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MULTICHAIN MARKOV DECISION PROCESSES
WITH A SAMPLE PATH CONSTRAINT:
A DECOMPOSITION APPROACH*

KEITH W, ROS3" ano RAVI VARADARAIAN

W consider finite-state finig-aetion Marbw decson prscesses whieh necamwilute bath
pewald and uocost ot oearh dechion epoach, We stady the problem of frdinga pobivy that
muximizes the expecicd long-run average teward subject o the constraint that the livagesriin
peErane cosl be no grester than o given vilue with probability one. We extablish that if there
exisle o policy that meets the constrmnt, then there cxmts an o« aptimul stitionney pobicy,
Furthermare, nn algorithm & outlined 1o locate the e -optimal stitionury. paliey. The prond of
the resull hinges on o decomposition of the state spice into mkimal recorfent chsads and o
sel ol ransien] siales

L. Introduction.  We consider the Markov decision problem of locating o policy
that maximizes over all policies u the expected average rewsd

(1] di{u) = F2

limin{ 2 YorX., xl,.,ll‘
T

(LT

subject to the sumple path constrain

(2] ,.hu-'l‘ lim sup -5 E el X ALY & nJ = |,

= mp =

Here, (X, ] 15 the state process taking values in the finite state-space; (A} is the
action process twking villues in the finite action space; A is the initial state assumed w
b fixed and given; r(+, ) and e+, - ) are the rewards und costs, respectively, as
functions of the current state and action chosen: e is the constraing value, bokvw
which the long-run average cost must fall with probability 1. We refer 1o the
constraint (2) as the “sample path constraint”. '

Far general multichain Markov Decision Processes (MDPs) we establish thiat if
there exists a policy that meets the sample path constraint, then there exists un
e-tntimal stationary policy. Furthermore, an algorithm to locate the e-optimal policy
is autlined. The results presented here rely on our results in [12] where communical-
ing MIDPs with a sumple path constraint are considered.

The sample path constraint resembles a more commonly: studied constraint of
requiring the time average expected cost to be < e (see [3), (6] [7]. [8L 115 145, 111D,
which we refer to as the “expestation constraint.” Indeed, if the MDP satistics: the
unichain condition. then an optimal policy with the sample path constraint is optimal
with the expectation constraint and vice versa [ 121 But the two criterin are differem
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| 6 KECTTL W, ROSS & BAV] VARAIARATIAN

for miny nomiovial problems, as a policy which is optimal with the oxpectation
comstiraint may nol even satisfy the sample path constraing [12]. One frustraling
propery of the expectation constrimt is that there does not in general exist an
aptinl or e-optimal ststionary policy (7] [8] Theretore w s ditficult, tf not impossi-
Ble, 1o disvelop efficient algorithms o locate e-optimal policies the presence of an
expeClation constiaint,

The miin idew behind the proof of our resall is W decompose the state space it
“strongly communicating classes” and a set of transient states, This decomposition is
similir in spirlt 1o a classification given by Bather [2). For each of the strongly
communicating classes, an e-optimal stationary. policy s then found in the corre-
sponding “restricted MDPY,. Finally, the e-optimal stationary policy for the original
prohlem is vhtaiped by solving an unconstrained *intermediate”™ MDP, The interme-
diste MDP is shown 1o be equivalent 1o an “ageregated” MDP, where there i one
stite [or each strongly communicating class and one state for each transient stale,

The decompasition of the state space into strongly communicating elusses, along
with the properties of this decomposition and the intermediate MDP, can be applicd
tor other multichain MDP problems. The technique appears particularly appropriste
for MIDIPs with nonstandard eriteria, such as sample path constraints as studied here
o varrahility sensitive MDPs as studied in (3]

This paper s organized as follows, We give our notation for MDPs in §20 In 51 the
decomposition is introduced and s shown o have several interesting propertiss. An
algorithm 1o locate the strongly communicating classes is outlined and an example is
piven. In &4 the existence of an e-optimal stationary poliey for MDPs with a sample
path constraint is estublished. In 85, we briefly discuss the equivalence between the
intermediate MDI* and the aggregmed MDP.

