
1

A Measurement Study of a
Large-Scale P2P IPTV System

Xiaojun Hei†, Chao Liang‡, Jian Liang†, Yong Liu‡ and Keith W. Ross†∗
†Department of Computer and Information Science
‡Department of Electrical and Computer Engineering
Polytechnic University, Brooklyn, NY, USA 11201

heixj@poly.edu, cliang@photon.poly.edu, jliang@cis.poly.edu, yongliu@poly.edu and ross@poly.edu

Abstract—An emerging Internet application, IPTV, has the
potential to flood Internet access and backbone ISPs with massive
amounts of new traffic. Although many architectures are possible
for IPTV video distribution, several mesh-pull P2P architectures
have been successfully deployed on the Internet. In order to gain
insights into mesh-pull P2P IPTV systems and the traffic loads
they place on ISPs, we have undertaken an in-depth measurement
study of one of the most popular IPTV systems, namely, PPLive.
We have developed a dedicated PPLive crawler, which enables
us to study the global characteristics of the mesh-pull PPLive
system. We have also collected extensive packet traces for various
different measurement scenarios, including both campus access
network and residential access networks. The measurement
results obtained through these platforms bring important insights
into P2P IPTV systems. Specifically, our results show that 1.)
P2P IPTV users have the similar viewing behaviors as regular
TV users; 2) During its session, a peer exchanges video data
dynamically with a large number of peers; 3) A small set of
super peers act as video proxy and contribute significantly to
video data uploading; 4) Users in the measured P2P IPTV system
still suffer from long start-up delays and playback lags, ranging
from several seconds to a couple of minutes. Insights obtained in
this study will be valuable for the development and deployment
of future P2P IPTV systems.

Index Terms—Measurement, Peer-to-peer streaming, IPTV

EDICS category: Multimedia Streaming (5-STRM)

I. INTRODUCTION

With the widespread adoption of broadband residential
access, IPTV may be the next disruptive IP communication
technology. With potentially hundreds of millions of users
watching streams of 500 kbps or more, IPTV would not only
revolutionize the entertainment and media industries, but could
also overwhelm the Internet backbone and access networks
with traffic. Given this possible tidal wave of new Internet
traffic, it is important for the Internet research community to
acquire an in-depth understanding of the delivery of IPTV,
particularly for the delivery architectures that hold the greatest
promise for broad deployment in the near future.

There are several classes of delivery architectures for IPTV,
including native IP multicast [1], application-level infrastruc-
ture overlays such as those provided by CDN companies [2],
peer-to-peer multicast trees such as in end-system multicast
[3], and mesh-pull P2P streaming such as CoolStreaming [4]
and PPLive [5]. Each of these architectures classes imposes
different traffic patterns and design challenges on Internet

backbone and access networks. Requiring minimal infrastruc-
ture, P2P architectures offer the possibility of rapid deploy-
ment at low cost. An important characteristic of mesh-pull
P2P systems is the lack of an (application-level) multicast tree
- a characteristic particularly desirable for the highly dynamic,
high-churn P2P environment [4].

In terms of the number of simultaneous users, the most
successful IPTV deployments to date have employed mesh-
pull P2P streaming architectures. Bearing strong similarities
to BitTorrent [6], mesh-pull streaming deviates significantly
from BitTorrent in various aspects:

1) BitTorrent in itself is not a feasible video delivery archi-
tecture, since it does not account for the real-time needs
of IPTV. In mesh-pull streaming, each video chunk has
corresponding playback deadline. Hence, video chunk
scheduling is an indispensable component for assisting
a timely video delivery.

2) Due to the stringent need of video chunk availability
before the deadline, fair resource sharing has not been
carefully addressed in the current mesh-pull systems,
in that, there have been no reciprocity mechanisms
deployed in the current mesh-pull systems to encourage
sharing between peers.

3) BitTorrent is targeted at the group communication with
medium size (< 1000); hence, peers retrieve peer neigh-
bor information directly from the tracker server. How-
ever, a large-scale live streaming broadcast can easily
attract thousands of users. Hence, gossip peer search
algorithms have been equipped in various mesh-pull
systems to support large-scale group communication.
However, the deployment of gossip algorithms incur
various implications, i.e., delay may occur in searching
peers; tracker servers may only handle part of the peers
in the system and hence lose the global view and the
control of the network, and so on.

