
P2P E-Mail

Jussi Kangasharju Keith W. Ross David A. Turner

December 7, 2002

Abstract

1 Introduction

E-mail is a mission-critical communication function for virtually all institutions, including corporations,

universities, militaries, and families. Given the paramount importance of e-mail in modern society, it is

disturbing how vulnerable the e-mail user can be to attacks and failures. Indeed, modern e-mail employs

a server-centric design, in the user is critically dependent on its mail server, which receives, stores, and

provides access to the user’s inbox. If this mail server is down – due to, for example, inadvertant faults,

disasters, physical attacks or cyber attacks – the user can neither receive nor access its messages.

Many mail service providers - including Hotmail, YahooMail, and Critical Path - have patched the

dependability problem by creating mail-server clusters. The cluster is not only responsible for receiving,

storing and delivering many users’ messages, but it also replicates messages across the different servers

in the cluster. Thus, if one of the mail servers becomes unavailable, the cluster can continue to receive,

store, and deliver messages. However, this patch only provides a marginal improvement in dependability,

as it does not address scenarios in which the entire cluster is taken out, such as when the cluster is behind

an access link that is severed for flooded with denial-of-service traffic, or when the building housing the

cluster is physically bombed.

1



In addition to providing insufficient dependability, today’s server-centric approach suffers from a

number other problems [?] [?], including storage stress due to attachments with multiple recipients; and

server processing stress, requiring mail server providers to deploy hundreds of machines in their clusters.

In this paper we describe an architecture, and a corresponding prototype that we have built, for

serverless P2P e-mail. Our P2P e-mail application runs directly over a distributed hash table (DHT)

substrate, such as CAN [1], Chord [2], Pastry [3], or Tapestry [4]. Although our architecture requires

a DHT substrate, it can use any DHT substrate that provides a key-to-node mapping. Furthermore,

our architecture does not use an intermediate persistent file-system layer such as CFS [5], PAST [6] or

OceanStore [7]. The architecture is resilient to faults, disasters, and attacks, can diminish server storage

and processing stress, and provides better security and privacy than ordinary e-mail.

This paper is organized as follows. Section?? presents an overview of the problem we are tackling.

In Section?? we present an overview of our architecture and how users can send and read email with it.

In Section?? we describe our prototype implementation of P2P email. In Section?? we present some

extensions to our basic architecture. Section?? discusses the future of P2P email and applications and

Section 5 concludes the paper.

2 Architectural Preliminaries

We have designed a simple store and forward e-mail delivery system. In our design, we leave the preser-

vation and management of retrieved e-mail messages to the user agent (UA), whether this be done in

local storage or in a distributed file system. We have chosen this design to increase the ease of adoption

by individual e-mail users and by e-mail service providers.

2.1 Basic Components

Our system requires the external services of a DHT substrate. A DHT substrate consists of a large number

of computers (hundreds to billions), callednodesor peers. Each node has a nodeID in theDHT space,

2



Table 1: Objects and their identifiers
Object Identifier
Inbox e-mail address
e-mail address certificatee-mail address and ”-certificate”
Message body RFC 822 Message ID

which is the set of all binary strings of some fixed length along with a metric. We assume that the DHT

substrate provides applications the followinglookup service: The application supplies an arbitrary key

(an element in the DHT space) and a variablek, and the lookup service returns to the application thek

active nodes in the DHT that are the closest to the key.

The system is comprised of nodes and UAs. The nodes are the computers in a DHT substrate. The

role of the nodes is to provide persistence for messages that are in transit from sender to recipient. The

UAs are the mail reader programs that are run by the users. The UAs access the e-mail system through the

system nodes. A UA may or may not be running on a system node (that is a node in the DHT substrate);

in the case when it is not, the user agent must have the IP address of at least one of the system nodes to

access system functionality.

Each user, such as Alice, has an e-mail address, which Alice can publish and which other users can

send e-mail to. Our system also requires the external services of a certificate authority, which creates

e-mail address certificatesthat bind e-mail addresses to public keys.

Alice has an incominginbox, which is associated with her e-mail address. As we shall discuss

subsequently, Alice’s inbox only stores notifications of unread messages; the e-mail message bodies

themselves are stored separately under their own unique identifiers.

Thus, our P2P e-mail system uses the DHT substrate to store three types of objects: e-mail address

certificates, e-mail message bodies, and inboxes. Table?? lists these objects along with their respective

identifiers. A fixed hash function is used by all UAs and nodes to map an object’s identifier to a key,

which is an element in the DHT space.

