
Is BitTorrent Unstoppable?

Prithula Dhungel†, Di Wu†, Xiaojun Hei‡, Brad Schonhorst†, Keith W. Ross†
Polytechnic University, Brooklyn, NY 11201†

Hong Kong University of Science and Technology, Hong Kong‡

ABSTRACT
Anti-P2P companies have begun to launch Internet attacks
against BitTorrent swarms. We use passive and active Inter-
net measurements to study how successful these attacks are
at curtailing the distribution of targeted content. For our ac-
tive measurements, we develop a crawler that contacts all the
peers in any given torrent, determines whether leechers in
the torrent are under attack, and identifies the attack peers in
the torrent. We use the crawler to investigate 8 top box-office
movies. Using passive measurements, we perform a detailed
analysis of a recent album that is under attack and evaluate
the effectiveness of attacks on leechers. Using private tor-
rents created in Planet Lab, we investigate attacks against
the initial seed in the early stages of a torrent. For some of
the more interesting attacks, we also develop simple analyt-
ical models, giving additional insights into the potential vul-
nerabilities of BitTorrent. Finally, we address whether the
BitTorrent architecture is fundamentally more resilient than
earlier file sharing architectures (e.g., Kazaa and eDonkey)
against Internet attacks.

1. INTRODUCTION
Over the past several years, the music industry has

been aggressively attempting to curtail the distribu-
tion of targeted musical recordings over P2P file shar-
ing networks. These attempts include numerous law
suits against P2P file sharing companies (against Nap-
ster, Kazaa and many others), tracking and suing users
of P2P file sharing systems [19], and most remarkably,
launching large-scale Internet attacks against the P2P
systems themselves. The large-scale Internet attacks
have been performed by specialized anti-P2P compa-
nies, also known as “interdiction” companies (e.g., Me-
dia Defender [8], Safenet [13] and Marcovision [7]), work-
ing on the behalf of the RIAA and specific record labels.
Several studies showed that these attacks were success-
ful at severely impeding the distribution of targeted
content over several P2P file sharing systems, includ-
ing FastTrack/Kazaa, Overnet/eDonkey, and Gnutella
/Limewire [27, 20, 28]. In particular, these attacks,
along with the law suits, contributed to the demise of
the Kazaa/FastTrack file-sharing system.

Today, BitTorrent is one of the most popular P2P file
distribution protocols, particularly for the distribution
of large files such as high-definition movies, television
series, record albums, and open-source software distri-
butions [31]. Unlike Napster and Kazaa, BitTorrent
uses an open protocol, which has been implemented by
more than 50 different clients [3]. The BitTorrent client
is thus not developed and distributed by a single com-
pany, which can be easily targeted for a lawsuit. Also
included in the BitTorrent ecosystem are torrent discov-
ery and peer discovery services, which can potentially
be legally attacked; in fact, in late 2004, Suprnova, the
largest torrent discovery site at that time, was closed
after legal threats. Today, however, there are many
torrent discovery and peer discovery services scattered
around the globe, all of which are defying legal threats.
Moreover, peer discovery can be decentralized using
DHTs and gossiping, as is currently being done with
clients such as Azureus and uTorrent.

Given that it is currently difficult, if not impossible,
to stop BitTorrent by suing companies, and suing in-
dividual users is both painstaking and unpopular, the
only remaining way to stop BitTorrent is via Internet
attacks. Not surprisingly, the music, film, and televi-
sion industries have begun to hire anti-P2P companies
to curtail the distribution of “assets” in BitTorrent [17,
5, 6].

It is important to understand just how vulnerable the
BitTorrent ecosystem is to large-scale, resource-intensive
attacks for several reasons. First, BitTorrent has proven
to be extremely effective at distributing large files, in-
cluding open-source software distributions. According
to Evidenzia [9], the number of files distributed on Bit-
Torrent almost tripled from 2006 to 2007, and that visits
to major torrent location sites PirateBay and Mininova
doubled over this same period [4]. Given BitTorrent’s
large footprint in the Internet, it is of interest to know
whether it is vulnerable to attack and – if successfully
attacked – whether its impact on the Internet will be
consequently reduced. Second, having proven itself ca-
pable of massive-scale file distribution, BitTorrent now
serves as a blueprint for other P2P systems, including

1

on-demand and live streaming applications [11, 12, 14].
Understanding BitTorrent’s vulnerabilities will there-
fore shed insight into the vulnerabilities of a broader
class of P2P systems. Third, the music and film indus-
tries are clearly interested in whether network attacks
can successfully curtail file distribution over BitTorrent.
If not, they can abandon financing the attacks and in-
vestigate other solutions and business models.

Without taking sides on issues of copyright and fair
use, in this paper we investigate just how vulnerable the
BitTorrent ecosystem is to large-scale, resource-intensive
attacks. In particular, by attacking one or more compo-
nents of the BitTorrent ecosystem, is it possible to stop
or curtail the distribution of a targeted file? To answer
these questions, we undertake a number of complemen-
tary measurement studies:

• We developed a crawler that contacts all the peers
in any given torrent, determines whether the leech-
ers in the torrent are under attack, and identifies
the attack peers. We used the crawler to analyze
8 current top box-office movies.

• Using passive measurements, we performed a de-
tailed analysis of a recent album that is under at-
tack. For these measurements, we developed a cus-
tomized packet parser, which identifies the attack
peers and the type of attack they employ. We
also employ passive measurement to evaluate the
effectiveness of ongoing anti-P2P attacks against
BitTorrent leechers.

• We created our own private torrents using peers
dispersed in Planet Lab (PL) as well a small num-
ber of university and residential hosts that are fully
under our control. We limit the upload and down-
load rates of the PL nodes to mimic BitTorrent
torrents in the wild. Leveraging this measurement
infrastructure, we investigate the impact of attacks
on BitTorrent seeds.

In addition to the measurement studies, when ap-
propriate, we provide simple analytical models for at-
tacks and defenses, providing further insights into Bit-
Torrent vulnerabilities. We also explore whether the
current BitTorrent architecture is fundamentally more
resilient to Internet attacks than earlier file sharing sys-
tems (such as Kazaa and eDonkey).

This paper is organized as follows. We conclude this
section we a brief discussion of related work. In Section
2, we give a summary of the modern BitTorrent ecosys-
tem, focusing on the characteristics that are particu-
larly relevant to our vulnerability study. In Section 3,
we provide a taxonomy of BitTorrent attacks, covering
attacks on seeds, leechers, peer discovery, and torrent
discovery. In Sections 4 and 5, we use passive and active
measurement methodologies to study ongoing attacks

against leechers. In Section 6, we create a Planet Lab
environment to analyze attacks against seeds. Finally,
in Section 7, we draw conclusions about BitTorrent vul-
nerability based on our taxonomy, measurements, and
analytical results.

1.1 Related work
Recently, there has been a number of studies on pol-

lution and poisoning attacks on second-generation P2P
file sharing systems (such as Kazaa and eDonkey). An-
alytical and simulation studies showed that the pollu-
tion attack (inserting corrupted content into the P2P
file sharing system) is not scalable in co-operative P2P
networks and that these attacks were successful in some
networks only because of the user behavior [23]. On the
other hand, a measurement study concluded more than
50% of the files in Kazaa to have been polluted [27].
Similarly, the “index poisoning”, wherein an attacker
advertises an enormous number of bogus sources for a
targeted content, was highly pervasive in the FastTrack
and Overnet DHT (eDonkey) networks [28].