Several mesh-pull P2P streaming systems have been suc-
cessfully deployed to date, accommodating tens of thousands
of simultaneous users. Almost all of the these deployments
have originated from China (including Hong Kong). The
pioneer in the field, CoolStreaming, reported that more than
4, 000 simultaneous users in 2003. More recently, a number
of second-generation mesh-pull P2P systems have reported

2

phenomenal success on their Web sites, advertising tens of
thousands of simultaneous users who watch channels at rates
between 300 kbps to 1 Mbps. These systems include PPLive
[5], PPStream [7], UUSee [8], SopCast [9], TVAnts [10],
VVSky [11] and many more.

Given the success to date of many of these IPTV systems,
as well as their potential to swamp the Internet with massive
amounts of new traffic in the near future, we have been
motivated to carry out an extensive measurement study on one
of the mesh-pull P2P streaming systems, namely, PPLive. We
chose PPLive as it is currently one of the most popular – if
not the most popular – IPTV deployment to date. In particular,
as part of a preliminary study we performed on PPLive, we
measured the number of simultaneous users watching a PPLive
broadcast of the annual Spring Festival Gala on Chinese
New Year on January 28, 2006. We observed that PPLive
broadcasted this event to over 200,000 users at bit rate in the
400-800 kbps range, corresponding to an aggregate bit rate in
the vicinity of 100 gigabits/sec!

In an earlier workshop paper, we reported preliminary mea-
surement results for PPLive [12]. The current paper goes sig-
nificantly further, providing a comprehensive study of PPLive,
including insights into the global properties of the system.
Achieving these deeper insights has been challenging because
the PPLive protocol is proprietary. In particular, in order to
build the measurement tools that were used to collect much
of the data in this paper, we had to analyze a large portion of
the PPLive protocol.

In this paper, we seek to answer the following questions
about a large-scale P2P IPTV deployment:
• What are the user characteristics? For both popular

and less-popular PPLive channels, how does the number
of users watching a channel vary with time? As with
traditional television, are there diurnal variations in user
demand? What are the dynamics of user churn? What is
the geographic distribution of the users, and how does
this distribution fluctuate over time.

• How much overhead and redundant traffic is there? What
fraction of bytes a peer sends (or receives) is control data
and what fraction is actual video data? What fraction of
the video traffic that a peer receives is redundant traffic?

• What are the characteristics of a peer’s partnerships with
other peers? How many partners does a peer have? What
are the durations of the partnerships? At what rates does
a peer download from and upload to its partners? How
are the partnerships different for a campus peer and a
residential peer? How do the partnerships compare to
those in BitTorrent?

• What are the fundamental requirements for a successful
mesh-pull P2P IPTV system? How does a P2P IPTV
system maintain high enough downloading rates on all
peers with heterogeneous uploading capacities? What is
the video buffering requirement for smooth playback on
individual peers in the face of rate fluctuations on peering
connections and peer churns?

We attempt to answer these questions by using a custom-
designed PPLive crawler and using packet sniffers deployed
at both high-speed campus access and broadband residential

access points. Quantitative results obtained in our study bring
light to important performance and design issues of live
streaming over the public Internet.

Using our previous work in [12] and [13] as a base, we
present a comprehensive active and passive measurement study
of PPLive. Our contributions are as follows:
• For active crawling, we refine our peer tracking method-

ology, originally proposed in [13], to accurately trace the
dynamics of peers behind NAT/firewalls.

• Our crawling results include both channel-level peer mea-
surement as well as all-channel peer statistics at different
time-scales, i.e., day-level and week-level.

• Our crawling apparatus also includes a buffer map crawl-
ing component. Buffer maps reflect the video content
cached by peers and the playback process implicitly.
These measurement results are reported in this paper to
demonstrate the significant playback time lag between
PPLive peers. This finding brings forth the necessity
to carefully design video chunk scheduling schemes to
minimize this playback lag for live streaming.

