
Substream Trading: Towards an
Open P2P Live Streaming System

Zhengye Liu†, Yanming Shen†, Keith W. Ross‡, Shivendra S. Panwar†, Yao Wang†
†Department of Electrical and Computer Engineering
‡Department of Computer and Information System

Polytechnic Institute of New York University

Abstract—We consider the design of an open P2P live-video
streaming system. When designing a live video system that is
both open and P2P, the system must include mechanisms that
incentivize peers to contribute upload capacity. We advocate an
incentive principle for live P2P streaming: a peer’s video quality
is commensurate with its upload rate.

We propose Substream Trading, a new P2P streaming design
which not only enables differentiated video quality commensurate
with a peer’s upload contribution but can also accommodate
different video coding schemes, including single-layer coding,
layered coding, and multiple description coding. Extensive trace-
driven simulations show that substream trading has high ef-
ficiency, provides differentiated service, low start-up latency,
synergies among peers with different Internet access rates, and
protection against free-riders.

I. I NTRODUCTION

BitTorrent is a remarkably popular file-distribution tech-
nology, with millions of users sharing content in hundreds
of thousands of torrents on a daily basis. Fundamental to
BitTorrent’s success is itsopenness– the BitTorrent protocol
is published in the Internet, and the source code of the baseline
implementation is made widely available. This openness has
enabled developers to create over 50 independent BitTorrent
client implementations [1], dozens of independent trackerim-
plementations [2], and a multitude of torrent search sites.The
openness of the protocol has further fostered open discussions
in both the online developer and research communities, leading
to further performance and security improvements. It has
also fostered innovations in the broader BitTorrent ecosystem,
including recent deployments of distributed trackers, using
DHTs and gossiping, in many popular BitTorrent clients.

A second key element in BitTorrent’s success is, of course,
its P2P design. Since BitTorrent peers assist in file distribution,
a file can be distributed to an unlimited number of peers with
modest initial seeding capacity.

But with an open P2P design, it becomes necessary to
incorporate an incentive mechanism to encourage peers to
contribute upload bandwidth. Without such an incentive in an
open protocol, clients can easily be written to free-ride (that
is download without uploading) or be configured to upload at
low rates. Bram Cohen, the inventor of the original BitTorrent
system, recognized the need of building into the system a
simple, but effective incentive mechanism [3]. Fundamentally,

This work is supported in part by the National Science Foundation under
Grant CNS-0435228, and also in part by the New York State Center for
Advanced Technology in Telecommunications (CATT).

BitTorrent’s incentive principle is as follows: a peer will
get the file faster if it contributes more upload bandwidth
to the torrent. This incentivizes users to upgrade their ISP
access and/or increase the maximum upload rates (typically
configurable) in their BitTorrent clients. BitTorrent provides
this basic incentive using the celebrated tit-for-tat algorithm
[3], in which peers trade blocks of content with each other.
(Although several recent studies have shown that the tit-for-tat
algorithm is not sufficient for preventing free-riders or fully
incentivizing users, e.g. [4], the algorithm has nevertheless
been very successful in practice.) Tit-for-tat effectively creates
a differentiated service at the application layer, providing high-
speed uploaders with short download times and low-speed
uploaders with high download times.

In this paper, inspired by BitTorrent’s open and P2P philoso-
phies, we consider the design of anopen P2P live-video
streaming system. Ideally, such a design would lead to an
open protocol and numerous independent client, seed, and
tracker implementations. Such a live P2P streaming system
would also allow arbitrary users to seed live video channels–
including live user-generated content – in much the same way
that BitTorrent allows arbitrary users to seed files. Eventually,
we expect much of the live content to emanate from handheld
wireless devices, and may include such diverse sources as pro-
fessors’ lectures, Little League baseball games, and political
demonstrations.

Recently, several P2P live video systems have been success-
fully deployed. They have reported phenomenal success on
their Web sites, claiming tens of thousands of simultaneous
users in a single channel, with stream rates between 300 kbps
to 1 Mbps. These systems include CoolStreaming [5], PPLive
[6], [7], PPStream [8], UUSee [9], [10] and many more. The
success of these systems shows the potential of broadcasting
live video over P2P networks. However, all of these systems
are closed and proprietary: the protocols are not published;
independent client, seed, and tracker implementations are
not possible without reverse engineering; there is no forum
for discussion and criticism of the various designs; and the
companies fully determine what content is distributed over
their systems.

As with BitTorrent, when designing a live video system that
is both open and P2P, the system must include mechanisms
that incentivize peers to contribute upload capacity. But unlike
BitTorrent, the incentive cannot be “download the file faster”
as there is no notion of faster downloads in live streaming.
We advocate a new incentive principle for live P2P streaming,

namely, peers that upload more see higher quality video.
Ideally, peers that free-ride will receive at best poor quality;
peers that upload at a high average rate can receive maximal
quality; and peers that upload at more modest rates receive
moderate quality. Implicit in this incentive principle is that
the system will make available different video qualities. With
different video coding schemes, video quality can be defined
with different criteria.

In this paper we proposeSubstream Trading, a new P2P
streaming design which enables differentiated video quality
that is commensurate with a peer’s upload contribution. Impor-
tantly, the substream trading framework can accommodate dif-
ferent video coding schemes, e.g., single-layer coding, layered
coding, and multiple description coding (MDC). Moreover, the
design provides a framework for an open P2P live video stan-
dard. Substream trading has the following key characteristics:

• Substream trading:The design uses a tit-for-tat mecha-
nism based on substream trading. In the baseline design,
peers exchange substreams on an even parity basis: if
Alice gives Bob exactlyn substreams, Bob will re-
ciprocate with exactlyn substreams. If peers receive
more substreams and correspondingly more useful bits,
they can obtain a better video quality. Thus, the more
substreams a peer uploads the more substreams it receives
and the better the quality. This is the basic mechanism
that incentivizes users to upload more to obtain better
video quality. Our final design also allows for altruistic
behavior, permitting Alice to over reciprocate to Bob
when she has spare upload capacity.

