
Country # of IP Percentage(%)
United States 16,843 61.09
United Kingdom 1,690 6.13
Japan 1,622 5.88
Germany 1,103 4.00
Netherlands 857 3.11
France 722 2.62
Australia 514 1.86
Canada 438 1.59
Sweden 396 1.44
Hong Kong SAR 370 1.34
Others 3018 10.95
Total 27,573 100.00

(b) CDN B
City Country # of servers
All Cities United States 2830
Frankfurt Germany 314
London United Kingdom 300
Amsterdam Netherlands 199
Tokyo Japan 126
Toronto Canada 121
Paris France 120
Hong Kong Hong Kong SAR 83
Changi Singapore 53
Sydney Australis 1
Total - 4147

Table 3: Geographic Distributions of CDNs.

at port 80). The list is randomly generated from all the
servers in each location, and the list is refreshed every
hour.

When a client loads CloudBeacon and requests a work-
load item, the CloudBeacon server will first choose a lo-
cation for the measurement target, and then randomly
select a server from the list of CDN servers at that lo-
cation. In this manner, with high probability the client
contacts different CDN servers when repeatedly visiting
the same CDN location (and therefore doesn’t use per-
sistent TCP connections). CloudBeacon then conducts
reflection pings several times to the randomly chosen
server; we then estimate the RTT as the minimum of
the observed latencies between the client and this loca-
tion.

3.2 Throughput Measurement Methodology
To evaluate throughput performance, we use another

existing infrastructure – the SpeedTest network (STN) [2],
which allows CloudBeacon to download large objects
from its servers.

The SpeedTest network is the infrastructure behind a
broadband testing service provided at www.speedtest.net.
It consists of web servers located in 240+ cities in over
80+ countries. Broadband testing works as follows: a
user visiting www.speedtest.net is provided a world
map, showing all available SpeedTest servers by their
locations. The user clicks any server to trigger a broad-
band test (most users will choose a highlighted one,
which is the closest in geographic distance to the user).
Through a series of HTTP requests/responses, SpeedTest
provides the user with the estimated latency, as well as
with the estimated download and upload bandwidths
to the selected server. To measure latency, a small text
file is requested multiple times. To measure bandwidth,
a large image file is requested multiple times. (More
specifically, a relatively small image file is requested first
to roughly estimate bandwidth; then an image file of
appropriate size is chosen to ensure that the download
time won’t be too short.)

Ideally, for measuring throughput, we would again
like to use the CDN servers, instead of the SpeedTest

Figure 2: Server Presence of the SpeedTest Net-
work

network, since the CDN nodes are widely deployed and
have peer connections similar to what satellite data cen-
ters have. But throughput measurements using CDN
nodes are difficult if not impossible. Although the SpeedTest
network does not have peering relationships with ISPs,
it still provides important insights. The SpeedTest net-
work, as illustrated in Figure 2, is a viable alternative
infrastructure for our throughput evaluation purpose,
because 1) it is widely deployed; 2) its servers have
good performance and are well-provisioned (as provid-
ing broadband testing is its core business).

4. EVALUATION OF CLOUD SERVICE DE-
PLOYMENT

The performance of a cloud service is, in principle,
closely tied to the extent of its geographic coverage,
i.e., how close it is to the end-users. On the other hand,
extensive deployment requires high capital costs. It is
thus desirable to investigate the trade-offs between de-
ployment scale and performance. In this section, by
applying the methodologies described in the previous
section, we first compare the existing deployments of
two CDNs. Then, for cloud services, we answer the
following question – how many satellite data centers
should the cloud service provide and where should the
data centers be located.

One way to answer these questions is to deploy servers
in hundreds of potential locations, and then use Cloud-
Beacon to measure latency and throughput performance
from end-users to these servers. However, this is exor-
bitantly expensive, especially for prediction purposes.
In what follows, we will leverage existing Internet in-
frastructures (CDN A, CDN B and the SpeedTest net-
work), which already have servers deployed in many
locations throughout the world, to provide insights to
performance/cost tradeoffs.

4.1 Comparing CDN Deployment
We instrument CloudBeacon to conduct two exper-
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iments: 1) compare CDN A and CDN B with their
full deployments; that is, the client (in the wild) is in-
structed to measure the performance to the closest loca-
tion for each of the two CDNs (i.e., the closest among
more than 400 locations for CDN A and 18 locations
for CDN B); 2) compare CDN A and CDN B under
the same geographic deployment; that is, for CDN A,
we choose only those locations where CDN B also has
distribution centers (denoted as CDN A∗).