• We present passive sniffing results with numerous im-
provements (i.e., refine the video traffic filtering rules
so that we are able to determine video traffic exchange
more accurately). Our measurement results show the
traffic pattern and peer dynamics of PPLive users. These
findings provide insights for ISPs to conduct appropriate
traffic engineering, for example, track P2P streaming
traffic, design new streaming caching schemes, and so
on.

This paper is organized as follows. In Section II, we provide
an overview of different aspects of mesh-pull streaming sys-
tems including architecture, signal and management protocols
based on our measurement studies. Our measurement tools
include an active crawler and a passive sniffer. In Section
III, using our PPLive crawler, we present the global-scale
measurement results for the PPLive network, including number
of users, arrival and departure patterns, and peer geographic
distributions. We also provide a qualitative characterization
of the delay performance of the PPLive streaming service in
Section IV. In Section V, by sniffing monitored peers, we
present the traffic patterns and peering strategies as viewed
by residential and campus PPLive clients. We provide an
overview of the related P2P measurement work in Section
VI. Finally, based on our measurement results, we outline
some design guidelines for the successful deployment of IPTV
application over the Internet in Section VII.

II. OVERVIEW OF MESH-PULL P2P STREAMING SYSTEMS

Current mesh-pull streaming systems provide little infor-
mation about their proprietary technologies. Through our
measurement studies and protocol analysis on two well-known
mesh-pull streaming systems, PPLive and PPStream, we have
gained significant insights into the protocols and streaming
mechanisms of mesh-pull streaming systems. In order to gain
a better understanding of our measurement tools and results,
in this section we provide an overview of a generic mesh-
pull system. Figure 1 depicts a generic mesh-pull P2P live

3

streaming architecture. There are three major components in
the mesh-pull streaming architecture:

1) The streaming peer node includes a streaming engine
and the media player, co-located in the same ma-
chine. All the peers cooperatively deliver video chunks
among themselves from the channel streaming server via
the streaming engine. The streaming engine download
media chunks from other peer nodes or the channel
streaming server; these chunks are reassembled into the
original media content and stream to the media player
for playback.

2) The channel stream server converts the media content
into small video chunks for efficient distribution among
peers.

3) The tracker server provides streaming channel, peer and
chunk information for each peer node to join the network
and download video chunks from multiple peers in the
system requesting the same media content.

A mesh-pull P2P live streaming software, running in user
computers (peers), typically has two major communication
protocols: (i) a peer registration, channel and peer discovery
protocol; and (ii) a P2P media chunk distribution protocol.
Figure 2 depicts an overview of the peer registration, chan-
nel and peer discovery protocol. When an end-user starts
the chunk-pull streaming software, it joins the network and
becomes a streaming node. The first action (step 1) is to
download a list of channels distributed by the streaming
network from the tracker server. Once the user selects a
channel, this peer node register itself in the tracker server and
requests an initial list of peers that are currently watching
the same channel. The peer node then communicates with the
peers in the list to obtain additional lists (step 2), which it
aggregates with its existing peer list. In this manner, each
peer maintains a list of other peers watching the channel.
A peer on a list is identified by its IP address and UDP
and TCP signaling port numbers. The registration and peer
discovery protocol is commonly running over UDP; however,
if UDP fails (for example, because of a firewall), TCP may
also be used for registration and peer discovery. Utilizing this
distributed gossip-like peer discovery protocol, the signaling
overhead at the tracker server is considerately reduced; hence,
a small number of tracker servers are able to manage possibly
millions of streaming users.

PC

PC

PC

PC

tracker
server

1 2

1) channel list download
2) peer registration
3) peer list download

Fig. 2. Channel and peer discovery

We now describe the chunk distribution protocol. At any
given instant, a peer buffers up to a few minutes worth of
chunks within a sliding window. Some of these chunks may be
chunks that have been recently played; the remaining chunks
are chunks scheduled to be played in the next few minutes.
Peers upload chunks to each other. To this end, peers send
to each other “buffer map” messages; a buffer map message
indicates which chunks a peer currently has buffered and can
share. The buffer map message includes the offset (the ID of
the first chunk), the length of the buffer map, and a string of
zeroes and ones indicating which chunks are available (starting
with the chunk designated by the offset). If the offset field is
of 4 bytes, for one channel with the bit rate of 340 kbps and
a chunk size of 14 Kbytes, this chunk range of 232 indicates
the time range of 2042 days without wrap-up. The BM width
is the difference between the newest and oldest chunk number
advertised in a buffer map message. The BM playable video is
the number of contiguous chunks in the buffer map, beginning
from the offset. Figure 3 illustrates a buffer map.

offset

0
BM
playable
video

gap

1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 1

BM width

time

... ...