3



2.2 Service Primitives

Our P2P e-mail system has five service primitives that can be invoked on individual nodes, which are:

store, fetch, delete, append-inbox and flush-inbox. User agents call these service primitives to perform

the higher-level system functions of sending an e-mail, retrieving an e-mail, and deleting an e-mail. UAs

invoke these services on individual nodes in the DHT substrate; thus, to invoke the service on a particular

node, the UA must know the IP address of the node.

In order to avoid complex synchronization procedures, we require no coordination between the stor-

age nodes - the UAs are responsible for replicating data across the DHT nodes. We now describe the five

service primitives.

Store service primitive

The store function is used to store e-mail message bodies and e-mail address certificates. The store

function takes as arguments an object, the object’s identifier, and a set of e-mail address certificates for

the users who have permission to delete the object. In the case of when the object is an e-mail message

body, the object identifier is the RFC 822 message ID, and the certificate set contains the certificates of

each recipient. In the case of when the object is an e-mail address certificate, the object identifier is an

e-mail address appended with ”-certificate,” and the certificate list will contain the certificate itself to

enable the owner of a certificate to remove it from storage.

As we will describe more fully in a subsequent section, a UA uses the store primitive to store an

e-mail message body in thek nodes responsible for the message body. When a UA creates a message,

it hashes the message ID to obtain a key. The UA then uses the DHT lookup service to obtain the IP

addresses ofk nodes that are closest to the key. The UA then sends a copy of the e-mail message body to

each of thek nodes, asking each one to use its store service primitive, and providing each one with the

message body, the message ID, and the set e-mail address certificates.

Delete service primitive

The delete function is used by a requester to reclaim storage space in an individual node by removing

4



unneeded objects from its storage. The delete function takes an object identifier and a requester’s e-

mail address as its arguments. When the receiving node gets a request to delete an object, it locates

the requester’s certificate in the object’s certificate list, and uses it to authenticate the requester. After

authentication, the receiving node removes the requester’s certificate from the object’s certificate set.

If the resulting certificate set is empty, the object is discarded. If the certificate set is not empty, the

receiving node maintains the object. This procedure enables e-mails with multiple recipients to consume

the same amount of storage resources as e-mails with a single recipient.

It should be noted that the UA’s list ofk nodes closest to the key for a message body may include

some nodes that do not contain the message body. This will be the case when new nodes join the network

with node IDs that are close to the key. The UA may attempt to reach older nodes by widening its search

to include more thank nodes. Otherwise, garbage collection procedures performed by individual nodes

will eventually remove the certificate from storage.

Fetch service primitive

The fetch function is used to retrieve stored objects. The fetch operation takes the object identifier.

The operation returns the object, be it an encrypted message body, or an email address certificate.

Append-Inbox service primitive

The append-inbox function is used by a sender to append email message headers to a recipient in-

box, which is a container of message notifications for the recipient. Because multiple nodes are used

to maintain instances of this inbox, the inboxes will not necessarily be consistent, because of unsyn-

chronized message delivery from multiple senders to a single recipient, along with the possibility of one

or more inbox nodes arriving or departing the DHT substrate. Thus, a user’s inboxes are not required

to be consistent in the same manner as the persistent objects created through the store operation. The

append function takes as arguments an e-mail address and the encrypted email message headers. The

e-mail address identifies the recipient of the email, and the email message headers are encrypted with the

recipient’s public key.

5



Read-Inbox service primitive

The user agent calls the read-inbox function on a node when it wants to retrieve message notifications

placed into its user’s inbox. The function takes an e-mail address, and returns (and deletes) the list of

message notifications stored on the node. The node will permit this operation only to user agents that

can authenticate themselves as the owner of the email address.

2.3 Garbage collection

A node may perform garbage collection in the normal course of events, or in response to a storage request

for an object of size that exceeds currently available resources. The node maintains a list of its stored

objects sorted by key. Starting from either end of the list, the node checks to see if it is still one of the k

closest nodes to the object. If it isn’t, then this object can be removed from its store. This procedure is

continued until there is enough available storage for the new object. If the procedure terminates without

reclaiming sufficient additional storage, it reports this failure to the requesting UA.