2, Preliminnries.  Let o/ and o denote the finite state and action space,
respectively: The underlving sample space for the MDE s

(=g Kasiise i) va, &, o forall no= 12050

Throughout, the sample space (0 will be equippéed with the o-algebra generated by
the rundom variubles (X, A, A A, -0 In this paper we cansider oplimizing over
the set of all policies, which includes randomized as well as past-dependent policies
faee [5) [8D), Denote p, X € 4, @ € &, vy = .7, for the law of motion lor MDP,
e Tor all policies ooand all cpochs n
PAX o= X dlyisg Xy A i Xy =y = a) =g

Lo gcnerl i policy may be difficult 1 implement since it depends on the entire past
history o 1he progess. We are therelfore motivated w study smaller and more
appealing clusses of policies. A policy Tis said o be startonary [If the choite of yetion
depends only on the current state of the process; denote flx, a) for the probability
ol choesing action @ when in state r. A stationary policy 1 is said to be pure
or nonrandomized if {for each x £ .7 there is an g = 3" such that flx, a)= L A
pure palicy van be represented by a mapping g from the state space . to the action
space 57

Under any stationary policy [ the state process X)) s a Markov chain with
transition nuinx PO with componenis given by

P =3 p..flxia).
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A transitien matrix POP s said to be wnicham 16 it has at most one recurrent class plus
a (perhups empty) set of transient states.

3. Decomposition of MDPs,

Brmmmon 1. A set of states £°C . is said 1o be a strongly commpaticating clas
if (i) & is o recurrent class for some stationary policy: (i) #7 is not & proper subset of
some set €7 for which (1) holds true.

Let &7 be the (possibly empty) set of states that are transient under all stationary
policies. Let {€, ..., ;] be the collection of all strongly communicating classes,

Provosimion 1. The collection of sets (4., ., £, .7} forms a partition of the yase
spitee A

Prosar, 11 is clenr that the eollection covers . and that none of the stromply
communicating classes intersect %7 I remaing to show thiat if 4 and & are two
strongly communicating classes that are not disjoint, then « = £, Let [ (respectively
I} e oo stationary policy under which « (respectively 270 is o recurrent eliss,
Consider o policy T defined as follows:

im

jﬂt.u}. vE £ — 8 0 €,
fix.al), e i E
\H.“-"r“‘.} +f{x.a)] otherwise.

-
[

flan) =

The transition matrix associated with T is given by

J'f'.Jl'i. y &&=t
(3} PR = { P (T), & & — 2
H‘"u”.’ + P..,I‘f*]'] otherwise:

Let £1= 4"U & Since < and ¢ are not disjoint, 1t follows from (3} that all states
in ¢ are accessible from each nlth under f. Morcover, it follows from (3) and the
fact that < and £ are closed under fand £, respectively, that £ Is closed. Hence
is recurrent class under £ which implies that = < since both 4 and 47 wre
stromgly communicating classes, =

Bather |2] gives a classification of states that is in the same spirt as ours. (Bather
considers unconstrained opumzation over pure policies of finite-stte M D% with
compact action spaces) Although Bather's classification is very insightiul, it s
cumbersome to work with in terms of ¢stablishing our main existence result in the
subscquent section. Platzman [10] defines the notion of a “coanected class’™ for o
finite MDP. A connected class is alwayvs a stronzly communiceting elass but et vice
versa, (In fact. the connected classes are the strongly commumnicuting chsses ahtained
at level 1 in the following algorithm.)

We now outline an algorithm which determines the strongly communicuting clusses,
We refer to the original MDP as being inlevel 1. First, partition the state space inta
communicating scts, where x and v are in the same et of the partition i and only il
there exists o stationary policy I such that 2 is accessible from v oand v is aceessihie
from . {A state is always assumed accessible from itselll) This partition is cusily
found with # standard depth-first algorithm. One or more of these communicating
sels is guaranteed o be closed. (A communiciting set is closed if it is impossible to
leave i)} Each of these closed communicating sets is then labeled a strongly commu-
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nicating chass, 11 then remums to classify the states in the “open” communiciting
clisses. We copsider each open communicating class, sav 3, separately, Weé now
delete all actions o assochinled with states & € 22 for which p,,, = (0 where v is not
in %, Having reduced the acton spaces, we then temove from %0 any state 1 for
whicl the nssociuted action space is now empty and put that state in 57, We continue
o reduce 20 and the actions associated with 2 in this manner until we obtain a sot
v S ogueh that ) cach state in 20 has at least one action associated with it i) i
is nol pessible 1o leave 200 with any of the remaining actions, Refer o the MDP over
200 with the reduced action space as being in level 20 We then fepeat the entire
priocedure over &, e, we find the elosed and open communicating classes in %,
lubel the closed clusses s stromgly communicating classes, and then examine ench of
the open commmunicating classes in 2 separately. In generaly this depth-first algo-
tithm could desgend as many as Lo levels,