To date there has been little work on attacks on Bit-
Torrent that aim at curtailing the distribution of tar-
geted files. A recent simulation analysis of BitTorrent
examined two attacks: an attack involving tampered
buffer maps, and a connection monopolization attack
[25]. The simulation analysis assumed idealized BitTor-
rent clients using an idealized protocol. (In practice, de-
velopers of BitTorrent clients deviate significantly from
the textbook BitTorrent protocol.) To gain meaningful
insights into BitTorrent vulnerabilities, measurement
studies with real-world BitTorrent clients are required.
This current submission extends an earlier workshop
paper [22], which focused on attacks against BitTorrent
leechers. The current paper provides a measurement
study of both seed and leecher attacks, a taxonomy of
BitTorrent attacks, and insightful analytical models of
attacks. To the best of our knowledge, this submission
is the only measurement study of BitTorrent attacks to
date.

There has been a number of studies on how P2P sys-
tems can be used as engines for DDoS attacks against
arbitrary hosts in the Internet [29, 33, 18]. There has
also has been a number of studies on whether BitTor-
rent’s tit-for-tat incentive mechanism is sufficient for
preventing freeriders from downloading files [24, 30, 32].
These two classes of attacks (DDos attacks from P2P
systems and free rider attacks) are orthogonal to the
attacks considered in this paper.

2. BITTORRENT ECOSYSTEM TODAY
Over the years, the BitTorrent ecosystem has evolved

and become rather complex, with several recent devel-
opments that are of particular interest in this study.
For our purposes, the BitTorrent ecosystem consists of

2

four major components: seeds, leechers, peer discovery,
and torrent discovery. Each of these four components
can potentially be attacked.

A torrent is the collection of peers that participate in
the distribution of a specific file. At any given instant
of time, each peer in a torrent is either a leecher or a
seed. A seed possesses the entire file, uploads content
to leechers, but does not download since it already has
the file. A leecher uploads content to other leechers and
downloads content from seeds and leechers. Typically
a torrent begins with an initial seed, which is the only
peer to have the file.

Each leecher and seed uses one of the many BitTor-
rent clients. Some of the more popular clients today
include Azureus[1], uTorrent [16], and BitComet [2].
More than 50 BitTorrent clients have been developed
to date [3]. BitTorrent clients communicate with each
other using the BitTorrent protocol. However, some
clients (e.g., Azureus) have started to use their own cus-
tomized protocols. When two Azureus clients commu-
nicate, they use the Azureus protocol; when an Azureus
client communicates with a non-Azureus client, they use
the conventional BitTorrent protocol. We stress that
the BitTorrent clients are developed by independent de-
velopers with a significant amount of freedom and au-
tonomy. In particular, developers can create their own
seeding algorithms (as discussed subsequently), can use
piece-selection algorithms that are different from rarest
first, and so on. We have observed that many clients
deviate significantly from Bram Cohen’s Mainline client
[21]. For this reason, in drawing conclusions about Bit-
Torrent behavior and vulnerabilites, it is important to
use popular real-world clients, rather than simulations
of idealized clients.

One common technique for peer discovery is to use
a tracker: each peer in the torrent registers with the
tracker, and any peer can contact the tracker at any
time to obtain a random subset (IP-port pairs) of other
peers in the torrent. Communication between a peer
and a tracker is over HTTP. Today, many BitTorrent
clients (e.g., Azureus, uTorrent) additionally provide
peer discovery using DHTs. For example, all active
Azureus clients (that elect to participate in the DHT)
communicate with each other (across all torrents) via
the DHT. An Azureus client can then query the DHT,
using a torrent identifier for the key, to obtain a list
of Azureus peers participating in the torrent. Thus an
Azureus client typically discovers peers in a torrent both
from the torrent tracker and from other active Azureus
clients. Furthermore, many BitTorrent clients (includ-
ing Azureus and uTorrent) now allow peers in a torrent
to exchange peer lists directly with each other.

Users learn about the existence of ongoing torrents
from torrent discovery sites such as PirateBay, Mini-
nova, Isohunt, Torrentspy, Legaltorrent, snarf-it, and

BiteNova [15]. These sites typically provide a search
interface. In response to a user query, the search re-
turns a list of torrents that match the query as well
corresponding torrent description information such as
the name of the file, file size and type, the date the file
was originally seeded, the current number of seeds and
leechers, and often comments from users about the us-
ability and quality of the file. For each of these results,
the discovery site has a copy of a .torrrent file, which in-
cludes the IP addresses of one or more trackers and the
hashes of all the pieces in the file. To download a file,
the user obtains the .torrent file, contacts the tracker in
the .torrent file, and joins the torrent. We remark that
some of these torrent discovery sites provide a tracker
service (e.g., PirateBay), whereas other sites (e.g., tor-
rentz.com) provide no tracker servers and instead crawl
torrent discovery sites and index the totality of the dis-
covered torrents.

When a user wants to start a new torrent, it needs
to seed the file and register the torrent with a tracker.
To this end, the user may use its own tracker or it may
use a tracker service that is provided by some of the
torrent discovery sites (e.g., PirateBay). For example,
a user can simply create a seed by starting a BitTor-
rent client, including the file it wants to distribute in its
shared folder, and registering the torrent with a tracker.
The original BitTorrent protocol specification used the
Bandwidth First seeding algorithm that favored neigh-
boring peers with higher download rate when uploading
blocks [26]. Recently, additional algorithms have been
specified. In the Round Robin algorithm, the seed al-
locates equal time slots to all neighboring peers; each
peer gets its share of bandwidth from the seed at reg-
ular intervals of time. We have observed that the pop-
ular BitTorrent clients today often use a combination
of these two algorithms, and that the actual seeding al-
gorithm employed often varies from one version to the
next of the same client.

3. BITTORRENT ATTACKS: TAXONOMY
AND ANALYSIS

If a company or an individual wants to thwart the
distribution of specific content (e.g., a movie, television
series, or record album) in BitTorrent, it can take one
of two broad approaches: attacking an existing torrent
in the BitTorrent system; or attacking by creating de-
coy torrents. In this section we present a taxonomy of
attacks and also present simple analytical models for
some of the attacks. In the subsequent sections, we
carry out measurement studies of some of the more po-
tentially damaging attacks. Our focus in this paper is
on attacking existing torrents; however, in presenting
our taxonomy, we also briefly discuss decoying torrents
in this section. We emphasize that it is not possible
to identify every possible BitTorrent attack that could

3

arise someday; instead we mostly focus on attacks that
are actually being deployed by anti-P2P companies.

3.1 Attacking an Existing Torrent
The BitTorrent system consists of four major compo-

nents: leechers, seeds, peer discovery, and torrent dis-
covery. Each of these components can potentially be
attacked in order to curtail the distribution of specific
content.

3.1.1 Attacking the Leechers
In this class of attacks, the attacker targets the in-

dividual leechers in the torrent, with the goal of pre-
venting the leechers from obtaining the entire file, or
at least substantially prolonging the download time in
order to frustrate the user. One obvious approach is to
launch bandwidth flooding DoS attacks against all the
leechers in the torrent. For a large torrent, this could
require exorbitant bandwidth resources for an extended
period of time (since new leechers are continually join-
ing the torrent). Moreover, with bandwidth flooding,
ISPs may either filter the DoS traffic and/or file com-
plaints. A more feasible attack against a leecher would
instead exploit specific characteristics of the BitTorrent
protocol, which can be viewed as having two layers: a
connection layer and a piece layer. We now describe
how the protocol can be exploited in each of these two
layers.