Fig. 3. A peer’s buffer map of video chunks

A peer can request, over a TCP connection, a buffer map
from any peer in its current peer list. After peer A receives a
buffer map from peer B, A can request one or more chunks that
peer B has advertised in the buffer map. A peer may download
chunks from tens of other peers simultaneously. The streaming
engine continually searches for new partners from which it
can download chunks. Different mesh-pull systems may differ
significantly with their peer selection and chunk scheduling
algorithms. Clearly, when a peer requests chunks, it should
give some priority to the missing chunks that are to be played
out first. Most likely, it also gives priority to rare chunks, that
is, chunks that do not appear in many of its partners’ buffer
maps (see [14] [4] [13]). Peers can also download chunks from
the original channel server. The chunks are usually sent over
TCP connections. In some mesh-pull systems, video chunks
are also transferred using UDP to achieve timely delivery.

Having addressed how chunks are distributed among peers,
we now briefly describe the video display mechanism. As
mentioned above, the streaming engine works in conjunc-
tion with a media player (either Windows Media Player or
RealPlayer). Figure 4 illustrates the interaction between the
streaming engine and the media player. The streaming engine,
once having buffered a certain amount of contiguous chunks,
launches the media player. The media player then makes an
HTTP request to the engine, and the engine responds by
sending video to the media player. The media player buffers
the received video; when it has buffered a sufficient amount
of video content, it begins to render the video.

4

Media
Player S

Streaming
Engine

Queue

S

Streaming Engine

S

Streaming Engine

Channel
Streaming
Server S

...

...

Peer A

Peer B

Peer C

Chunk
Swarm

Chunk
Delivery

Tracker
Server

Chunk
Request

Registration
Health report

Peer discovery

Chunk
RequestChunk

Delivery

Chunk
Delivery

Fig. 1. Mesh-pull P2P live streaming architecture

Media Player

Internet
Media
User

Interface
Queue

S

Streaming Engine

Queue

streaming direcion

HTTP 1.1 200 OK

HTTP 1.1 Get

File Download
http://127.0.0.1:port

Fig. 4. Streaming process of mesh-pull systems

If, during video playback, the streaming engine becomes
incapable of supplying the video player with data at a sufficient
rate (because the client is in turn not getting chunks fast
enough from the rest of the network), then the media player
will starve. When this occurs, depending on the severity of the
starvation, the streaming engine may have the media player
wait where it left off (freezing) or it may have the media
player skip frames.

PPLive is a typical mesh-pull P2P streaming system. We
now provides a brief introduction on PPLive. PPLive is a free
P2P IPTV application. According to the PPLive web site [5]
in May 2006, PPLive provides 200+ channels with 400, 000
daily users on average. The bit rates of video programs mainly
range from 250 kbps to 400 kbps with a few channels as
high as 800 kbps. PPLive does not own video content; the
video content is mostly feeds from TV channels, TV series
and movies in Mandarin. The channels are encoded in two
video formats: Window Media Video (WMV) or Real Video
(RMVB). The encoded video content is divided into chunks
and distributed to users through the PPLive P2P network.

Our P2P network measurements on PPLive fall into two
categories: active crawling and passive sniffing. The active
crawling is used to obtain user behaviors and global view
of the entire PPLive network for any channel. The passive
sniffing is used to gain a deeper insight into PPLive from the
perspective of residential users and campus users.