2.4 Persistence of data

We assume the following conditions: (1)k is sufficiently large, (2) the growth rate in terms of number

of nodes in the DHT substrate is sufficiently slow, (3) inboxes are read with high enough frequency, and

(4) message bodies are fetched sufficiently soon. These conditions ensure that messages are not lost due

to garbage collection before they are delivered. However, we do not assume this is the case for email

address certificates. For this reason, we specify a mechanism whereby persistence of e-mail address

certificates are ensured. Whenever a user agent requests a certificate from a node that is one of thek

closest nodes to the certificate, but that node returns a failure response, the user agent performs a store

operation on that node for that certificate (which it fetches from another node). Additionally, the user

agent of the certificate’s owner can periodically check to see that thek closest peers each has a copy of

her certificate. If not, the user agent invokes a store operation on that node to place the certificate into its

storage.

6



3 P2P E-mail Mechanics

The e-mail system is built on top of an overlay network comprised of semi-reliable nodes. For this

reason, data is replicated across a sufficient number of nodes to guarantee persistence. The user agents

handle replication of data through the service primitives that are exposed by the nodes. In the following

sections, we explain how reliability and privacy is accomplished.

3.1 E-mail message creation

To understand how the system delivers email, we describe the sequence of events that occur when Alice

sends Bob an email message. We refer to Alice’s user agent as A.

1. A appends Bob’s email address with ”-certificate,” and maps this to a key. A uses the lookup server

to obtain the list ofk nodes closest to the key, and invokes the fetch operation on one of these nodes

for Bob’s certificate. A authenticates the certificate, and extracts Bob’s public key.

2. A generates a session key, and uses it to encrypt the e-mail message body.

3. A generates an RFC 822 message ID that will be used to identify the message body.

4. A maps the message ID to a key. A uses the lookup service to obtain thek nodes closest to the

key, and invokes the store operation on each of them, using the message ID as identifier, and the

encrypted message body as object.

5. A constructs the e-mail message headers (which includes the session key used to encrypt the mes-

sage body and the message ID to locate the body), and encrypts them with Bob’s public key. A

maps Bob’s e-mail address to a key. A obtains from the lookup service thek nodes closest to the

key, and invokes the append-inbox function on each of them with Bob’s e-mail address and the

encrypted message headers.

6. If A fails to complete an append operation with any of thek nodes, because of node failure or

7



network failure, it requests a fresh set ofk nodes, and tries to complete the operation with the new

nodes it receives. The same procedure is used if A fails to complete an initial attempt at a store

operation for the message body.

3.2 Reading and flushing the inbox

When Bob wants to read his new messages, he instructs his user agent B to retrieve them. B obtains the

k nodes closest to Bob’s e-mail address, which are the nodes to which senders are appending message

notifications. Because there is a chance that the inboxes stored across these nodes are inconsistent, B

invokes the read-inbox operation on allk nodes, and forms thesupersetof message notifications returned

from all k nodes. Each node will delete the message notifications once it has sent them to the user agent,

and so the user agent becomes wholly responsible for maintaining the persistence of these e-mail message

notifications. B decrypts the message headers using Bob’s private key.

3.3 Retrieving a message

When Bob wants to read a particular e-mail, the user agent obtains thek nodes closest to the key of

the message ID. The user agent invokes the fetch operation on one of the nodes, and verifies that the

message body is valid by comparing a digest of the retrieved object with a digest that the sender placed

in the message headers. If the message body is not on the node, or if the message digest is not valid, the

user agent invokes the fetch operation on one of the other nodes, and repeats until it obtains a satisfactory

result.

Once the message body object has been obtained, the user agent decrypts the object with the session

key that the sender placed in the message headers. The user agent invokes the delete operation on all

k peers to remove its certificate from the list of certificates attached to the message body. If Bob’s

certificate is the last on the list, the node will remove the object from storage.

Because the message headers have left peer storage, there is little motivation for user agents to leave

message bodies in peer storage, other than to avoid the consumption of local storage. For this reason,

8



user agents are expected to perform message deletion immediately following message retrieval.

4 Anonymous Senders

When anonymity is important to the sender, there is a procedure to accomplish this. The procedure is

based on the ability to establish an anonymous communication channel with a random node. We start by

explaining how this works.