Connection Attack

A BitTorrent peer limits the number of simultaneous
TCP connections it has with other neighboring peers.
This limit is client and configuration specific, but is
typically on the order of 50 to 100. The goal of the
connection attack is to try to tie up as many of these
connection slots as possible, if not all of them. To this
end, for each target leecher, the attacker attempts to
establish a large number of TCP connections and main-
tain these connections as long as possible. Over these
TCP connections, the attacker uploads little if any data
blocks, and therefore does not require to have excessive
bandwidth resources. To maintain the connections, de-
pending on the specific BitTorrent client employed by
the leecher, the attacker may have to periodically ex-
change BitTorrent messages with the leecher.

To succeed at this attack, the attacker must be able
to establish a large number of connections to the tar-
get leecher (or have the leecher establish a large num-
ber of connections to attacker hosts via a complemen-
tary peer-discovery attack), and succeed at maintaining
these connections for extended periods of time. To de-
fend against this attack, a client can be designed to drop
neighbors that do not provide it blocks (either because
it does not respond to a block a request or because it
never has any needed pieces). Also, blacklists for sus-

pected attack IPs (or suspected /24 networks) can be
created and deployed.

Currently anti-P2P companies are launching connec-
tion attacks against specific client types in targeted tor-
rents. In the subsequent section, we will present both
passive and active measurement results for this attack.

Piece Attack

Recall that in BitTorrent, each file is divided into
pieces, where each piece is typically 256 KBytes. Each
piece is further divided into blocks, with typically 16
blocks in a piece. When downloading a piece, a client re-
quests different blocks for the piece from different peers.
After obtaining all the blocks in a piece, the client re-
assembles the piece, calculates a SHA1 hash, and com-
pares the result with the corresponding hash value in
the .torrent file. If there is a hash failure, that client
deletes the entire piece and re-downloads each of the
piece’s blocks (potentially from different peers).

In the piece attack, the goal of the attacker is to have
the hash check frequently fail at the targeted leecher.
This would cause the leecher to waste time and band-
width resources in acquiring the file, thereby prolong-
ing the download time of the file. Ideally, the attacker
would like to create a large number of hash failures by
using as little attack bandwidth as possible. To meet
these goals, the attacker joins the torrent by registering
itself to the corresponding tracker. After becoming a
neighbor of a victim leecher, it advertises that it has a
large number of pieces of the file. Upon receiving this in-
formation, the victim leecher peer sends a request to the
attack peer for a block. Instead of sending the authentic
block, the attacker sends a fake one. After download-
ing all the blocks in the piece (from the attack peer
and from other benevolent peers), the hash check then
fails due to the fake block from the attacker. This re-
quires the victim peer to download the entire piece (16
blocks) again, delaying the download of the file. If the
peer chooses to download any of the blocks again from
this or another piece attacker, the download is further
delayed. Note that an attacker can cause a victim peer
to waste 256 KBytes of download bandwidth by only
sending it a 16 KByte block (using typical numbers).

Currently anti-P2P companies are launching piece at-
tacks against specific client types in targeted torrents.
In the subsequent section, we will present both passive
and active measurement results for this attack. We will
also describe an adaptive defense mechanism for this
attack.

To gain some preliminary insight into the piece at-
tack, we now provide a simple, back-of-the-envelope an-
alytical model of the attack. Consider a peer that wants
to obtain a specific piece consisting of 16 blocks. Sup-
pose this peer currently has n neighboring peers that
claim to have the piece. Of these n neighbors, let m

4

denote the number of attack peers. Let k denote the
number of neighbors the peer contacts to obtain the 16
blocks (a typical value of k is 5). A hash failure occurs
if one or more of the k chosen neighbors is an attack
peer. Assuming the k download neighbors are chosen
from the n neighbors at random, the probability that a
clean piece is downloaded is:

p = P (download a clean piece)
=

(
n−m

k

)
/
(
n
k

)

= (n−m)(n−m−1)...(n−m−k+1)
n(n−1)...(n−k+1)

≈ (1− m
n)k

where the last approximation holds when k ¿ n and
k ¿ n −m. Let γ denote the fraction of attack peers
among the n neighbors with the piece, that is, γ =
m/n. Figure 1 shows the probability of downloading
a clean piece as a function of γ for k = 5. Note that
the probability of downloading a clean piece decreases
rapidly as γ increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

P
ro

b
. o

f
d

o
w

n
lo

ad
in

g
 a

 c
le

an
 p

ie
ce

Figure 1: Probability of downloading a clean
piece vs. fraction of attack peers.

From Figure 1, we see that the attackers need a high
value of γ to be effective. For example, if they want
a failure probability of 70%, approximately 20% of the
neighboring peers should be attack peers. Note that
if a peer is attempting to download a rare piece, for
which relatively few benevolent peers have a copy, γ
will increase. Similarly, during the end game, when
a peer seeks a small number of missing pieces, there
may be relatively few benevolent peers that have the
missing pieces, also causing γ to increase. In fact, we
have observed (Section 4) that the piece attack is most
effective in the end game.

3.1.2 Attacking the Seeds
In this class of attacks, the attacker attempts to di-

minish the seeds’ ability to upload blocks (and ideally

stop the seeds from uploading altogether). This ap-
proach has the potential to be particularly effective in
the early stages of a torrent, when there is only the ini-
tial seed and the leechers collectively have not obtained
the entire file. If the attacker can discover and react
quickly enough to the new torrent, it can possibly “nip
the torrent in its bud,” preventing all of the torrent’s
peers from obtaining the entire file.

One approach is to bandwidth flood the seed’s down-
stream bandwidth, preventing legitimate peers from even
connecting to the seed. Because the number of seeds is
often small, particularly in the early stages of a tor-
rent, brute-force bandwidth flooding against seeds may
be feasible for some torrents, particularly if the seed
has a relatively low-speed Internet connection. A DDoS
bandwidth flooding attack can be used to avoid detec-
tion by ISP filtering mechanisms. The main defense (as
is typically the case for bandwidth DoS attacks) is to
increase the seed’s downstream bandwidth.

We now describe attacks that are specific to BitTor-
rent and, in particular, to BitTorrent’s seeding algo-
rithms.

Bandwidth Attack

Recall that BitTorrent seeds usually employ bandwidth-
first or round-robin algorithm or some combination of
the two. Consider now attacking a seed that employs
bandwidth first. The seed will have connections with a
large number of peers (typically 50-100), but only up-
loads to the K neighbors that download at the highest
rate, with a typical value of K being 4-7. If the at-
tacker can make K connections to the seed (from one
or more attack peers) and become the K highest down-
loaders, then the attack peer can significantly dimin-
ish the seed’s capability of sending blocks to legitimate
peers. (Because the seed will optimistically unchoke
other peers, some blocks will still be sent to legitimate
peers.) To be successful, the attack peers may need to
collectively download at a rate close to the seed’s up-
stream bandwidth. However, because many seeds are
behind asymmetric access links, significantly less band-
width resources may be needed than for flooding the
downstream bandwidth of the seed.

To gain some preliminary insight into this bandwidth
attack, we now provide a simple analytical model of the
attack. Suppose there are M attack peers and N legit-
imate peers connected to the seed. For simplicity, we
assume that all the attack peers have the same down-
stream bandwidth of x and all the legitimate peers also
have the same downstream bandwidth of y, and x > y.
Suppose the seed has upstream bandwidth of U , and
provides K simultaneous upload slots. Among the K
upload slots, K−1 slots are for regular unchoked peers,
and 1 slot is for optimistic unchoked peer. For an un-
choked peer, its download rate is bounded by the mini-

5

mum of its download bandwidth and U
K . Let us consider

two scenarios:

• x > y ≥ U
K : when competing for the seed band-

width, attack peers have no advantage over legiti-
mate peers under the Bandwidth First seeding al-
gorithm. The fraction of seed upstream bandwidth
obtained by attackers is determined by the per-
centage of attackers among connected peers, which
equals M

N+M .