A more Tormal stitement of the algorithm along with a prool of its correctiess is
given in [14). Morcover, it s shown in [14] that the worst case complexity of the
algorithm is 0.~ 157,

Figure | depicls an example with six states, States | and 2 cach have one action,
whercas the remaining states each have two actions. A single arrow corresponds to
detion 1 and a double arrow corresponds 1o action 2. The numbers next (o the arrows
ire the probabilitics of the corresponding transitions, For example, when in state 3
und action 1 is chosen, the subsequent state is 2 with probability | /2 and is 4 with
prabability 172 and when in state 3 and action 2 is chosen, the subsequent state is 3
with probalality 10 The communicating sets in thus example are (1} and {2, 3, 4. 3.6},
There are lour strongly communicating classes: {11 {30, (4] and {5, 6. The set of
Lrimsient stales as given by the singleton [2), The algorthm would consider tour lovels
i this exaumple,

The concept of strongly communicating classes will also enable us o churicterize
Lhe probabilistic hehaviour of the MDP under gencral policies. Lemma | below states
that the ser &7 s “transient under all policies.” Lemma 2 states that it is impossible
(with probability 1) 1o be and not w be ina given strongly communicating class an
infinite number of tmes. Let o, abbréviate infinitely often and a.a. abbreviate almast
alwiavs, Let 100 ) denote the indicator function.

Lizmma Lo For all poficies v and all initiol statey x,
(4) PAX, & Fio)=0.

Proer  Fix an initial state v, define the expected wotal rewsrd

wiu) = E| T 1(X, 25|
=1

T2 12 ira2 1

Ficure |
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and consider the problem of maximizing #(u) over all policies u. This is a total feward
Markov decision problem te.g. see [13. p. 133]), which is maximiized by some pure
policy . But since &7 is transient under all stationary policies, we have for all u

vlu) = vig) = E PHX, = 5) <=,

i |

which in trn implies (4), o

Lesimaa 20 Let o« be a strongly communicating class, Then for all policies w and all
fitial grates v,
(5) PI{X, € €io)n|X, & Cin)) =0

Proor. Fix an initial state v, Suppose that for some policy v,

(6} PHIX, & €io)n (X, & ¢io0)) >0,

sinee the stite space is finite, (6) implies the existence of an 7= 2 and o ¢ & &
sueh tha

{?} "”\I{{ X“.‘EH_I] h '-j"E}I"“']: > 1.

Now consider the expected total reward Markoy decision problem of Mg over
all poticies u

elu) =k, E IF'EAIM -'1»”-

A=

where

Fly,a) =Hx=3)p,...

A straightforward calculation gives for all policies u,

(5] EN Y X, =3, X,.,=F)|=wu).

=

It Tolows from (7} and (8) thay ofv) = = This combined with the fact thal elu) is
muximized by some pure pulicy implics that

(9) w=v(g) = ¥ X, =7)Puslg)
m=1]

for same pure policy g. Equation (9) implies that T s recurrent under g and that s
accessible from  under g Hence, 7 and 7 belong to the same recurrent elass under
& But this gives a contradiction since < is a strongly communicating cluss such it
fefandyg € =

For cach / = 1..... !, depote for all x & 4 the set

r

Fo=(aedip,,, = Norally e £},

Thus beginning in a state x € <7, the st 7, contains the actions which CuaTinres
that the state process will remain in the strongly communicating class A Proposition
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2 8tutes that any “recurrent class associated with an arbitrary palicy u™ is contiined
within vne of the strongly communicating classes, It also gives g key property of the
wetion process {4 ).