• Mesh design:Peers self-organize into a mesh as a func-
tion of their available bandwidth and content. The mesh
overlay is robust and easy to manage in the highly
dynamic P2P environment.

• Substream rather than chunk focus:Peers notify, se-
lect, request and deliver video in basic content units
of substreams instead of chunks. As compared to a
chunk-based pull-scheme (as in PPLive), the substream
design achieves a smaller playback lag with less signaling
overhead.

• Flexibility in video coding:The design can accommodate
different video coding schemes. With single-layer video,
the substreams can be generated by time division of the
encoded video; while with layered coding or MDC, the
substreams are the video layers or descriptions, respec-
tively.

To thoroughly investigate substream trading, we apply it on
a single-layer video system and a layered video system. For
both systems, the substream trading scheme can provide differ-
entiated video quality and a high overall system performance.
In this paper, we make the following contributions:

• We first make the simple, but critical observation that an
open P2P live streaming system needs an incentive mech-
anism, and that the appropriate incentive for streaming is
not “download faster” but to get better quality.

• We propose a new P2P streaming design, substream
trading, based on a dynamic mesh network (as opposed to
a tree design), and trading substreams (rather than trading

chunks). To our knowledge, this is the only P2P live
streaming framework that supports different video coding
schemes and explicitly addresses the incentive issue. The
design can be used as a framework for an open P2P live
streaming system.

• We examine the possible integration of the proposed
substream trading scheme with different video coding
schemes: single-layer coding with and without simulcast,
layered coding, and MDC.

• Using traces for peer dynamics from a real-world P2P
live streaming system, we evaluate the performance of
substream trading using both single-layer video and lay-
ered video. We show that it is self-scaling, has high
efficiency, provides differentiated service, low start-up
latency, synergies among peers with different Internet
access rates, and protection against free-riders.

The remainder of this paper is structured as follows. Sec-
tion II discusses our fundamental design decisions. Section III
presents the design of the substream trading system. We
consider integration of the substream trading mechanism with
different video coding schemes in Section IV, and delineate
pros and cons of each. In Section V, we evaluate the per-
formance of single-layer video and layered video systems
based on trace-driven simulations. We discuss related work
in Section VI and conclude in Section VII.

II. FUNDAMENTAL DESIGN CHOICES

For a live P2P video distribution, there is a source (anal-
ogous to the initial seed in BitTorrent) and a group of peers
watching the video. We refer to the source and the group of
peers as atorrent. The source encodes and divides the captured
video into chunks, and disseminates the video chunks into the
P2P torrent. Each peer receives chunks from the source or
from other peers (or from both the source and peers). The
video source may only have modest upstream Internet access
(perhaps less than 1 Mbps), using cable modem, DSL, Wi-Fi,
or 3G wireless networks.

A. Tree or Mesh?

There is a debate in the literature on which architecture
(tree vs. mesh) is more suitable in P2P live streaming. With
a tree approach, peers are organized into a single tree or
multiple trees [11]–[14]. The source pumps video chunks
through the trees. The tree structure can be optimized to
efficiently disseminate video chunks. However, performance
with trees can suffer from peer churn, and trees can be difficult
to manage in a highly dynamic P2P environment.

With a mesh approach, peers self-organize into a mesh as
a function of their available bandwidth and content. If there
is an overlay link between two peers in the mesh, those two
peers are said to be partners. In a decentralized fashion, peers
form and update partnerships, and explicitly exchange content
availability information with their partners. Based on this
information, peers select what content to request from their
partners. Currently all of the large-scale industrial deployments
(PPLive, PPStream, UUSee, and so on) use a mesh design.
The most important feature of the mesh approach is that the

dynamic overlay is very robust to peer churn, due to the loose
relationship among peers. It has further been reported that
mesh overlay outperforms tree or multiple tree from several
perspectives [15]. We therefore adopt a mesh overlay in our
design.

B. Chunk or Substream?

With a mesh overlay, a key design consideration is what
is the basic content unit for notifying, selecting, requesting
and delivering. One widely adopted approach is to divide a
video into chunks, with each chunk consisting of 1-4 seconds
of video. Such a chunk-based design reduces the dependency
of a peer on a particular partner: a peer can request a chunk
from any of its partners who has this chunk. This flexibility
further increases the robustness of a system to peer churn.
Additionally, it allows a peer to use its upload bandwidth with
fine granularity. A peer with low upload bandwidth can serve a
chunk to its partner, even though it may take a relatively long
time. However, this chunk-based design has a playback lag
and overhead trade-off [16], [17]. To reduce the playback lag,
a peer has to send data availability notifications frequently;
otherwise, the lag will normally be large.

Recently, substream-based approaches have been proposed
to mitigate this problem [16], [17]. In these proposals, the
video is first divided into multiple substreams by simply
time dividing a single layer video. For example, assume
there are a total ofS substreams, substreams will contain
chunkss, s + S, s + 2S, ..., from the coded video chunk
stream. A supplier informs its partners of the substreams it
has available. A receiver then determines which substreams
should be obtained from which suppliers. When a supplier is
assigned to send a receiver a particular substream, it forwards
any received chunk belonging to this substream to the receiver
immediately, without explicit chunk request notifications. This
significantly reduces the playback lag. Additionally, signaling
overhead is reduced by batching the notifications of chunks
into substreams. As with a chunk-based mesh design, this
design is robust to peer churn. The substreams can be very
thin so as to efficiently use the upload bandwidth of peers.In
many ways, the substream design provides the best features
of trees (which have small playback lags) and chunk-based
meshes (which are robust to high churn rates). In this work,
we adopt the substream-based mesh approach.

III. SYSTEM DESIGN

A. Mesh Overlay with Substreams

In a substream-based mesh-pull system, the source encodes
a video intoS substreams, with the rate of each substream de-
noted byr. The substreams can be generated by time dividing
a single-layer video, by layered coding, by MDC or by some
other scheme. Each substream is further divided into chunksof
∆ seconds. At any given instant of time, a peer participating
in a torrent will receive a subset of theS substreams from
one or more other peers in the torrent (including possibly the
source); this same peer will redistribute zero or more of the
substreams it receives to other peers. In order for a peer to
request substreams from other peers, it needs a mechanism

for discovering other peers in the torrent (a peer discovery
service) and a mechanism for determining which substreams
these discovered peers have. Figure 1 shows a simple mesh-
substream system with one source, two substreams, and four
peers.