• x ≥ U
K > y: In this case, a legitimate peer’s down-

load rate is less than U/K. Thus, under the Band-
width First seeding algorithm, all the regular un-
choked slots are taken by attack peers. Legitimate
peers can only get unchoked by optimistic unchok-
ing. The fraction of seed upstream bandwidth ob-
tained by attack peers is approximately given by
K−1

K .

Connection-Monopolization Attack

Now consider attacking a seed that employs the round-
robin uploading algorithm. Since each peer gets (in
principle) an equal share of the bandwidth, the goal of
the attacker is to fill up as many as possible of the con-
nection slots of the seed so that few or no slots are left
for the legitimate peers. To make sure that the seed
maintains the connections, the attacker peers may need
to occasionally download some blocks.

If at the start of the attack, the seed already has
many ongoing connections to legitimate peers, the at-
tacker will not be able to establish many of its own
connections with the seed, and therefore may not sig-
nificantly diminish the seed’s upload capacity. When a
legitimate peer leaves, the aggressive attacker can try
to immediately take its place. However, if the seed has
already distributed a large number of chunks to genuine
peers before the attackers finally succeeds at monopo-
lizing the connection slots, the attack might have little
impact.

3.1.3 Attacking Peer Discovery
The goal of peer discovery attacks is to prevent the

leechers from obtaining the IP-port pairs of the legiti-
mate peers in the torrent. One such attack is to band-
width flood the tracker. However, because tracker ser-
vices often have high-bandwidth connections, bandwidth
flood attacks are difficult. Furthermore, since many
popular BitTorrent clients (including Azureus and uTor-
rent) enhance peer discovery with a DHT and/or gos-
siping, knocking out the tracker may not suffice.

Another approach is to poison the peer discovery
mechanisms with non-authentic IP-port pairs. For ex-
ample, if the attacker succeeds at poisoning 99% of the
IP-port pairs in a tracker, then the vast majority of

the random IP-port pairs the tracker gives to a leecher
will be useless. For eDonkey/Overnet, anti-P2P com-
panies also used an IP poisoning attack, in which they
poisoned the index with a massive number of bogus IP
addresses [28]. This was a successful attack, as find-
ing a useful IP address was like finding a needle in a
haystack. Poisoning was relatively easy in the Overnet
DHT, as an arbitrary user can insert an arbitrary IP
address (or file hash) into the DHT using UDP. It is
more difficult, however, to poison a BitTorrent tracker,
since attacker must establish TCP connections and send
register messages at regular intervals just to maintain
one poisoned IP. To maintain a large number of bogus
IPs, the attacker needs to maintain a large number of
TCP connections to the tracker. Moreover, because of
TCP’s three-way handshake, the attacker reveals its IP
address, which (once identified as part of an attack) can
be put on a blacklist.

3.1.4 Attacking Torrent Discovery
Finally, it is possible to attack the torrent index sites

(such as PirateBay and Mininova). One possible attack
is a bandwidth-flooding DoS attack. There has actually
been a few such attacks documented. For example, in
December 2004, some BitTorrent web servers, including
that maintained by Lokitorrent, faced a DDoS attack
for hours [5]. Another approach is to enter negative
comments (e.g., “file does not play”) about the targeted
torrents on the Web sites.

3.2 Decoy Torrent Attacks
In this class of attacks, the attackers create their own

“decoy” torrents for the targeted content. Specifically,
the attacker seeds fake files (also called polluted files)
that are tagged with the name of targeted content. For
example, an attacker can upload one or more .torrent
files for a targeted movie into a number of torrent dis-
covery sites (PirateBay, Mininova and so on). Each of
these torrent files advertises the name of the targeted
movie. However, for each of the torrents, instead of
seeding the actual movie, the attacker seeds one or more
“fake” files for the movie. Another version of the decoy
attack, is to have the decoy seed distribute only 99% of
the file, with the file being either the actual movie or
some bogus file. In this case, the leechers remain wait-
ing indefinitely for the last few pieces to complete the
download until the user gets frustrated and abandons
the download altogether.

In both of the above techniques, the goal of the at-
tacker is to make the number of decoys for the content
larger than the number of authentic torrents for the
movie, so that users download the decoy rather than
an authentic version with a high probability. To in-
crease the chances that users select decoy torrents, the
attackers can deploy their own trackers (rather than use

6

the public trackers of torrent Web sites), which are di-
rectly controlled by the attackers. When the torrent
Web sites contact these customized trackers, the track-
ers report false statistics, indicating a very large torrent
size, which are in turn presented to the users. Users
tend to choose large torrents, since large torrents are
generally more trusted and provide the file faster.

As a defense to this attack, users typically post com-
ments about torrents at the various torrent web sites;
if a torrent is a decoy, it is easily flagged in these com-
ments. Furthermore, users often inform the operators
of these sites when a torrent is determined to be a de-
coy. Operators then remove the decoy. Many torrent
discovery sites (e.g., PirateBay) also disallow the use of
third-party trackers.

Leaked emails from one of the anti-P2P companies
indicate that it has been using the decoy attack [6].
However, we have not observed widespread use of this
attack in BitTorrent. Therefore, in this paper, we focus
on attacks launched against existing torrents and do not
further consider decoy-torrent attacks.

4. BITTORRENT ATTACKS ON LEECHERS
- PASSIVE MEASUREMENT

Having set the stage with a taxonomy of attacks,
we now measure the effectiveness of several attacks,
many of which are either actually being deployed. We
use passive and active measurements of torrents in the
wild, as well as private torrents running on PlanetLab.
Throughout this measurement study, we focus on two
very popular clients, Azureus and uTorrent. In this sec-
tion, we begin with passive measurements to evaluate
the effectiveness of connection attacks and piece attacks
against leechers.

4.1 Passive Measurement Methodology
While repeatedly downloading a file suspected to be

under attack, we collected multiple packet traces from
hosts connected to both Ethernet and DSL access net-
works. On each host, we captured all the incoming and
outgoing packets. We also developed our own packet
parser to identify different types of attackers in the trace
and analyze their behaviors.

To measure the performance of BitTorrent without
attacks, we used a third-party software, PeerGuardian
[10], to prevent connections to and from the IP ranges
in a specified blacklist. Our IP blacklist is based on
the ZipTorrent blacklist published on torrentfreak.com
[17]. Note that, since the anti-P2P companies (e.g.,
MediaDefender [8]) change the IP range of their attack
hosts, this blacklist is not always complete and may not
always eliminate all the attacker hosts.

4.2 Passive Measurement Results
In this section we present measurement results for

a torrent for the new album titled “Echoes, Silence,
Patience & Grace” from “Foo Fighters”, which we sus-
pected to be under attack. This popular album was
released on September 25, 2007, a few weeks before our
experiments. At the time of the experiment, it held the
number 1 position on the UK album chart and iTunes
ranking list. The size of the file is 108 MBytes. In
our testing, we downloaded the file from this torrent 54
times.

4.2.1 Azureus Client
Because Azureus clients can import IP blacklist, we

use this Azureus feature to perform IP filtering. Within
one day, we performed downloads for this torrent mul-
tiple times using Azureus clients, and switched the IP
filter on or off alternatively. First we present the basic
average download-time statistics in Table 1.