Pucirositmos 20 Forall poticies w and all initigl statex &,

i
{10 TEX. e Caa) = |
e |
il
{11) PilA, 7, ua)=1

Proor. Equatnion (10) is an immediate consequence of Lemmus | and 2, Supposge
Chatt (11} is Lalse for some uand some 1. As in the proof of Lemma 2, this ermpdees that
there is aostite & belonging to some strongly communicating class 2 and an action
i & Lo sueh that

PALX,. A,) = (£.a)in) >0,

Continuing 1o parallel 1he prool of Lemma 2, the above implics the existence ol 4
mure policy g such that  is u recurrent stule under g and gl ¥ = 4, Since 4 = o
this in turn mmplies 1he existence ol & § & « that is accessible fram £ounder @ Bt
this Is o contradiction since @ is o strongly comemuniciting class. o

Devisinion 20 lor cach 1= 1, A we define u new MDP, called MOP-, us
Fialdiaws:

L. The state space 15«

2. For gach x € 2, the set of available actions is given by the state-dependent
aclion spaces

3. The laws of motion. reward function. and cost funcuon are the same as for the
sriginal MDP but restricted 1o the stite-dependent action spaces ¥, r e 4.

The lollowing proposition gives meaming to the previous definition, ls proof
fallaws dircetly from Detinition 1 and the definition of % v € £ Reeall that un
M s connmranicating i the stne Space consututes a single communicating set leg,
see [1]),

Prorosiiion 3 Foralli= 1. i/
LS iy nowenmipty for all x = <.

S s Pogy =1 forallu € 7 x e £
3 MDE g cennmeticating MOE.

4. Optimization with a sample path constraint.  We now address the con-
strained oplimization problem discussed in the Introduction. Let A be a fixed and
given initial state. We shall say that 4 policy u is feasible 1T (2) js satisfed. Deonote a#
for the supremum of élu) over the cliss of all Feasible policies. A policy u is said w
he aptimal if w is feasible and diu) = @* Forafixede > 0 a policy u s said o be
eoptinal il 11 is feasible and dlu) > &% — ¢

We shall show that if there exists a feasible policy, then for each & > [ there éxisrs
an e-ophimal stationary policy. Verifiahie sufficient conditions are also given for the
existence: of an optimal stationary policy. The proof of these existence rosults is
carricd out in three steps: first, for each 1 = Lo, 4 -find an e-eptimal stationary
policy for MDP-7 whenever g feasible policy for MDP+ exists; second, For each
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t=1.. .. 1 associate a constant reward over all states in A and then fimd an
optimal pure policy for the corresponding intermediate MDP: third, combine the
e-optimal policies for the restricied MDPs with the optinal policy for the intermedi-
ate MDP 10 give an e-optimal stationary policy.

4.1, The restricted MDPs. Througheut this subsection fix an i = (1,,.,, 1), Con-
sider the evolution of the state and action processes for MDP-, For gll g = 1,2
we have

X, 24 and A, €%,

™

A policy w and a fixed initial state v «, determine a probability measure Bl o

the sample space associated with MDP- The corresponding expected average reward
for MDPr is given by

' {u) = H,,‘_,[[iminf% I .~I,NJJ.

on
“ = |

A policy u s said 10 be feasible for MDP-if

i \
£ limsup o (X, A sal| =]
: ol A

e =] i

for all v & ¢,

4
For each MDP- we also need to introduce an associated Linear Program (LPY with
decision variables 2(x.a), ¢ & ForEq, Let §.=1if vr= voamnd 8, =1
otherwise,
Lix:
t,=max Y, Y r(x.a)z(x,a)
rEA, a0

5.

L L (&,-p,)zlxa) =0, ves,

1= aE

Y X ix.a)=1,

fE4 gE 5,

Y T elxa)zfsa) <a,

L as ¥

lr.a) =0, as ¥, reE i,

The relationship between MDP-i and LPi is expressed in the following,

Lesiaa 30 There exisis a feasible policy MDP- if and only if LP- i5 feasible, {f L
Is feasibie, then for cach ¢ > 0 there evists g feasible stavionary poticy £, such it