1
 B

2
1
 S

C

A

D

2

1

2

2

1

Fig. 1. A simple illustration of a mesh-substream system.

After a newly arriving peer P obtains a list of other peers
participating in a torrent from the peer discovery service (e.g.,
by tracker, DHT, or gossiping), it contacts peers on the list,
searching forpartners, with whom peer P establishes overlay
links. Typically, a peer selects its partners based on some
policy, which is referred as apartner selection problem.

After having found a sufficient number of partners (on
the order of the number of substreams), peer P selects sub-
streams from its partners and the partners sequentially push
the video chunks of their selected substreams to peer P. Peer
P requestssubstream mapsfrom its partners periodically,
indicating which substreams they currently have. For peer P,
each of its partners may have more than one substream, and
each substream may be available at more than one partner.
Given the partners and their substream availabilities, peer P
needs to determine which substreams should be obtained from
which partners. We refer this problem as asubstream selection
problem.

From time to time, peer P may have to drop partners that do
not have sufficient upload bandwidth or video content, based
on some policy. This is referred as apartnership maintenance
problem. After peer P drops partners, it will try to find
replacement partners from the peer list.

B. Substream Trading

The essence of our scheme issubstream trading: two
partners exchange substreams with each other in a tit-for-tat
fashion. In pure tit-for-tat substream trading, peer P sends n
substreams to Q if and only if Q sendsn different substreams
to P. One simple observation is that if all peers use pure tit-
for-tat, then each peer receives a number of substreams thatis
exactly equal to the number of substreams it uploads to other
peers; thus, a peer with higher upload contribution is more
likely to trade more substreams and eventually obtain better
quality.

Peer P and peer Q may trade only one substream or more
than one substream with each other. If peer P trades more than
one substream, e.g., two substreams, with peer Q, then for peer
P, peer Q can be considered to be twovirtual partners, Q1 and
Q2. Peer P trades only one substream with each of the two
virtual partners. For this reason, in the following sections, we
assume two peers only trade one substream with each other.

1) Partner selection :We denote the configured maximum
upload rate of peer P as bandwidthC, which varies from

peer to peer. To simplify notation, assume throughout that
C is a multiple of r. Thus, the peer is able to trade up to
T = min(C/r, S) substreams. When a peer is trading less
thanT substreams and has spare bandwidth, it will search for
additional partners for trading. When peer P meets another
peer Q that also has spare bandwidth, the two peers should
decide whether to establish the partnership.

A peer can randomly select peers from the active peers in
the system, and gradually wash out the unsuitable peers by
partner adaptation. To accelerate this process, a peer can select
a partner from a pre-screened set of candidates. We propose
to use substream maps of peers for the pre-screening. Two
peers (say P and Q), who intend to establish the partnership,
first exchange substream maps with each other. Based on the
substream maps, peer P knows the number of substreams peer
Q currently has, and vice versa. Assume peer P and peer
Q havesP and sQ substreams, respectively. Without loss of
generality, we assumesP ≥ sQ. In our design, since peer P has
more content (and potentially has higher upload bandwidth)
than peer Q, peer Qwill accept peer P as a partner. For
peer P, since peer Q has less content, it needs to make a
decision whether to accept peer Q. This is because less content
normally indicates lower upload bandwidth of a peer. We
propose a simple scheme for peer P to make such a decision.
Peer P agrees to form a partnership with probabilitypP , which
is simply given by:

pP =
S − sP

S
. (1)

A peer with less substreams available is more likely to accept
a partner, even though this partner has less content.

2) Partnership maintenance:After two partners establish
the substream trading relationship, both of them monitor the
service quality of each other. When a peer cannot fulfill
the trading commitment due to lack of substream content or
bandwidth, its partner will adapt this peer. We propose aleaky
bucket algorithmfor partners to monitor the trading procedure
with each other.

Initial virtual

 data
 B

Incoming Chunks

from partner
 n

Chunk consumption

with rate
 r

Fig. 2. Leaky bucket algorithm for monitoring partner’s service quality.

As shown in Figure 2, a peer maintains a leaky bucket for
each of its partners. It counts the number of chunks received
from partnern. When the peer receives a chunk from partner
n, it will fill ∆ bytes into the corresponding bucket. The
decrement rate of the leaky bucket is set tor. In our design,
the leaky bucket hasB bytes initially. Whenever the leaky
bucket is empty, the peer will break the trading relationship
with its partnern. The leaky bucket algorithm can handle
Internet jitter, short term content and/or bandwidth deficiency.
The initial setup of the leaky bucket (withB bytes) shares
some similarity with the “optimistic unchoking” strategy in
BitTorrent. A newcomer can get served first and use the

received substream to trade other substreams before the leaky
bucket empties.

C. Substream Selection

P1
 P3

P2
 P

(100,101,94)
 (101,94,100)

(95,102,95)
 (98,97,96)

(a)

P1
 P3

P2
 P

(1,1,0)
 (1,0,1)

(0,1,0)

(b)
Fig. 3. (a)Substream maps; (b)Abstracted substream maps.

In our substream trading system, a peer should determine
which substreams should be obtained from which partners.
Before substream selection, the peer periodically requests sub-
stream maps from all its partners. Figure 3(a) shows the typical
substream maps of peer P and its partners P1, P2, and P3.
As an example, the substream map of P1 indicates that it has
three substreams, and the sequence numbers of the last chunks
from substreams 1, 2, 3 are 100, 101, 94, respectively. Assume
that there is no chunk loss during the transmission (e.g., by
using the TCP connections for chunk delivery, or by inserting
sufficient FEC chunks), the sequence number of the last chunk
is sufficient to indicate the chunk availability of a particular
substream. For P1, although it has three substreams available,
only substreams 1 and 2 can be pulled by peer P, since peer P
already has more chunks from substream 3 than P1. Thus, in
Figure 3(b), only substreams 1 and 2 are indicated as available
in P1. Note that this automatically eliminates possible loops
while delivering a substream in a mesh network. We record this
processed data availability of partners inabstracted substream
maps, as shown in Figure 3(b).