Azureus w/ IP-filtering w/o IP-filtering DR

Ethernet 15.52 mins 20.99 mins 35.2%
(6 downloads) (6 downloads)

DSL 19.98 mins 25.88 mins 29.5%
(6 downloads) (6 downloads)

Table 1: Average downloading time using
Azureus clients

In Table 1, Delay Ratio (DR) is defined as follows
to evaluate the effectiveness of attacks in lengthening
downloading time,

Delay Ratio =
Td w/o IP-filtering− Td w/ IP-filtering

Td w/ IP-filtering

where Td is the average downloading time of BitTor-
rent clients. From the table, we clearly observe that the
downloading time of the file is prolonged when attacked.
For both DSL and Ethernet peers, the download time
on average increased by about 30%. The actual increase
in download time may be larger, since we may not have
blacklisted all the malicious peers. However, given the
download rate of the DSL client, the size of the file,
and that the minimum observed download time was 17
minutes, it is unlikely that the average download time
without an attack would have been less than 17 min-
utes. Thus, we can safely say, at least for DSL, that the
attackers did not prolong the downloading of this file
by more than 50%.

To get a deeper understanding of the attack on Azureus
clients, we selected one typical packet trace and an-
alyzed it with the packet parser we developed. Our
parser can categorize all the IPs in the trace into differ-
ent types as follows:

• No-TCP-connection Peers: peers with which our
client cannot establish TCP connections.

7

• No-BT-handshake Peers: peers with which our
client can successfully establish TCP connection,
but when the client sends a BitTorrent handshake
message, the peer does not return a BitTorrent
handshake response.

• Connection-Attack Peers: peers that occupy the
connection slots of our client and simply chat with
repeated BitTorrent protocol messages, without
uploading any data. For Azureus clients, we con-
sider any peer that sends more than one Azureus
handshake message as a Connection-Attack Peer.

• Piece-Attack Peers: peers that upload fake blocks
to our client. To identify piece-attack peers, we
first need to check whether hash fails happened
during downloading. When a hash fails, we iden-
tify all the IPs that have uploaded blocks for the
piece and check whether the uploaded blocks are
fake or not.

• Benevolent Peers: peers that communicate nor-
mally with our client via the BitTorrent protocol
and upload at least one genuine block to our client.

• Other Peers: peers that don’t fall into any of the
above categories.

No−TCP−Connection Peers
53% No−BT−Handshake Peers

17%

Connection−Attack
Peers

 18%

Piece−Attack Peers
 0%

Benevolent Peers
10%

Other Peers
2%

No−TCP−Connection Peers

No−BT−Handshake Peers

Connection−Attack Peers

Piece−Attack Peers

Benevolent Peers

Other Peers

Figure 2: Peer distribution in Azureus trace

Figure 2 shows the distribution of different types of
peers in the Azureus trace. Among all the IPs our
Azureus client attempted initiating a connection to, over
half of them could not be reached. The high percentage
of no-TCP-connection peers is not necessarily due to at-
tackers. The no-TCP-connection peers include NATed
peers, firewalled peers, stale IPs returned by trackers or
gossiping messages, and peers that have reached their
limit on TCP connections (typically around 50-80 in

BitTorrent). Even in clean torrents (e.g., public-domain
software) where no attacks exist, we observed a large
percentage of no-TCP-connection peers.

No-BT-handshake peers account for 17% of the total
IPs. If combined with no-TCP-connection peers, al-
most 70% of all the IPs are not useful for our Azureus
client. For the remaining 30% of the IPs, only 10% of
the IPs are benevolent peers, while 18% IPs belong to
connection-attack peers, which chat with the Azureus
client continuously but without uploading any piece.
Connection-attack peers account for a majority of use-
ful peers (i.e., 60%).

To estimate how chatty the attackers actually are, we
checked the number of handshake messages sent out by
each connection-attack peer (Figure 3). We can observe
that most of connection-attack peers are very chatty,
and send out as many as 40-60 handshake messages
to our Azureus client. Those connection-attack peers
persist as neighbors of the Azureus client during the
downloading process, and hinder the client from con-
tacting benevolent peers. No hash fails occurred during

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

Number of Azureus Handshake messages sent out

N
um

be
r

of
 C

on
ne

ct
io

n−
A

tta
ck

 P
ee

rs

Figure 3: Distribution of Azureus handshake
messages across connection-attack peers.

the downloading. Thus, it appears that the attackers
did not launch a piece attack against Azureus clients at
this time.

4.2.2 uTorrent Client
We also used uTorrent clients to download the same

file. We turned off the automatic filtering function of
uTorrent and used PeerGuardian to perform IP-filtering.

uTorrent w/ IP-filtering w/o IP-filtering DR

Ethernet 9.17 mins 9.42 mins 2.7%
(10 downloads) (10 downloads)

DSL 18.32 mins 28.93 mins 57.9%
(5 downloads) (5 downloads)

Table 2: Average downloading time for uTorrent
clients

8

Table 2 provides the average downloading time of
uTorrent clients. For uTorrent clients with Ethernet
connections, the attackers did not succeed at signifi-
cantly increasing the average download time. However,
the attackers appear to have some success with DSL
clients, increasing the average download time by 58%.

uTorrent w/ IP-filtering w/o IP-filtering

Ethernet 1.7 Hash Fails 44.2 Hash Fails
DSL 4.2 Hash Fails 68.4 Hash Fails

Table 3: Average number of Hash Fails for uTor-
rent clients

Table 3 shows the average number of hash fails for
uTorrent clients. Compared with Azureus clients (which
had no hash failures), hash failures occur much more
frequently. The hash failures are a direct consequence
of the piece attack being launched against uTorrent.
Hash-failures may not significantly impact an Ether-
net peer, since if the Ethernet peer can find one other
high-bandwidth benevolent trading partner, it may be
able to rapidly download from it complete pieces (all
16 blocks) even if the other neighbors are producing
hash failures. For DSL clients, because of the tit-for-
tat algorithm, the client is typically trading only with
other lower-bandwidth peers; even if one of these peers
is producing a stream of clean pieces, the pieces would
be coming in at a relatively low rate.

No−TCP−Connection Peers
 58%

No−BT−Handshake Peers
 13%

Connection−Attack Peers
 0%

Piece−Attack Peers
 2%

Benevolent Peers
 22%

Other Peers
 5%

No−TCP−Connection Peers

No−BT−Handshake Peers

Connection−Attack Peers

Piece−Attack Peers

Benevolent Peers

Other Peers

Figure 4: Peer distribution in uTorrent trace

To gain deeper insights, we plot the peer distribu-
tion in one of uTorrent traces in Figure 4. Similar to
the Azureus trace, no-TCP-connection peers account
for 58% of all the IP addresses in the peer list.

Compared with the Azureus trace, the main differ-
ence lies in the distribution of connection-attack peers

and piece-attack peers. In Azureus, we saw significant
connection-attack activity but no piece attacker. In
case of Azureus, the attackers exploited the implemen-
tation vulnerability of not being able to detect malicious
behavior of attackers sending multiple handshake mes-
sages. It appears that uTorrent clients do not have this
vulnerability.

However, we did observe the piece attack in uTorrent.
The piece attack is different from connection attack in
that it doesn’t require many IP addresses to launch the
attack. Even if the percentage of piece-attack peers is
fairly low among all the IPs, the attack can still be effec-
tive, particularly towards the end of the file download
(the end game).

In summary, the anti-P2P companies are applying
distinctly different strategies against different BitTor-
rent clients. From this experiment (involving 54 down-
loads from the same torrent), we observe that the at-
tacks are not always successful at significantly prolong-
ing download times. For Ethernet clients, the attackers
appear to be largely ineffective. On the other hand,
average download times for our uTorrent client behind
DSL connections increased by about 60%. However,
even if download times were to double (100% delay ra-
tio), it is not clear that many users would abandon Bit-
Torrent, since users often download in the background
or over night. In the next section, we examine the at-
tacks over a wider array of torrents.