GHf) = @lf) =1, —¢ foralfv e .
Mureaver, the tranvition man PUE) i5 temichrain.,

Froor, From Proposition 3 we know that MDP-/ is 4 communicaring MEP, The
result thercfore follows from Theorem 2 of (121
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The lollowing lemma hinks the onginal constrained optimization problem with
MDP-r In words it savs: given that the state process settles down in the strongly
communicating class «, the average reward for a feasible policy cannot exceed 4
Since much of the proof s similar to the proofl of Proposition 2 of [12] only anoutline
s RIVEN,

Linsaac do Suppese woay feasibfe and F,;"t;‘t’,, e A guty =0, Ther (1) LP i
Jeasttle, and i)

. - .
P2 i inf = Y r(X,A,)stlX, e u.a.) = [,
N f”-l

Proor,  Fix a feasible policy w. The strong Law of Large Numbers for Martingale
Differences (e.p., see [9]Himphies that Plalmost surely

(12}

o ; -
lim s Y X, =)= T X, (=oAL = uip“”] =1} farull v ...

AR e

Let I be the sevof sumple paths (g, ay, vaas, 0 ) € 00 that satisfy
w, = .7, forall n = N, for some positive integer ¥,

lim 11; ¥ [H_x,” =3} = Mxpnau -n};;ln_\l =), and

ol il

"

) 1
lim sup s 3 ol x,,,4,) < a.

= |

DPue ta Proposition 2, (12) and the fact that u is feasible, we have
=,

It therelore suflices to show that LP<i is feasible and

N
(X, Efaa)nl'c {Iiminl’% R & e T - e
Ll = |

Let (xya), Yotz ) (X, € ¢ aa) 0 I and define
l ir
2 (x,0) = = Y Hxn=ra.=a)
e |

The proof is then completed by showing that any limit point {2'(x, a)} of {z, (x,a)),
= 1,2,... 15 a feasible solution for LP:r and that

Y. Y rlva)z(x.a)<t o

YEL, aEY
4.2, The intermediate MDP. 1et

G = {i: LP-i is feasible) .
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Ower the origingl sample space, define for cach policy v and M < 11 the Tollowing
cxpected time-average reward

BY(u) = E} I:minfl E Er“!{\ a1,

ar=]i=1l
where

s |t MEEG,
' M ifie G

In this subsection we consider the unconstrained problem of maximizing B (u) over
all peilicies u with M given and fixed. Intuitively, setting M == 0 would discourage the
state process from remaining in any of the strongly communicating classes for which
LP<i (and hence MDP-i) is infeasible. Let % be the supremum of gY(u) aver the
clags of afl policies. Clearly, 8 is nonincreasing ns M — — =, Denole
o= lim gYv.
M- —-=

Fram Proposition 2 and Lebesgue's Dominated Convergence Theorem we have (or

il policies u and M < 0,

/
(13} g*(u) = T aMPMX, € 4 aa) = !un I—.*"‘ E }:;”I{J{‘ e 1|

i=1 =1 =1

Thus, the éxpected time average reward #Y(u) is equivalent o the more commuonly
studied 1ime average expected reward. 1is well known that there exists o pure policy
that maximizes the time avernge expected reward for any unconstrained MDP with
fAnite state and action space [8]. Thus for euch M < 0 there exists o pure policy g
such that Mgy = g,

In words the following lemma states that &, the maximum averape: rewird [or the
constrained optimization problem, s bounded by 8. Subsequently we shall show thit
this bound is tight. It also states that 8 can be determined by maximizing S0 for
specific finite N, Finally, it states that under the pure policy that maximizes #%(u) the
stronely communicaling classes .7 € (G, are transient.

Lesma 3. Swppose there exists a feasible palicy, Ther () ¥ = 82 G0 there exists an
N o< O osuch thar B = BY and (iii)

Pr(X, e % aa)=0 foraullieG.