4.1 Anonymous communication channels

The following procedure is used for a node A to establish an anonymous communication channel with a

random node Z. A generates a random key (keyZ), and desires to establish an anonymous communication

channel with the node that is closest to keyZ. A cannot route a message in the P2P network to find Z,

because Z may get the message and therefore know A. To find Z, A does the following: it generates

another random key (keyX), and it finds the node X closest to keyX. A asks X to find the node closest to

keyZ. X finds Z, and returns Z’s certificate to A.

It is possible that X is hostile, in which case, Z will be bogus. To guard against this, A generates

another random key (keyY) and finds the closest node to it (call it Y). It asks Y to locate the node closest

to keyZ. If the certificate that Y returns matches what it got from X, then A is assured that Z is valid (that

is, not under the control of X).

Assuming A determines that it has a valid certificate for Z, A can now encrypt its messages to Z by

encrypting them with Z’s public key. However, Z can’t use A’s public key, otherwise A loses anonymity.

Therefore, A generates a session key to give to Z. A encrypts the session key with Z’s public key, and asks

the go-between node X to deliver this to Z. Now, whenever Z wants to say something to A, it encrypts

the message with the session key, so that the go-between node can’t read it.

9



4.2 Anonymous Mail delivery

Suppose Alice sends email to Bob, and that Alice’s user agent is on peer A. A must do two things: it

must store the message body on the k nodes closest to the key of the message ID, and it must append

the encrypted message headers to Bob’s inbox on the k nodes closest to the key of Bob’s email address.

The following two steps show how these functions can be accomplished while keeping A anonymous to

everyone except Bob.

Step 1: storing the message body

A establishes an anonymous communication channel with Z, and asks Z to fetch the certificates of

the k nodes closest to the key of the message ID. A establishes an anonymous communication channel

with another random node W, and requests the same information. A then compares the node list and

certificates returned by Z and W; if they match, A is assured that it has valid certificates.

A encrypts the email message body with Bob’s public key, and asks Z to store it on the k peers

closest to the key of the message ID. Each of these peers signs a digest of the encrypted message, which

Z returns to A as proof that the requested storage operation succeeded.

Step 2: appending the message headers to the inbox

The procedure is identical to step 1, except that the requested operation is to append rather than store.

The peers storing the inbox can count the number of messages sent to Bob, but they do not know the

senders. The random peers involved as go-betweens know only that Alice sent at least one message. The

random peers involved as anonymizers know that Bob received at least one message.

The protection scheme will fail if the random keys keyX and keyZ resolve to two cooperating hostile

peers. In this case, the hostile peers will know that Alice sent at least one message to Bob.

5 Conclusion

In this paper we have presented an architecture for implementing an email service on a DHT-based P2P

network. Our architecture eliminates the single-point of failure of modern mail servers, reduces stress

10



on the mail servers, and it handles mailing lists in a scalable manner. This email architecture is meant

as a first step towards understanding how complex applications can be built on top of unreliable P2P

networks. We have also presented a prototype implementation of our email architecture.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-addressable

network,” inSIGCOMM, San Diego, CA, Aug. 2001.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-to-

peer lookup service for internet applications,” inSIGCOMM, San Diego, CA, Aug. 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for large-

scale peer-to-peer systems,” inIFIP/ACM International Conference on Distributed Systems Plat-

forms (Middleware), Heidelberg, Germany, Nov. 2001.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-tolerant

wide-area location and routing,” Tech. Rep. UCB//CSD-01-1141, UCB, Apr. 2000.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative storage with

CFS,” inACM SOSP, Banff, Canada, Oct. 2001.

[6] A. Rowstron and P. Druschel, “Storage management and caching in PAST, a large-scale, per sistent

peer-to-peer storage utility,” inACM SOSP, Banff, Canada, Oct. 2001.

[7] J. Kubiatowicz et al. , “OceanStore: An architecture for global-scale persistent storage,” inASPLOS,

Boston, MA, Nov. 2000.

[8] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,RFC

2616: Hypertext Transfer Protocol – HTTP/1.1, June 1999.

11



[9] E. Sit and R. Morris, “Security considerations for peer-to-peer distributed hash tables,” inProc. 1st

International Workshop on Peer-to-Peer Systems, Cambridge, MA, 2002.

[10] P. V. Mockapetris,RFC 1035: Domain names — implementation and specification, Nov. 1987.

[11] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using a peer-to-peer lookup service,” in

Proc. 1st International Workshop on Peer-to-Peer Systems, Cambridge, MA, 2002.

[12] J. Klensin,RFC 2821: Simple Mail Transfer Protocol, Apr. 2001.

12