5. BITTORRENT ATTACKS ON LEECHERS
- ACTIVE MEASUREMENT

In this section, we provide active measurement results
for the detection of connection-attack peers and piece-
attack peers in torrents for 8 top box office movies.

5.1 Active Measurement Methodology
We developed a crawler that traverses the BitTorrent

network gathering IP addresses of peers for a given tor-
rent. We also developed customized BitTorrent clients,
and devised heuristics for the detection of connection-
attack peers and piece-attack peers. Doing this enabled
us to quickly run experiments over a large number of
torrents without having to download the entire files (as
in the previous section).

5.1.1 Crawler Architecture
The output of the crawler is a “pool” containing the

IP address and port pairs of peers in the torrent. It
repeatedly requests the tracker for lists of peers partici-
pating in the torrent. Every time a list is received from
the tracker, the crawler checks each IP and port to see
if it already exists in the pool. If not, the new pair is
added to the end of the pool. After gathering some IP
addresses and ports in the pool, an IP address and port

9

Table 4: Measurement Results for Connection-Attack Peers

Movie Total Peers Crawled IPs from Blacklist Non-Useful Peers Useful Connection-Attack Peers

ID Tracker Gossip Tracker Gossip Tracker Gossip Peers Tracker Gossip IPs from Blacklist

Movie1 116 864 1 73 90 836 54 0 27 26
Movie2 633 206 1 48 528 159 152 0 7 7
Movie3 144 158 0 30 111 98 93 0 0 0
Movie4 16 407 0 12 8 398 17 0 2 0
Movie5 29 1460 0 2 16 1460 13 11 0 0
Movie6 2356 3992 0 4 1992 3558 798 0 0 0
Movie7 111 0 0 0 81 0 30 0 0 0
Movie8 82 0 0 0 57 0 25 0 0 0

pair is extracted from the beginning of the pool. A sep-
arate thread is forked, which initiates a TCP connection
to the peer.

If a TCP connection can be successfully established,
the crawler thread then sends a BitTorrent handshake
message to the peer indicating that it is an Azureus
peer. If the peer is also an Azureus peer (which is de-
termined from the handshake reply received from the
peer), the thread speaks to the peer using the Azureus
messaging protocol. An interesting feature of Azureus
is that Azureus clients have the feature of exchanging
gossip messages with each other for exchanging peer
lists. Hence, by acting as a an Azureus peer, the crawler
thread is able to gather additional IP addresses from the
gossip messages that it gets from the Azureus peer. It
is also possible to obtain peer lists by accessing a DHT
created with Azureus clients, but we do not consider
this feature in this study. The new pairs gathered via
gossip are again added to the end of the pool.

A separate thread is forked for each IP and port pair
in the pool and each thread runs until either there is er-
ror in the TCP connection with the peer, or the timer
for the peer expires. Similarly, the whole crawling pro-
cess is continued until the timer for the crawler expires.
We tested our crawler on a number of torrents and ob-
served that even for a torrent size as large as 12,000,
the crawler was able to crawl more than 90% of total
peers within 8 minutes (the total number of peers in
the torrent was determined from the Web site hosting
the .torrent file). In all of our experiments, we ran the
crawler for 8 minutes.

5.1.2 Detection of Connection Attack
For the detection of connection-attack peers, the in-

strumented client initiates TCP connections to IP ad-
dresses from the crawler pool. After having established
a TCP connection, the instrumented client speaks the
Azureus messaging protocol to the peer if the peer is an
Azureus peer, and the “conventional” protocol in case
of other peers. For a peers that is an Azureus client,

our client marks it as being “connection-attack peer”
if it sends more than one Azureus handshake message.
Our client also marks a peer as “non-useful” if either
a TCP connection cannot be made to it, or if it does
not reply with a BitTorrent handshake message when a
TCP connection is established.

5.1.3 Detection of Piece Attack
For the detection of piece-attack peers, the instru-

mented client establishes TCP connections to peers from
crawler pool and speaks the “conventional” BitTorrent
protocol to all peers. In addition to marking peers as
“non-useful,” this client marks a peer as being “piece-
attack peer” if the peer sends a fake block.

5.2 Active Measurement Results
We collected torrents for the 20 top box office movies

during the time of the experiment. We ran an initial
crawling on these torrents and checked the peer lists
obtained against the blacklist. Out of the 20 movies,
we chose the 3 movies (Movies 1 through 3) that ap-
peared to be heavily attacked (based on the large num-
ber of blacklisted peers in the peer lists obtained from
the crawler). We also selected 3 other movies (Movies
4 through 6) that appeared to be lightly attacked. For
each of the 6 movies, we chose the torrent that showed
the highest number of blacklisted peers for the movie.
We also selected 2 other movies (Movies 7 and 8) that
did not show any blacklisted IP addresses in their peer
lists.

Before presenting the measurement results, we briefly
explain how these movies typically get into BitTorrent
in the first place. Just after the theatre release, someone
captures the movie with a camcorder (often the visual
quality is good, better than VCR quality). The record-
ing is then used to generate pirated DVDs, which are
sold throughout the world. One or more of these DVDs
then gets seeded in BitTorrent.

10

Table 5: Measurement Results for Piece-Attack Peers

Movie Total Peers Crawled IPs from Blacklist Non-Useful Peers Useful Piece-Attack Peers

ID Tracker Gossip Tracker Gossip Tracker Gossip Peers Tracker Gossip IPs from Blacklist

Movie1 104 2284 6 68 75 2260 53 4 17 21
Movie2 604 313 1 72 494 255 168 0 8 8
Movie3 59 524 0 29 41 439 103 0 0 0
Movie4 15 86 0 10 10 77 14 0 0 0
Movie5 22 640 0 1 11 640 11 0 0 0
Movie6 374 884 1 1 292 677 289 0 0 0
Movie7 89 0 0 0 67 0 22 0 0 0
Movie8 114 0 0 0 74 0 40 0 0 0

5.2.1 Test Results for Connection Attack
Table 4 shows the test results for connection-attack

peer attack. We observe that for the 6 attacked movies,
70% (or more) of the peers crawled are not useful, mean-
ing that they are either not reachable by TCP connec-
tions, or do not reply with a BitTorrent handshake mes-
sage after a TCP connection is made. This result is
consistent with our passive measurements in Section 3.

We also observe that for Movie 1, half of the useful
peers (those who reply with the BitTorrent handshake
message) are chatty. For Movie 5, about 85% of the use-
ful peers are chatty. Interestingly, for Movie 5, none of
the connection-attack peers that were detected fall into
the blacklist that we have. As a verification, we down-
loaded the same movie using a real BitTorrent client
and found that these IP addresses were indeed chatty.
This indicates that static blacklisting is not sufficient for
preventing such attacks since the attackers can always
change IP addresses. Furthermore, for each movie, we
observe a large number of blacklisted IP addresses from
gossip. However, not all attack IPs come from gossiping
- for Movie 5, there are 11 attacker IP addresses from
the tracker and none from gossip.

For Movies 7 and 8, which did not appear to be under
attack from the initial crawling, no connection-attack
peers were detected and the percentage of non-useful
peers is still around 70%.

5.2.2 Test Results for Piece Attack
Table 5 shows the test results for piece attack for the

same 8 torrents. It can be seen that the number of
non-useful IP addresses is again 65% (or more) for the
8 torrents. For Movie 1, almost half of the useful peers
were piece-attack peers. Since similar results were seen
for the connection attack test, it can be concluded that
Movie 1 was indeed “heavily attacked” at the time of
our experiments. Interestingly, at that time, it was al-
ready over 1.5 months after Movie 1 was released and so
the movie was below 3 of the other 5 (attacked) movies
in the box office rankings at that time.