With the above definition, we can formulate the substream
selection problem as an optimization problem. Assume a peer
hasN partners1, . . . , N for requesting substreams. The set
of available substreams in partnern is defined asSn. Let
xsn = 1 denote that substreams is received from partnern.
Since a partner can send at most one substream to a peer (with
the virtual partner definition),xsn is subject to the following
constraint: ∑

s∈Sn

xsn ≤ 1, n = 1, . . . , N.

Furthermore, since a substream only needs to be sent from
one partner, we have the following constraint as well:

∑

n

xsn ≤ 1, s = 1, . . . , S.

By substream selection, a peer tries to maximize the re-
ceived video quality. With different video coding schemes,
the importance of each substream could be different. For
example, with single-layer coding and MDC, the substreams
have equal importance, and the peer only needs to maximize
the number of received substreams; while with layered coding,
the substreams have unequal importance, and the peer needs to
take into account the importance of different substreams and

maximize the received video quality. To reflect the importance
of substreams, we assign weights to each substream, with a
larger weight indicating a more important substream. With
these weights, the optimal substream selection problem canbe
converted to maximizing the weighted sum of all substreams
as follows:

max

S∑

s=1

wsxsn

s.t
∑

s∈Sn

xsn ≤ 1, n = 1, . . . , N,

∑

n

xsn ≤ 1, s = 1, . . . , S, (2)

where ws denotes the weight of substreams. This is the
classical maximum weight matching problem in a bipartite
graph as shown in Figure 4, which can be solved with a
complexity of O(S3) [18]. We will give examples of an
appropriate assignment of weights for single-layer video and
layered video in Section IV.

Substream 1
Substream 2
 Substream
S

Partner 1
 Partner 2
 Partner
N
...

...

Fig. 4. A bipartite graph representing the substream selection algorithm.

D. Altruistic Peers

A peer is altruistic at any given time if its aggregate upload
rate is higher than its aggregate download rate. With the
presence of altruistic peers, bandwidth-deficient peers can
possibly receive video at rates higher than their contributions.
We do not force a peer to donate bandwidth. We assume
that a bandwidth-rich peer will only consider donating if it
is receiving all substreams (i.e., the full video rate) and still
has surplus upload bandwidth.

Assume a peer is willing to contribute upload bandwidthC
whereC/r > S. This peer can donateC/r−S substreams, i.e.,
it can provide other peers substreams without reciprocation. In
our design, it is the benefactor that determines who will be its
beneficiaries. For simplicity, an altruistic peer can randomly
select its beneficiaries. A biased donation can also be used.
For example, the benefactor can first donate the substreams to
its existing partners, and then other peers. As we will see in
Section V, such a biased scheme helps to combat free-riders.

IV. V IDEO CODING

In this section, we show how substream trading can be ap-
plied to a variety of different video coding schemes, including
single-layer video, layered video, MDC, and simulcast.

A. Single-Layer Video

With single-layer video, a video is time-divided intoS
substreams, each of rater. If a peer receives allS substreams,

it can reconstruct the video perfectly; otherwise, the peerwill
reconstruct a corrupted video or experience frame freeze and
discontinuous video playback. With substream trading, if the
upload bandwidth of a peer is higher than the video rate, it can
trade all substreams and obtain a continuous video playback;
otherwise, it can only trade part of substreams and obtain a less
continuous video playback. This provides the basic incentives
for peers to contribute upload bandwidth.

Note that not all peers in a single-layer system are necessar-
ily self-supported, with an upload bandwidth higher than the
video rate. If no peer contributes at a rate higher than the video
rate, the peers with low upload bandwidth cannot receive all
S substreams. This may discourage such peers from using the
application. But as in BitTorrent, where peers do not always
immediately quit after receiving the entire file, we expect to
see some altruistic behavior in P2P live streaming [19].

With single-layer video, substreams have equal importance.
Thus, the weight for each substream for selection can be
defined asws = 1, s = 1, . . . , S.

B. Layered Video

In recent years, significant advances have been made in
layered coding. Now H.264/SVC (layered coding) achieves
a rate-distortion performance comparable with H.264/AVC
(single-layer coding), with the same visual reproduction qual-
ity typically achieved at +/-10% bit rate [20]. It is reported
that a real-time system with H.264/SVC encoder and decoder
has been successfully implemented [21]. Thus, thanks to these
recent advances, layered coding is a viable candidate for
P2P live streaming systems. Furthermore, layered video is a
particularly useful concept for P2P, even more so than for
client-server.In P2P, layered video responds to heterogeneous
upload rates as well as heterogeneous download rates and
congestion.

With substream trading, a peer with a higher upload contri-
bution will trade more layers and consequently obtain a better
video quality. Furthermore, with layered video, even a small
number of layers can lead to passable video quality without
discontinuity. Peers with low upload bandwidth can therefore
be self-sustaining and less dependent on altruistic peers.

To reflect the layer dependencies, the weights for substream
for selection can be set tows = 2S−s, s = 1, . . . , S. With
these weights a lower layer is more important than the sum of
all its upper layers, which is consistent with layered coding.

C. MDC

Like layered video, MDC generates multiple substreams.
But unlike layered video, each of the substreams is of equal
importance, so that video quality is only a function of the total
number of substreams received and not of which substreams
are received. Because all substreams have equal importance,
designing a P2P live streaming system using MDC (rather
than layered video) is appealing and more straightforward.A
number of recent papers have investigated combining a large
number of MDC substreams with P2P to create P2P video
streaming systems [12], [13], [22], [23]. Like layered video,

the proposed substream tradingcan be applied with MDC. In
this case, thews for each description should be equal.