To determine the closest CDN location, the Cloud-
Beacon server maps the client’s IP address into a geo-
graphic location (longitude and latitude), computes the
great circle distance to all CDN locations and selects
the minimum one. Note that this method of deter-
mining the closest CDN location is only approximate,
as it does not take into account network topology and
dynamic network conditions. As server redirection is
not the focus of this paper, it suffices to use this rough
method in our studies here.3 To convert IP address
into geographic location, we use Quova’s reverse loca-
tion database, which is widely accepted to be the most
accurate solution. Table 4 summarizes the client data
set.4

# of clients
All 6,577
North America 3,678
Europe 1,382
Asia 1,232
South America 185
Africa 38
Oceania 31
Unknown 31

Table 4: Data Summary for CDN Profiling

Figure 3 shows results for both experiments. Not
surprisingly, CDN A achieves much lower latency than
CDN B (87ms vs 406ms at the 95th percentile), with
both CDNs evaluated using the closest (geographical)
location. On the other hand, when CDN A and CDN B
are evaluated under the same geographic deployment,
their performance (that is, of CDN B and CDN A∗)
is very close at low percentiles (e.g., 96ms vs 110ms at
the 80th percentile). However, at high percentiles, CDN
A∗ shows much lower latency than CDN B, but why?
To further examine this issue, we divide the clients by
continents. The results are shown in Figure 4. We make
the following observations:

3Please refer to a companion study [7] for the server redi-
rection problem.
4Note that since the web sites hosting our CloudBeacon gad-
get are all in Seattle and New York City, to avoid bias, we
only take those clients that are more than 100 miles away
from Seattle/NYC into account.
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Figure 3: CDN Deployment Comparison (CDN
A∗ a subset of CDN A, choosing only the same
locations as CDN B)

• For the clients in North America, all three deploy-
ments have comparable performance. This sug-
gests that the scale of CDN B (or CDN A∗) is
sufficient in North America. Additional locations
for CDN B in North America beyond the current
11 locations do not appear to reduce latency.

• For clients in Europe, CDN A∗ and CDN B have
very similar performance under the same geographic
deployment. However, when the scale of geographic
deployment increases (i.e., from CDN A∗ to CDN
A), latency is reduced. Thus, by improving the
European coverage of CDN B, the latency can be
significantly reduced.

• For clients in Asia, CDN A∗ outperforms CDN B
significantly. These clients also largely contribute
to the long tail for CDN B in Figure 3. This im-
plies that geographic presence is not the only fac-
tor determining latency performance. Other fac-
tors, such as peering connectivity, also play a crit-
ical role. Quite likely, CDN B has not established
extensive peering relationships with Asian ISPs.

Thus, when a cloud service provider evaluates the lo-
cation of a hypothetical deployment, it should aggre-
gate servers from various CDNs and use CloudBeacon
to measure latency to the servers from each CDN in the
location. The minimum value can then be considered
the smallest possible latency (for when extensive ISP
peering relationships are setup).

4.2 Methodology for Evaluating Hypothetical
Deployment

In this subsection, we describe a methodology to de-
termine the number of locations a cloud service’s edge
network should contain and where the locations should
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Figure 4: CDN Deployment Comparison (Breakdown by Continent)

be. Say the infrastructure we choose to leverage has M
(with M > 400) potential locations. Our task is to pick
a subset (say N sites, with N � M) to form a smaller-
scale deployment. Using CloudBeacon, we can evaluate
the performance of this hypothetical deployment. By
varying N , we can quantify the trade-off between de-
ployment scale and performance.

Now, the interesting question is – how should we pick
the N sites out of the total M potential locations? For
that, we have developed the following heuristic method.
We start with an initial deployment (could be empty),
find the best additional location from the remaining lo-
cations, and add this location to the current deploy-
ment. During this process, we examine each additional
location L by constructing a hypothetical deployment
D′ which consists of the current deployment D plus this
location L. We then evaluate the performance from
each client C to the hypothetical deployment D′. Ag-
gregation across all clients yields a score for L. We
then choose the location L that has the highest score.
We continue to add locations one at a time until the
deployment contains the desirable number of locations.

The following pseudo-code explains the process of
finding the best next location.

// D: {locations of current deployment}
find_best_next_location(D)

foreach L in remaining locations
// D’: hypothetical new deployment
D’ = D + {L}
foreach C in all clients

sum = sum + best_performance(C, D’)
if sum has reduced

best_next_location = L
return best_next_location

The above process requires measurements from each
client to all the M locations. The measurement load
can be prohibitively high. As an alternative, we use the
following geographic distance-based method to choose
deployment configurations. We first obtain the client
population of a targeted cloud service and map each
client into a location atom (a latitude-longitude tuple)

by its IP address. Multiple clients can be mapped to
the same location atom. The best performance between
a client and a given deployment is approximated by the
great circle distance between the client and the closest
location in the deployment.

In this simplified method, finding the best next loca-
tion becomes:

// D: {locations of current deployment}
find_best_next_location(D)

for each L in remaining locations
// D’: hypothetical new deployment
D’ = D + {L}
foreach A in all location atoms

d = min_geographic_distance(A, D’)
sum = d * (total clients in A)

if sum has reduced
best_next_location = L

return best_next_location

4.3 Deployment of Latency Sensitive Services
Now we have developed a method to choose a hy-

pothetical cloud deployment of size N , we are ready
to evaluate and compare deployments of different sizes.
To factor in the distribution of real-world end-users, we
first obtain the client population (5 million randomly
selected IP addresses) from one popular Windows Live
service. These IP addresses are grouped into 13,576 lo-
cation atoms. We then select locations from CDN A’s
deployment to form our hypothetical deployment. In
this paper, we compare deployments of size 18, 36, 72,
as well as all the 400+ locations of CDN A (denoted
as CDN18, CDN36, and so on). In addition, we also
include a deployment with only 3 locations: east Wash-
ington state, Bay area and west Virginia (denoted as
CDN3), which are popular locations where many com-
mercial companies build their large data centers.