We compared the list of connection-attack peers and
piece-attack peers that were detected for Movies 1 and
2. We found that for each of these, some of the IP
addresses detected as connection-attack peers were also
detected as piece-attack peers. This reaffirms our claim
that a specific attacker behaves differently for different
BitTorrent clients.

In summary, our active measurement apparatus and
methodology can quickly determine whether the leech-
ers in a torrent are under a piece or connection attack.
We have found that several, but not all, top box-office
movies are currently under attack. We have also found
that published blacklists do not always cover all the at-
tackers in a torrent. We also observed that the majority
of the attack IPs enter the system through gossiping;
however, some also enter through trackers.

6. BITTORRENT ATTACKS ON SEEDS
Having looked at attacks against leechers in some

detail, we now turn our attention to a natural attack
against seeds, where the attacker attempts to make mul-
tiple connections to a seed and download as much as
possible from the seed. We refer to this attack as the
bandwidth attack. The goal of this attack is, in the early
stage of a torrent, to exhaust the initial seed’s upload
capacity and/or connection slots. The attack is dis-
cussed and modeled analytically in Section 3.1.2.

6.1 Experimental Setup
To measure the effectiveness of the bandwidth attack,

we created a private torrent using PL nodes as well as
a few university and residential nodes. All the attack
tests consisted of a single seed sharing a 100 MB file,
30 leechers attempting to download the file, and a num-
ber of attack peers. The 30 leechers ran on 30 differ-
ent PL nodes; whereas the seed was on a residential
node. The attack peers worked by directly connecting
to the seed, requesting pieces from it, and never for-
warding the received blocks to any other peer in the
torrent. To observe the change in effectiveness of the

11

attack, we varied the number of attack peers in each
experiment. Furthermore, to simulate an actual tor-
rent, the 30 leechers were all capped with maximum
upload and download capacity of 512 kbps and 1 Mbps
respectively, and the seed with a maximum upload ca-
pacity of 160 kbps. Azureus and uTorrent clients were
again tested: in each experiment, the seed used either
Azureus 3.0.4.2 or uTorrent 1.7.6. The leechers used
the BitTornado 0.3.1.7 client (which was relatively easy
to install on PL). In the tests described below, the tests
involving 4, 8, and 12 attackers had all the attackers in
a university Ethernet network. In order to limit attack
traffic coming out of the university network, for tests
involving 20, 40, and 60 attackers, the attackers were
dispersed in various PL nodes.

All the experiments simulated a flash crowd effect, in
that, after the seeding peer started sharing the file, 5
legitimate leechers were started one after another, fol-
lowed by the attackers, which were in turn followed by
the remaining 25 legitimate leechers. In this experi-
ment, we are exploring a best-case scenario for the at-
tackers, in which they quickly detect and join the the
new torrent. For the tests involving 40 and 60 attackers,
the attackers were launched with a few extra minutes
of delay after the first 5 legitimate peers were started.
This allowed legitimate peers enough time to find the
seed and connect to it, so that not all of the seed’s con-
nection slots (50) get grabbed by the attackers, leaving
no room for legitimate peers. This mimics the scenario
in real torrents: by the time attackers discover the seed,
a few leechers will already have connected to the seed
and started downloading from it.

The leechers were configured to record the time taken
to download the whole file and the seed was configured
to record the total data sent out from it. The effective-
ness of each attack experiment was measured in terms
of Delay Ratio (ratio of average time to download the
file at the leechers with attackers to average download
time without attackers) and the percentage of seed data
received (wasted) by the attackers. In order to esti-
mate the bandwidth requirement at the attackers, the
aggregate bandwidth across all the attackers over each
experiment period was used.

6.2 Measurement Results
Figure 5 shows the measurement results for the band-

width attack experiments. Observe from Figure 5(a)
that even with the number of attackers as large as 12
(i.e., 40% of the torrent size), the delay ratio for both
Azureus and uTorrent seeds never exceeds 1.6. A more
considerable value for the delay ratio was observed for
Azureus with 40 and 60 attackers. Also, high values for
the percentage of seed’s data received by attackers and
the bandwidth used at attackers reaffirms the fact that
they were able to waste considerable amount of seed’s

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0.5

1

1.5

2

2.5

3

3.5

4

Number of Attackers

D
el

ay
 R

at
io

Azureus
uTorrent

(a) Delay ratio

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

10

20

30

40

50

60

70

80

90

100

Number of Attackers

%
 o

f s
ee

d
da

ta
 r

ec
ei

ve
d

by
 a

tta
ck

er
s Azureus

uTorrent

(b) Percentage of seed data received by attackers

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
0

50

100

150

Number of Attackers

T
ot

al
 b

an
dw

id
th

 u
se

d
by

 a
tta

ck
er

s
(k

bp
s) Azureus

uTorrent

(c) Total bandwidth used at attackers (kbps)

Figure 5: Measurement results for bandwidth
attack against Azureus and uTorrent seeds.

12

resources. However, having more attackers than legiti-
mate peers in a torrent is not feasible, especially when
the torrent size is in the order of thousands.

Looking into the source code for Azureus 3.0.4.2 re-
veals that it does not use a pure bandwidth first al-
gorithm when seeding. The main difference lies in the
creation of the list of peers to be unchoked next. Instead
of unchoking peers simply based on their download rate
from the seed, Azureus creates two sorted lists of in-
terested peers: one is an ascending-ordered list of peers
based on their download rate; the other is a descending-
ordered list of peers based on the amount of their down-
loaded data. Azureus sorts the peers again based on
the sum of their indexes in the above two lists. The
peers at the top of this final sorted list get unchoked.
This means that peers with the highest download rates
and having fewer bytes downloaded from the seed so
far will be given highest priority for unchoking. This
explains why the attackers were not able to monopolize
the Azureus seed’s upload slots with their high down-
load rates. Since uTorrent is closed source, the exact
seeding algorithm used is not known. However, looking
at the delay ratio values for different experiment sets,
we surmise that uTorrent does not use a pure bandwidth
first algorithm when seeding files.

In order to verify the feasibility of this attack, we had
to find a client that used the conventional bandwidth
first seeding algorithm. Looking into the source for the
BitTornado 0.3.1.7 client reveals that it does use pure
bandwidth first algorithm when seeding. We conducted
another test with this seeding client, 30 legitimate leech-
ers, and 12 attackers. As discussed in the mathematical
model we constructed for the attack against bandwidth
first seeds, in order to make sure that the attack peers
get advantage over the legitimate ones when getting un-
choked, we set up the upload/download capacities of the
seed and the leechers accordingly. The seed was set with
a maximum upload capacity of 2 Mbps where as the
leechers, dispersed in various PL nodes, were capped
with a maximum upload and download capacities of
128 kbps and 256 kbps respectively. The attackers had
Ethernet access at our university network (x ≥ U

K > y,
Section 3.1.2). The delay ratio was still very small in
this case (1.23). The large values for percentage of seed
data received by attackers (92%) and bandwidth used
at the attackers (1.84 Mbps) indicates that attackers
did get advantage over legitimate peers when getting
unchoked. However, since the seed had a large upload
capacity, even with only 8% of the seed bandwidth ca-
pacity (i.e., around 164 kbps), the attackers were able
to quickly download the file (113 minutes).

In summary, even with torrents having relatively large
percentage of attackers and only low bandwidth legiti-
mate peers, the bandwidth attack was not able to pro-
long the download time by a factor of more than 2.