The efficiency of MDC depends on the trade-off among
the achievable qualities with different number of descriptions
[24]. MDC is inherently inefficient when a large number of
descriptions are created. Among the few proposed methods for
generating a large number of descriptions (> 4), MD-FEC [25]
together with scalable video coding, and temporal subsampling
[26], both introduce significant (> 60%) overhead, compared
with single-layer video.The inefficiency of MDC largely
prevents its usage in practical P2P live streaming systems.For
this reason, we do not further consider MDC in this paper.

D. Simulcast

With simulcast, the video source encodes a video into
multiple independent streams by using single-layer coding,
with each stream having a different rate. Each stream then
gets distributed within a separate torrent, with no interaction
among the torrents. Compared to layered video, simulcast
requires more source bandwidth. For example, a set of 5
video simulcast streams, from 200 kbps to 1 Mbps with a
200 kbps step size, would minimally require 3 Mbps at the
source; the corresponding layered design would minimally
require 1 Mbps. When the sources are residential broadband
connections, this becomes a critical issue. When the sources
have a sufficient upload capacity to support several torrents,
substream trading can be applied within each torrent, as
discussed in the single-layer video system. However, such a
design would suffer from lack of sharing across the simulcast
streams, as we briefly discuss in Section V-C.

V. TRACE-DRIVEN SIMULATION

We conduct extensive simulations to evaluate the perfor-
mance of the single-layer system and the layered system with
substream trading. We also investigate the impact of cheating
behavior.

A. Simulation Setup

We developed a chunk-level discrete-event simulator in
C++. In our simulations, we assume that the end-to-end
bandwidth bottleneck is at the access links and not in the
Internet core. We do not simulate the delay induced by routing
in the Internet core; instead, we randomly assign the end-
to-end propagation delay between each pair of peers to be
between tens of milliseconds to hundreds of milliseconds.
Such an abstraction speeds up the simulation and we believe
it can still give us an accurate evaluation of the system.

Peer dynamics are simulated by traces collected from a
real-world P2P live streaming system – PPLive [6], [7]. The
traces record the arrival and departure times of the users for
different channels. We select the trace of a popular ChineseTV
channel, CCTV3, to drive our simulations. This one-day trace
was collected from Nov 22nd 17:43, 2006 to Nov 23rd 17:43,
2006, and there were totally more than 100,000 video sessions
during this period. Figure 5 shows the evolution of the number
of users viewing this channel. This trace covers a variety of

18:00 22:00 2:00 6:00 10:00 14:00
0

2000

4000

6000

8000

10000

Time

N
um

be
r

of
 u

se
rs

Fig. 5. Evolution of number of users viewing a TV channel in the PPLive
network.

typical scenarios in P2P live video networks, such as small
systems (less than 200 concurrent users), large systems (more
than 9000 concurrent users), short video sessions (shorterthan
one minute), long video sessions (longer than 16 hours), and
flash crowds.

In our simulations, the upload bandwidth of the source is
set to 2 Mbps. The upload capacities of peers are assigned
randomly according to the distribution of Table I. To come up
with an accurate bandwidth distribution of Internet users,we
jointly consider the measurement studies in [27] and [28]. The
overall distribution of residential peers and Ethernet peers is
obtained from [27], while the detailed bandwidth distribution
of residential peers is obtained from [28]. We exclude modem
peers and ISDN peers due to their low upload and download
capacities. Note that the upload capacities of Internet users
are highly heterogeneous. Because peers may not be willing to
contribute their entire upload bandwidth, in our simulations we
assume that the peers only contribute portions of their upload
bandwidth for trading, which are indicated in Table I. For
example, the 256 kbps peers contribute 150 kbps for trading.

The playback lag between the peers and the source is set to
ten seconds. Every one second, a peer exchanges substream
maps with its partners. Accordingly, the peer re-selects the
substreams based on the most recent substream maps. The
substream maps and request notifications can be piggy-backed
in the video chunks. The initial level of the leaky bucket is set
to 10∗r, i.e., 10 seconds of video at rater. In our simulations,
a peer can at most contact eight peers to check if they are the
suitable partners during one second. If we let a peer contact
more peers simultaneously, it can locate the partners faster.
But this will introduce higher overhead.

B. Single-Layer System

In this section, we investigate the substream trading system
with single-layer video. We begin by assuming all peers in the
system follow the proposed protocol, without tampering with
the protocol to maximize their own benefits. We then consider
free-riding and cheating behavior of peers.

1) Differentiated services:We evaluate the single-layer
video system in two scenarios. In the first scenario, the system
is underloaded and the supplied bandwidth (i.e., average
upload bandwidth of the entire system) is higher than the
demanded bandwidth (i.e., the video rate). In the second
scenario, the system is overloaded and the supplied bandwidth
is lower than the demanded bandwidth. To represent video
continuity, we introduce thereceived chunk ratio, which is

TABLE I
PEER UPLOAD BANDWIDTH DISTRIBUTION(KBPS)

Total upload bandwidth (kbps) 256 320 384 448 512 640 768 1024 1500 > 3000

Distribution (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 1.4 14.9

Contributed upload bandwidth 150 250 300 350 400 500 600 800 1000 1000

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Received chunk ratio

P
er

ce
nt

ile

256
448
640
1024
3000

(a)

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Received chunk ratio

P
er

ce
nt

ile

256
448
640
1024
3000

(b)
Fig. 6. Cumulative distribution of received chunk ratio. (a) Underloaded
scenario; (b) Overloaded scenario.

defined as the ratio between the number of received video
chunks and the number of encoded video chunks.

With the upload bandwidth distribution shown in Table I, the
average contributed upload bandwidth in the system is about
540 kbps. To investigate both the underloaded and overloaded
scenarios, we consider two video rates, 500 kbps and 700
kbps. The encoded videos are time divided into 10 and 14
substreams, respectively, with the rate of each substream being
50 kbps. Each chunk has a size corresponding to∆ = 250 ms.
We assume all peers become altruistic if they obtain the video
at the full rate. In our simulations, the altruistic peers prefer
to donate first to their trading partners.