For each hypothetical deployment, we instruct Cloud-
Beacon to measure latency to the closest CDN server.
To see how deployment scale affects the performance in
different regions, we break down the data by continents.
Results are only shown for North America, Europe, and
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Asia (as Figure 5), for which we have sufficient samples.
We make the following observations:

• Clients in Asia and Europe experience high la-
tency under the 3-location deployment. This is
intuitive as all the three locations are in US. But
surprisingly, the 3-location deployment appears to
be good enough for the clients in North America!
The latency is not very large (less than 80ms) even
at high percentiles, and increasing the deployment
size to 8 shows only marginal improvement.

• There are noticeable improvements from 36 loca-
tions to 72 locations for the clients in Europe and
Asia. But 72 locations are certainly sufficient.

• As expected, the clients in Asia receive worse per-
formance than those in Europe and North Amer-
ica. With only 34 locations, this is most likely due
to the limited presence of CDN A itself (and thus
our location choices) in Asia.

4.4 Deployment of Throughput Sensitive Ser-
vices

To evaluate hypothetical deployments for through-
put performance, we instrument CloudBeacon to re-
trieve large objects from the SpeedTest network (fol-
lowing the same request format as if a real client is
doing broadband testing). Similar to the latency eval-
uation, we evaluate the throughput performance of a
hypothetical deployment with only 3 locations (denoted
as STN3). We also evaluate the deployments with 18
locations (the same locations as CDN B, which is as-
sumed to have made good choices), 36, 72 and 200+
(denoted as STN18, STN36, and so on). The data set
we collected is summarized in Table 5.

# of data points
All 5,880
North America 3,348
Europe 1,291
Asia 992
South America 176
Oceania 26
Africa 23
Unknown 24

Table 5: Data Summary for Cloud Service Pro-
filing

Again, we break down the results by continents, as
shown in Figure 6. We have following observations:

• The throughput gain from the deployment with
3 locations to 18 locations is most significant in
North America and Europe, but not in Asia. This
is most likely due to the choice of our initial de-
ployment, as CDN B is deployed sparsely in Asia.

• The deployment with 18 has 11 locations in North
America. It appears that, in terms of throughput
performance, there is little gain further deploying
in this region.

• Again, the clients from Asia receive worse perfor-
mance than those in Europe and North America.

• Finally, in every continent examined, a significant
portion of end-users cannot download faster than 1
Mbps. This explains why current streaming video
services, such as Netflix, keep the lowest bitrate at
only 375 Kbps.

5. RELATED WORK
Cloud service providers often need to answer “what-

if” configuration and deployment questions. Configu-
ration questions include how service response time will
be affected by changing the mapping of clients to the
servers in different existing data centers. Tariq et al. [19]
applied machine learning techniques and proposed novel
algorithms to learn causal factors from user traces through
existing deployments. They are able to predict response-
time distributions for configuration changes. But the
WISE study [19] cannot evaluate “what-if” questions
such as how the end-user perceived performance will
be affected if a new data center is deployed and where
should the location of the new data centers be so as to
maximize the performance improvement. On the other
hand, CloudBeacon provides methodologies and tech-
niques to evaluate hypothetical new deployments.

There have been many measurement-based studies of
web service performance. Researchers have developed
systems and tools [4, 11, 13, 17, 18] to determine net-
work characteristics and measure web service perfor-
mance. Besides these efforts, many network monitoring
systems [5,6,14,15,20,21] have been introduced as well.
These systems applied various techniques, such as live
packet trace collection, server-side log analysis, etc., to
determine service performance. In our study, we not
only provide a tool to measure service performance ac-
curately, but also propose new methodologies for cloud
service providers to evaluate hypothetical new deploy-
ments.

To benchmark the performance of Internet services,
JavaScript is often embedded inside web pages. As an
example, HP’s Open View Web Transaction Observer
uses JavaScript to implement many measurement func-
tionality. A number of proposals, such as [3,4,9,12,17],
also adopted JavaScript to evaluate the performance
from end hosts. Different from those studies, Cloud-
Beacon addresses the unique challenges in measuring
existing infrastructure and evaluating hypothetical de-
ployments for cloud services.



9

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Latency(ms)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

CDN3
CDN18
CDN36
CDN72
CDN400+

(a) Asia
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Figure 5: Evaluating Deployment for Latency Sensitive Services (Breakdown by Continent)
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(b) Europe
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Figure 6: Evaluating Deployment for Throughput Sensitive Services (Breakdown by Continent)

6. CONCLUSION
In this paper, we take a measurement-oriented ap-

proach and develop new methodologies for latency and
throughput measurement for cloud service deployment.
We develop CloudBeacon and, through illustrative large-
scale measurements, show how such tool can help cloud
services plan for expensive infrastructure changes.
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