Clearly, for torrents containing a combination of both
high and low bandwidth legitimate leechers, the down-
load time prolongation will be even less. Therefore, this
attack appears to be largely ineffective against BitTor-
rent seeds (using either the bandwidth first algorithm or
its variation), particularly for large torrents. The tests
with 40 and 60 attackers are essentially connection-
monopolization attacks. These did considerably lengthen
the download time for Azureus. However, since most
clients today use some combination of the bandwidth
first and round-robin seeds, connection monopolization
does not seem to be effective in bringing down torrents
either.

7. CONCLUSION
We have studied how vulnerable (or resilient) the Bit-

Torrent system is to large-scale, resource-intensive at-
tacks. In doing so, we have identified a number of at-
tacks that can be launched against the four major com-
ponents of the BitTorrent ecosystem: leechers, seeds,
peer discovery, and torrent discovery.

For attacking the leechers, anti-P2P companies are
mostly using two different approaches: connection at-
tack and piece attack. Active measurement results on
top box-office movie torrents suggest that many (but
not all) of these movies are currently being attacked.
Passive measurement results show that these two at-
tacks can indeed prolong the average download time of
files, particularly for residential broadband users. How-
ever, the extent of this prolongation, at least for the
torrents studied here, is modest - typically not by more
than 50%. Since most BitTorrent users are fairly pa-
tient and download files overnight or in the background,
we believe that download times need to be tripled to
have a significant impact. We have also found that
blacklist-based IP filtering is insufficient to filter out
all the attackers. To better filter out attackers, it is
necessary to design smart online algorithms to identify
different types of attackers.

We also carried out measurement studies of attacks
against BitTorrent seeds. Even with a reasonably high
attacker percentage (e.g., 40%), the download time pro-
longation for each torrent was not more than 60% for
Azureus, uTorrent, and BitTornado seeds. The band-
width attack therefore does not seem promising for stop-
ping torrents. We also discussed the attack on round-
robin seeds, where the main idea is to monopolize the
connection slots of the seed with minimal bandwidth.
However, since most popular BitTorrent clients today
use some combination of bandwidth first and round-
robin algorithms, we believe that with minimal band-
width investment at the seed, the effectiveness of this
attack cannot be high enough to largely disrupt a tor-
rent.

We also observed that attacks against leechers and

13

seeds have to be tailored to the the different client types.
This is because the clients employ a wide variety of seed-
ing algorithms; and some clients deviate significantly
from the mainline protocols.

The poisoning attack on the tracker should not be
very successful either, due to the TCP based messag-
ing between the tracker and peers. The gossip poisoning
attack can potentially be effective, but can be easily de-
fended against by removing gossiping. The DDoS band-
width flooding attack against a torrent discovery site
can potentially stop people from finding torrents, but
by allocating sufficient bandwidth resources at torrent
Web sites, such attacks can be successfully defended
against.

Given the resilience of its components against all the
major attacks, we believe that the BitTorrent ecosystem
is indeed very difficult to stop.

8. REFERENCES
[1] Azureus. http://azureus.sourceforge.net.
[2] BitComet. http://www.bitcomet.com.
[3] BitTorrent client. http://www.wikipedia.org/

wiki/BitTorrent_client.
[4] Bittorrent more popular than ever, releases triple

in a year. http://torrentfreak.com/
bittorrent-more-popular-than-ever-071009/.

[5] BitTorrent servers under attack.
http://news.zdnet.com.

[6] Leaked Mediadefender emails. http://www.
mediadefender-defenders.com/maillist.html.

[7] Marcovision. http://www.macrovision.com.
[8] Media Defenders.

http://www.mediadefender.com.
[9] P2P monitoring systems.

http://www.evidenzia.de/.
[10] PeerGuardian. http://phoenixlabs.org/pg2.
[11] PPLive. http://www.pplive.com.
[12] PPStream. http://www.ppstream.com.
[13] Safenet. http://www.safenet-inc.com.
[14] SopCast. http://www.sopcast.org.
[15] The top 35 torrent sites of 2007.

http://netforbeginners.about.com.
[16] uTorrent. http://www.utorrent.com.
[17] Ziptorrent blacklist.

http://torrentfreak.com/ziptorrent-pollutes-and-
slows-down-popular-torrents.

[18] Elias Athanasopoulos, Kostas G. Anagnostakis,
and Evangelos P. Markatos. Misusing
unstructured P2P systems to perform DoS
attacks: The network that never forgets. In Proc.
4th Int. Conference on Applied Cryptography and
Network Security, Singapore, June 2006.

[19] Anirban Banerjee, Michalis Faloutsos, and Laxmi
Bhuyan. Is someone tracking P2P users? In Proc.
IFIP Networking, Atlanta, GA, May 2007.

[20] Nicolas Christin, Andreas S. Weigend, and John
Chuang. Content availability, pollution and
poisoning in file sharing peer-to-peer networks. In
Proc. ACM EC, Vancouver, Canada, June 2005.

[21] Bram Cohen. Incentives build robustness in
bittorrent. In Proc. P2PEcon, Berkeley, CA, June
2003.

[22] Prithula Dhungel, Di Wu, Brad Schonhorst, and
Keith W. Ross. A Measurement Study of Attacks
on BitTorrent Leechers. In Proc. IPTPS, Tampa
Bay, FL, February 2008.

[23] Dan Dumitriu, Edward W. Knightly, Aleksandar
Kuzmanovic, Ion Stoica, and Willy Zwaenepoel.
Denial-of-service resilience in peer-to-peer file
sharing systems. In Proc. ACM SIGMETRICS,
Banff, Alberta, Canada, June 2005.

[24] Seung Jun and Mustaque Ahamad. Incentives in
Bittorrent induce free riding. In Proc. P2PEcon,
Philadelphia, PA, August 2005.

[25] Marlom A. Konrath, Marinho P. Barcellos, and
Rodrigo B. Mansilha. Attacking a swarm with a
band of liars: evaluating the impact of attacks on
bittorrent. In Proc. IEEE P2P, Galway, Ireland,
September 2007.

[26] Arnaud Legout, Nikitas Liogkas, Eddie Kohler,
and Lixia Zhang. Clustering and sharing
incentives in bittorrent systems. In Proc. ACM
SIGMETRICS, San Diego, CA, June 2007.

[27] Jian Liang, Rakesh Kumar, Yongjian Xi, and
Keith W. Ross. Pollution in P2P file sharing
systems. In Proc. IEEE INFOCOM, Miami, FL,
March 2005.

[28] Jian Liang, Naoum Naoumov, and Keith W.
Ross. The index poisoning attack in P2P
file-sharing systems. In Proc. IEEE INFOCOM,
Barcelona, Spain, April 2006.

[29] Naoum Naoumov and Keith W. Ross. Exploiting
P2P systems for DDoS attacks. In Proc.
InfoScale, Hong Kong, May 2006.

[30] Michael Piatek, Tomas Isdal, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani.
Do incentives build robustness in bittorrent? In
Proc. NDSI, Cambridge, MA, April 2007.

[31] Johan A. Pouwelse, Pawel Garbacki, Dick H.J.
Epema, and H.J. Sips. The BitTorrent P2P
file-sharing system: Measurements and analysis.
In Proc. IPTPS, Ithaca, NY, February 2005.

[32] Michael Sirivianos, Jong Han Park, Rex Chen,
and Xiaowei Yang. Free-riding in bittorrent
networks with the large view exploit. In Proc.
IPTPS, Bellevue, WA, February 2007.

[33] Xin Sun, Ruben Torres, and Sanjay Rao. DDoS
attacks by subverting membership management in
P2P systems. In Workshop on Secure Network
Protocols (NPSec), Beijing, China, October 2007.

14