In Figure 6, we show the CDF of the received chunk ratio
for different upload bandwidths. From the ten types of peers
(see Table I), five types of peers are shown in the figure,
including the peer type with the lowest upload bandwidth
(256 kbps), the peer type with the highest upload bandwidth
(> 3000 kbps), the peer types with modest upload bandwidth
and with many peers (448 kbps and 1024 kbps) and the peer
type with the fewest peers (640 kbps). Figure 6(a) shows the
results of the underloaded scenario. We observe that almost
all peers have a high received chunk ratio that is close to
1.0, indicating that all peers can receive a continuous video
quality. But we emphasize that the video qualities of the
low bandwidth peers are highly dependent on the altruistic
behavior of the high bandwidth peers.

Figure 6(b) shows the CDF of the received chunk ratio under
the overloaded scenario. In this case, the upload bandwidthin
the system cannot support the video rate for all peers. On
average, each peer can at most receive77% (540/700) of

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Received chunk ratio

P
er

ce
nt

ile

Fig. 7. Cumulative distribution of the received chunk ratiofor free-riders.

the video chunks. This means that some peers will have very
discontinous video quality. With our substream trading design,
the peers that have an upload contribution higher than 700 kbps
are self-supported and receive continuous video quality. This
is verified in the figure, where the peers with 1024 kbps and
higher upload bandwidth can receive almost all video chunks.
For the peers whose upload contribution is lower than 700
kbps, the received chunk ratio increases with their upload
contribution. This incentivizes peers to contribute more upload
bandwidth.

2) Free-riding and cheating:We now consider free-riding
and cheating behavior. As observed in BitTorrent, uncoop-
erative users may tamper with the BitTorrent protocol to
maximize their downloading speed [19]. Similarly, in an open
P2P live streaming system, a free-rider may try to receive
the same video quality as regular peers with minimum upload
bandwidth. An open P2P live streaming system should be able
to discourage free-riding, by providing minimum video quality
for free-riders.

We assume the free-riders try to receive the video rate
without contributing any upload bandwidth. In our simula-
tions, we consider one type of cheating, where the free-riders
untruthfully announce that they have a high upload bandwidth
for trading but do not have any content currently. In other
words, a free-rider is always pretending to be a newcomer to
the system. It is possible for free-riders to take advantageof
the initial state of the leaky bucket algorithm and get served
for free during a periodB/r, and then repeat this behavior to
obtain more free service. We now examine whether a free-rider
can receive good video quality under the overloaded scenario.
In our simulations, we randomly select10% of peers as free-
riders and assume that a free-rider establishes partnerships
with up to 14 peers.

Figure 7 shows the CDF of the received chunk ratio of the
free-riders. We observe that even with cheating, the free-riders
get a very low received chunk ratio. Since a free-rider has
no content and bandwidth to trade, it will be dropped by its
partners afterB/r seconds. Furthermore, since altruistic peers
prefer to donate spare bandwidth to their trading partners,it
is less likely for a free-rider to get the donation. Additionally,
compared with a regular peer, a free-rider has a much higher

0 200 400 600 800 1000 1200
0

5

10

15

20

Time (sec)

N
um

be
r

of
 la

ye
rs

256
448
640
1024
3000

Fig. 8. Behavior of typical peers.

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

R (kbps)

P
er

ce
nt

ile

256
448
640
1024
3000

Fig. 9. Cumulative distribution of average useful downloadrate.

overhead of searching partners and maintaining partnerships.
We nevertheless acknowledge that it may be possible for a

free-rider to obtain an acceptable chunk ratio if it continuously
establishes partnerships with many peers (≫ 14). This will
come at the cost of increased overhead. This situation is similar
to BitTorrent [4], and it therefore appears impossible to fully
defend against free-riders in a single-layer system. However,
for a layered system, we will see even greater protection
against free-riders.

3) Summary of single-layer system:The single-layer video
substream trading system has the following properties:

• In an overloaded system, where it is not possible for all
peers to get acceptable quality, the peers that upload at
rates higher than the video rate do receive all substreams
and have maximal quality.

• In an underloaded system where some peers have upload
capacity lower than the video rate and others higher than
the video rate, the system provides maximal quality to all
peers, provided that the high-capacity peers are altruistic.

• Unless free-riders are extremely zealous about cheating,
free-riders obtain poor-quality video.

C. Layered System

We now investigate substream trading with layered video.
In our simulations, the video is encoded into 20 layers, with
each layer being 50 kbps and the full video rate being 1 Mbps.
For this system, since each peer has a maximum upload rate
of 1 Mbps or less, none of the peers can be altruistic.

1) Differentiated service:Figure 8 shows the number of
decodable layers of five randomly selected video sessions
during their first 20 minutes. We observe that each peer
receives a number of layers that is commensurate with its
upload contribution. All peers reach a stable state within 100
seconds. Once a peer reaches its stable state, the video quality
is generally smooth, without significant variation.

0 0.005 0.01 0.015
0

20

40

60

80

100

Smoothness index

P
er

ce
nt

ile

256
448
640
1024
3000

Fig. 10. Cumulative distribution of the smoothness index.

Figure 9 shows the CDF of the received video rates across
all video sessions. We observe that almost all peers receive
a video rate that is commensurate with their upload contri-
butions. This demonstrates that substream trading provides
differentiated services in a layered video system. Furthermore,
the system has no bias among the different peer types. For
example, the peers with 640 kbps upload bandwidth, which
only make up1.4% of the peer population, also obtain a video
quality that is commensurate with their upload contributions.

2) Video quality: The received video rate can largely de-
termine the received video quality. However, in addition toa
high received video rate, it is desirable to receive continuous
and smooth video quality. Unlike single-layer coding, which
needs to receive the full video rate to decode and play a video,
layered coding can provide basic video quality if only the base
layer is received. For simplicity, we assume the base layer is
fully encapsulated in layer 1, and a discontinuity occurs only
if the video chunks of layer 1 cannot be received correctly.
In our simulation, we observe that all video sessions receive
more than99.99% of video chunks from layer 1; thus, the
peers rarely experience playback discontinuity.