Prosor. (i) Let u be-a feasible policy. From Lemma 4 (i) we have PMX, € £
a.a.) = 0 for'f &€ G. This combinad with (13) gives

FMu) ="} t;:P}X, € & an);
isG

From Proposition 2 and Lemma 4 Gi) we have

1 n b
dlu)y= Y E2 hmmfl Y X ANX, € £ aal|PM X, & au)
I B prr=|
< '& LPMX, € £ aal).
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Thus ditul = ") for wll feasible policics u and all M < 0, whence (1) Since the
stute and action spaces are finite, there exists a sequence [M,) and an N < 0 such
tart lim Aty = o and g™ = g™ forall & Thus, by (13) we have

/
3 - JL|,'m L MPA(X, € & ai),
s

This combined with the Tact that B is finite establishes Gl amd Gidi). o
Lt

I = (i & G 4, contuins a recurrent class under g |

Without loss of generality, we may assume that cach <5, ¢ € H, is closed under g%
{Otherwise, mudify g so thar g¥ (o) & F, for all ve& 4, i € H. Clearly the
menlilicd policy has the desired property, and it s not difficult o show that il
continmes o masimiee ¥l

A3 Evstence results. et ¢ > 0, Construgl a stationary policy 1" as follows,

.o Let €7 be the set of i such that LP+ is feasible. For cach | e € let T, be the
stahonary policy for MG s given in Lemma 3,

20 Let g be as in Lemma 5. Let H be the set of ¢ = 6 such that &) is closod
under g*

A Define o stationary policy T'* as follows: when in state & & o, with i = H, apply
I oherwise applv g™

Timoren I There exisis a feasible policy if anel only of B is finive. 1B finive, then
tha wraerienary pidiey T% ax constructed above iy =il

Procr. From Lemmz 5 0) we know that if there cxists 3 feasible policy then 4 is
finite, Now suppose thut B 18 finite. Since g™ does not have a recurrent class in any
strongly communicating class <7, i © G — H. it Tollows from Lemma 5 Gitd that
{14) PulX, €€ aa)=0 fiwallie H,

Sinee 1 s identical 1o g™ outside of U, ,, < and since cach &, 1= H, is closed
under both F* and g, we have

{15} PR(X, € €ai) =PA(X, & € wa) foralli= R
1 i ¥ ¥

We now show that £* s feasible. Since for cuch i = #f. Bif;) is unichain, there is a
unigue stutionary distribution, ={x), r = <. for the state process of MDP-i. From
(1=(15) and the fact that ™ is identical to I over & fureach { = 4 we have
Pi-almost surely

(16) fim % LoelX,. A
g m= 1
= Y Ux, e £ an) T T =l2)f5,a)el,q).
el L8 4 e

But since 1, is feasible for MDP-i we also have

(17) Y L wm(x)Mivaelx.a)ca

FE & AE .,

Cambining (16} and (17) establishes the leasibility of F*,
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We now show that T* is e-optimal. Recall that &(f) is the long-run average
reward associated with £, for MDP-. Using the same reasoning above, we obtain

S(F*)= ¥ PAX, =€ aa)d(f)
eM

m

(18) = L PAMX,

=

foaaif —e).

where the last inequality follows from Lemma 3 Combining (135) and (18) gives

(149 #) > L PMX, €4 an) —e=pY —¢.
pa i
The proot is then completed by combining (19) with Lemma 5 (i) and (i), o
We conclude this section with a condition for the existence of an optimal stationary
policy. An MDP is said 1o be wpichain if every stationary policy T gives rise (o o
dnichain transition motris PO

Trnaeiiv 2, Swuppese that theee exises a feasible police gand et M iy piediin
foratt i & H. Then there exists an aptimal stationaey policy,

Piecsea,  In o this cise Tor cach 4 & H there exists an [, for MDP-f that satisfics
r,':l.{ )=t The prool then mimics the prool of Theorem | o

5. Compuotational considerations,  The arguments up to Theorem | also Teawd 1o
a reeipe for the construction of an e-optimal policy.

1, Determine the strongly communicating classes o, f =1, ..., [

2. Determine 7 the set of ¢ such that LP+ is feasible. Determine ), the muximum
lang-run average reward far MDP-, for 1 € G,

3, For cach i € 7 determine [, the stationary c-optimal policy, for MDF-i,

4, Determing a penalty factor N satishing g% = g.

5. Determine an optimal policy g™ which maximizes 8%(u),

fi. Combine g* with [, i € H (as discussed at the beginning of §3) 1o ohtain an
e-opiimal stationary policy ©°.