With layered video, a receiver may receive a varying number
of layers, which degrades the user experience. We introduce
a smoothness index to evaluate video smoothness in our
simulations. The smoothness index is defined as follows:

Φ =
1

t − 1

t∑

i=2

|a(i) − a(i − 1)|

a(i − 1)
, (3)

wherea(i) is the number of received layers in time sloti, and
t is the duration of a video session in terms of time slots. The
smoothness index indicates how frequently and dramatically
the number of received layers is changing. WhenΦ is larger,
the video is less smooth. In our simulations, we set the length
of a time slot equal to the chunk duration∆.

Figure 10 shows the CDF of the smoothness index of the
selected video sessions. We observe that the smoothness index
is very low for all peer types. (A smoothness index of 0.005
is extremely low, and most peers have an index much lower
than 0.005.) This verifies that peers receive a very smooth
video quality, which can also be observed in Figure 8. Note
that although the highest upload bandwidth peers have slightly
larger smoothness index, this does not mean these users see
more variation of video quality than the low bandwidth peers.
When a large number of layers is received on average, the
quality is already very good and having slightly more or less
number of layers does not produce as much variation in video

0 10 20 30 40 50 60
0

20

40

60

80

100

Start−up delay (sec)

P
er

ce
nt

ile

Layered
Single−Layer

Fig. 11. Cumulative distribution of start-up delay across all video sessions.

256 448 640 1024 3000
0

20

40

60

80

Upload bandwidth of peers (kbps)

P
er

ce
nt

ile

Lower Equal Higher

Fig. 12. Interaction across peer types.

quality, as in the case where on average a low number of layers
are received.

3) Start-up delay:In P2P live streaming, start-up delay is
the time from when a channel is selected until actual playback
starts on the screen. This is a critical performance issue,
particularly for users who do a lot of channel surfing. Before
playback can begin, a peer needs to build an initial reservoir of
video chunks to deal with Internet jitter and peer churn. With
single-layer video, a peer needs to build the initial reservoir
for all substreams; but with layered video, the peer only needs
to build the initial reservoir for layer 1. In our simulations,
if a peer finishes building the reservoir of video chunks for
the next three seconds, it starts decoding and playing the
video. Figure 11 shows the CDF of the start-up delay for both
the single-layer video system (with 500 kbps video rate) and
layered video system. We observe that the start-up delay of
the layered video system is significantly shorter than that of
the single-layer video system. This is because with layered
video, only layer 1 is needed to build the initial reservoir and
provide passable video quality.

4) Interaction across peer types:A natural question is
whether the resulting layered system essentially creates a
stratified system, where peers of the same type primarily share
amongst each other and not with peers of other types. To
explore this issue, for each peer, we record the download traffic
from peers that have higher upload bandwidth (denoted as
Higher), peers that have the same upload bandwidth (denoted
as Equal), and peers that have lower upload bandwidth (de-
noted as Lower), and normalize by the peer’s total download
traffic. We average these values over all peers with the same
upload bandwidth, and plot them in Figure 12. We observe
that for all five types of peers, there exists a large amount of
interaction across peer types. This is especially true for the
peer types that have relatively few members, e.g., the peers
with 640 kbps upload bandwidth.

Recall that with simulcast, peer types are separated into
different simulcast torrents and there is no interaction across

0 200 400 600 800 1000 1200
0

2

4

6

8

10

Time (sec)

N
um

be
r

of
 la

ye
rs

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Smoothness index

P
er

ce
nt

ile

(b)
Fig. 13. Video quality of free-riders. (a) Behavior of typical free-riders; (b)
Cumulative distribution of smoothness index.

peer types. P2P live streaming with layer trading, however,
as shown in Figure 12, provides major synergies across peer
types. For example, a low-bandwidth peer may serve a high-
bandwidth peer with a lower layer. More importantly, with
layer trading, a peer type with a small number of members
can easily find partners outside its type for trading. This can
greatly improve the overall quality of service for the system.

5) Free-riding and cheating:We investigate free-riding and
cheating in the layered video system. We consider the same
type of cheating as discussed in the single-layer video system.
In order to receive the full video rate (1 Mbps), a free-rider
attempts to locate 20 partners simultaneously. Figure 13 shows
the video quality of free-riders in the layered video system.
Figure 13(a) plots the behavior of a typical free-rider. We
observe that free-riders rarely receive video at an average
rate higher than 200 kbps. Figure 13(b) shows the CDF of
the smoothness index of the free-riders. Most free-riders have
a smoothness index that is ten times higher than that of
the regular peers, which verifies that the free-riders receive
very variable video quality. This is because the free-riders are
frequently dropped by their partners. On average, a free-rider
is dropped by one of its partners every 0.6 seconds, leading to
a high overhead for locating and managing partners. The low
video quality and high overhead cost should largely discourage
free-riders.

With our proposed partner selection mechanism, it is less
likely for a free-rider to establish partnerships with highupload
bandwidth peers. Even though a free-rider can locate a large
number of partners, most of these partners will be low upload
bandwidth peers. With layered video, since these partners
only have lower layers, the free-rider can only obtain the
lower layers and consequently low video quality. Therefore,
the layered system is more robust to free-riders.

6) Summary of layered video system:The layered video
substream trading system has been shown to have many
desirable properties:

• It provides differentiated service – the video quality thata
peer receives is commensurate with its upload rate. Thus
peers have an incentive to upload as much as they can.

• For non-freeriding peers, there is little variation in video
quality due to fluctuations in the received number of
layers.

• The start-up delay is small, and significantly shorter than
the start-up delay of single-layer system.

• Peers in different upload bandwidth categories synergis-
tically share layers with each other.

• Aggressive free-riders receive the video at a low rate with
relatively high quality fluctuations.

VI. RELATED WORK

Over the past few years, there has been a number of
proposals for live P2P video in the research community [5],
[11]–[14]. None of these papers, however, addresses built-in
(tit-for-tat) incentives or the design of open P2P streaming
systems. Within the context of cooperative peers, Sunget al.
have recently proposed an MDC-based multiple-tree scheme
that uses a novel taxation scheme to provide differentiated
services [22]. However, this proposal does not include built-in
incentives, assumes cooperative peers, and furthermore uses
MDC encoding (which is inherently inefficient as discussed
in Section 4.3).

There are three very recent proposals on using tit-for-tat
incentives in the context of P2P live video streaming. In a
workshop paper, we proposed a tit-for-tat scheme for layered
video for chunk-based systems[29]. The scheme proposed
in this paper has several advantages over that in [29]. First,
in this paper we trade substreams rather than chunks, which
significantly reduces playback lag and overhead. Second, the
framework of this paper can be applied to a variety of
coding schemes, including layered coding, MDC, and single-
layer coding. Molet al. propose an MDC-based multiple-tree
scheme that employs tit-for-tat incentives [23]. Each descrip-
tion is distributed over a separate tree, and peers belonging
to different trees exchange descriptions with each other. This
approach is based on MDC (which is inherently inefficient),
cannot be easily adapted to layered video or single-layer video,
and restricts a peer to trade only the description corresponding
to the tree to which it belongs. Finally, Pianeseet al. propose
a chunk-based mesh-pull scheme with single-layer video [30].
The scheme applies a combination of tit-for-tat and donation
strategies to provide incentives. In particular, peers with higher
upload contribution have more buffered data and are more
robust to peer dynamics. However, this scheme is limited to
single-layer video and has low throughput.

Unlike [29] [23] [30], the current proposal provides a frame-
work for providing incentives in live P2P video streaming
systems. This framework can accommodate a variety of coding
schemes. Furthermore, the framework has been optimized for
performance, providing differentiated service, high throughput,
resiliency to churn, and short start-up delays. The scheme
proposed here can serve as a blueprint for an open P2P live
video streaming system.

VII. C ONCLUSION

We have argued that built-in incentives are critical for the
design of an open P2P live video streaming system. In this
paper, we proposed a framework with live video streaming
which has built-in incentives and can accommodate a variety
of video coding schemes. In particular, we have shown that
substream trading with layered video has many desirable prop-
erties, including differentiated service, short start-updelays,
synergies across peer types, and protection against free-riders.

REFERENCES

[1] http://en.wikipedia.org/wiki/BitTorrentclient.
[2] http://torrentfreak.com/5-most-popular-bittorrent-trackers-070924/.

[3] B. Cohen, “Incentives build robustness in BitTorrent,”in Workshop on
Economics of Peer-to-Peer Systems, Berkeley, June 2003.

[4] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting BitTtorrent
for fun (but not profit),” in IPTPS, Santa Barbara, February 2006.

[5] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet: A data-driven overlay
network for efficient live media streaming,” inIEEE INFOCOM, Miami,
March 2005.

[6] PPLive, http://www.pplive.com/.
[7] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement

study of a large-scale P2P IPTV system,”IEEE Trans. on Multimedia,
vol. 9, no. 8, December 2007.

[8] PPStream, http://www.ppstream.com/.
[9] UUsee, http://www.uusee.com/.

[10] C. Wu, B. Li, and S. Zhao, “Characterizing peer-to-peerstreaming
flows,” IEEE JSAC, vol. 25, no. 9, December 2007.

[11] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in ACM SIGMETRICS, Santa Clara, June 2000.

[12] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in ACM NOSSDAV, Miami, May 2003.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-bandwidth content distribution in a
cooperative environment,” inIPTPS, Berkeley, February 2003.

[14] V. Venkataraman, P. Francisy, and J. Calandrino, “Chunkyspread: Het-
erogeneous unstructured tree-based peer-to-peer multicast,” in IEEE
ICNP, Santa Barbara, November 2006.

[15] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live P2P streaming approaches,” inIEEE INFOCOM,
Anchorage, May 2007.

[16] M. Zhang, Q. Zhang, and S.-Q. Yang, “Understanding the power of
pull-based streaming protocol: Can we do better?”IEEE JSAC, vol. 25,
no. 9, December 2007.

[17] B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, andX. Zhang,
“An empirical study of the Coolstreaming+ system,”IEEE JSAC, vol. 25,
no. 9, December 2007.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
algorithms. MIT Press, 2000.

[19] M. Zghaibeh and K. G. Anagnostakis, “On the impact of P2Pincentive
mechanisms on user behavior,” inNetEcon+IBC, San Diego, June 2007.

[20] M. Wien, H. Schwarz, and T. Oelbaum, “Performance analysis of SVC,”
IEEE TCSVT, vol. 17, no. 9, September 2007.

[21] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon, “Real-
time system for adaptive video streaming based on SVC,”IEEE TCSVT,
vol. 17, no. 9, September 2007.

[22] Y.-W. Sung, M. Bishop, and S. Rao, “Enabling contribution awareness in
an overlay broadcasting system,” inACM SIGCOMM, Pisa, September
2006.

[23] J. D. Mol, D. H. P. Epema, and H. J. Sips, “The Orchard algorithm:
Building multicast trees for P2P video multicasting without free-riding,”
IEEE Trans. on Multimedia, vol. 9, no. 8, December 2007.

[24] Y. Wang, A. R. Reibman, and S. Lin, “Multiple description coding for
video delivery,”Proceedings of the IEEE, vol. 93, no. 1, January 2005.

[25] R. Puri and K. Ramchandran, “Multiple description source coding using
forward error correction codes,” inAsilomar Conference on Signals,
Systems and Computers, Pacific Grove, October 1999.

[26] F. H. Fitzek, B. Can, R. Prasad, and M. Katz, “Overhead and quality
measurements for multiple description coding for video services,” in
WPMC, September 2004.

[27] C. Huang, J. Li, and K. W. Ross, “Can Internet VoD be profitable?” in
ACM SIGCOMM, Kyoto, August 2007.

[28] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Char-
acterizing residential broadband networks,” inACM IMC, San Diego,
October 2007.

[29] Z. Liu, Y. Shen, S. Panwar, K. W. Ross, and Y. Wang, “Usinglayered
video to provide incentives in P2P streaming,” inACM SIGCOMM P2P-
TV, Kyoto, August 2007.

[30] F. Pianese, D. Perino, J. Keller, and E. W. Biersack, “PULSE: an
adaptive, incentive-based, unstructured P2P live streaming system,”
IEEE Trans. on Multimedia, vol. 9, no. 8, December 2007.