Step | can be carried out in £~ I’ ) worst case time with the aleorithm
outlined in 43, Step 2 involves solving [ LPs over reduced state and action spaces,
Step 3 can be carried out by solving |G| parametric LPs; see [12],

Step 4 can be solved by choosing some M == (), solving the corresponding interme-
diate problem, and then checking whether the recurrent classes associated with g
are instrongly communicating classes in G If not. then muluply M by 2 and repent
the procedure until # pure policy g with the desred property is found.

For the remainder of this section we discuss how Step 5 can be sobved muore
efficiently. In order to simplify the discussion we suppose that the following condition
lelds true,

Comelition 1. LP-i is feasible foralli=1..... I

Note that Condition | does not necessarily imply that all policies are feasible since
there may exist hoth feasible and infeasible policies for any of the restricted MLPS,
Also note that Condition 1 is trivially satished for the unconstrained problem.

Under Condition 1, Step 5 is equivalent to finding a pure policy thut muaximizes

ar )
Blg) = Tim %E.* L LnlX, = f’.}]'

=1 =1
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twer the cluss of pure policies. This is 2 standard unconstrained tunte-averige MDP
mrohlem that can be solved by cither policy IMprovement, SUCCCSSIve dpproximations
ur lincar programming. However, these classical techmigues do not take into account
the special structure of the problem. Since the reward is constant over each of the
stronely communicating clusses, a more computationally efficient approach would be
o aggregate all the sttes within such o class @nd then solve o correspontding
“peprepated MIDPT.

Dreranrmion 3.0 The ageregated MDP s defined as follows.

{i) The state spitce is .7 = (1,2,.... f = 1), where J = |5,

(i1) The state-dependent action spaces &7, 1 = .7, are

Lo e flolu (e dae %) I1gicd,
I -7 4 I+ 1gig!+/.

(il For s = 1000 1 the law of motion is given by P = 1 and

{l:,, cPuyr Voixsl (x,0) =5,

Mg =

I T I+ 1 <fgli+tilx,a)e o,

(W) For d= b+ 1, 1+ 1, the law of motion is given by

[Eicema. lejeiac i,
ﬁr:n =t —
||pw, P+ 1 <y cl+J.ae ol

by For 1= 1,..., [, the reward in state 7 is 0y the rewards inostates fow= f 4
Lo &+ 2 are arbitrary,

Thus, in the aggregated MDP, there is one state corresponding to each strongly
communicating cliss plus one stite corresponding to each transient state n % For
cuch stute ¢ = 1,..., 4, action # is available, which keeps the state process in the
same state with probability 1. The actions of the form (x. &) are also avitillable for the
aggregated MDP, which, in the intermediate MDP, corrgspond to o movement
state v ound then a selection of action @

Let € be a pure policy that maximizes the long-run rewurd for the aggreguted
MDP, (Again, one of many classical algorithms can he emploved to obtain g.) Drenote

H={ie.7:g(i) = 0).

Note that all states in & are absorbing under g

Now consider a pure policy g for the original probiem with state space o and
action space & delined as follows. (i) Eor x = & with 2(z) = 0, let glx) be equal 1o
in arbitrary element in 7. (i) For x £ ¢ with #(i) = (w. @) let g be such that it
drives the state process from x to w while remaining in 47 once in state w, it chooses
action a € .07, (i) For v 8 7, gly) = Fixlh

By “driving™ the process from state ¥ to w we mean that g chooses actions that
keep the stute process in 47 and which bring the state process to w in finite expected
time. (This is possible since MDP is a communicating MDP.) We remark that these
actions can be determined dircetly from the transition graph of the law of motion in
UL time by starting a1 w and moving outwards,
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It is a straightforward excreise 1o show

Throren 3. The pure policy g constructed Jrom an aptimat puire policy for the
dgrrepated AP decording to the abore rocedire i oprinal Sor the interrmediane M
Consequently, the stationary policy [+ which applies f, oter €.0 e H, anil appdicy g
athervise (v eoptimal for the original constriined optimizarion frobifem.

We conclude by making the observation that the theory developed in this PapEr e
alsa b employed 1o obtain an optimal pure policy for the classical UneonstEained
problem of maximizing the long-run average rewnrd. In this case, an optimal pure
pelicy g, can be found for each MDP-;. which, when combined with the optimal pure
policy g of the ageregated MDP, gives an optimal pure policy 2" B the original
tunconstraimed) prrchlem.
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