III. GLOBAL VIEW OF USER BEHAVIOR

We are interested in IPTV user behavior characteristics,
such as the evolution of the number of active users within a

channel, the evolution of the number of active users aggregated
across all channels, user arrival and departure patterns, the
distribution of channel popularity, and the geographic location
of users. To understand user behavior across the entire PPLive
network, we developed a crawler which continuously tracks all
participating peers, where a peer is identified by a combination
of IP address and TCP/UDP service port number.

A. Peer Tracking Methodology

Peer tracking is a challenging problem since we do not have
direct access to the proprietary PPLive tracking servers. Our
methodology for peer tracking exploits PPLive’s distributed
gossiping algorithm. Recall that each individual peer maintains
a list of active peers that it knows about. Further, each peer can
update its list by retrieving lists from its neighboring peers.
Our methodology does the following for each channel:
• Time is divided in rounds of T seconds. At the beginning

of each round, we request peer lists from multiple peer-
list servers. The retrieved lists are merged into an initial
aggregate list. Initially, all peers on the list are marked
as “uninvestigated”.

• For each uninvestigated peer on this aggregate list, we
request its peer list and then mark the peer as “investi-
gated”. The retrieved list are merged into the aggregate
peer list. We continue this crawling process, retrieving
and merging lists from uninvestigated peers. This crawl-
ing process continues for the first S seconds (with S ≤ T)
of each round. At the end of the S seconds, we save the
aggregate list, clear the aggregate list, sleep for T − S
seconds, and then begin another round.

• We thus generate a sequence of aggregate lists, one for
each T -second crawling period. Denote the ith aggregate
list as Li, i = 0, 1, 2, For a given peer p, we define its
“list-joining time” as time S + ipT , where Lip is the first
aggregate list on which the peer is recorded. Similarly,
we define its “list-leaving time” as time S + jpT , where

5

Ljp is the first aggregate list after ip for which p is no
longer present.

• We draw conclusions about user behavior from the se-
quence of aggregate peer lists, as well as from the list-
joining and list-leaving times.

The methodology described above, although promising, has
a number of issues that need to be addressed. First, how do
we obtain a peer list from a peer or from a peer-list server?
Second, when a peer truly joins the channel, will it eventually
appear on an aggregate list? If so, how much of a lag is there
from when it joins the channel until the list-joining time?
Third, when a peer quits the channel, how much time elapses
from when it quits until the list-leaving time?

To generate the sequence of aggregate peer lists for a
channel, we developed a PPLive crawler. This task in itself
was challenging we needed to implement portions of the
PPLive proprietary protocol. To this end, using packet traces
from passive sniffing and our knowledge about how mesh-
pull P2P streaming systems generally operate, we were able
to understand critical portions of PPLive’s signaling protocols.
With this knowledge, we were then able to send PPLive peer-
list request messages to the PPLive peers. Specifically, as
shown in Figure 5, the crawler operates as follows:
• Peer Registration: The crawler first registers itself with

one of the root servers by sending out a peer registration
message. The significant information in this message
includes a 128 bit channel identifier, its IP address, and
its TCP and UDP service ports. In contrast to many
other popular P2P applications, a PPLive peer does not
maintain a fixed peer ID, but instead creates a new,
random value every time it re-joins the channel.

• Bootstrap: After the registration, the crawler sends out
one bootstrap peer list query message to each peer-list
root server for retrieving an initial peer list for this
channel. In response to a single query, the server returns
a list of peers (normally 50 peers), including IP addresses
and service port numbers. The crawler aggregates all the
lists it has received from the server, thereby maintaining
an initial list of peers enrolled in the channel.

• Peer Query: The crawler then sends out queries to the
peers already on the list to ask for their peer lists. Peer
lists returned by those peers are merged into the crawler’s
current peer list. (Peers behind NATs often do not respond
to peer-list queries, as we will discuss below.)

Crawler

peer list
server

...

Peer
Peer

Peer

Peer

1

2

Fig. 5. PPLive peer list crawling

The number of discovered peers by the crawler for one
channel over 25 seconds is plotted in Figure 6. It shows that
the crawler can find 95% of peers for a channel within 5
seconds. Given this observation, we set the round length to
T = 60 seconds and crawling duration within a round to
S = 15 seconds.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 5 10 15 20 25

of

 p
ee

rs

Time (sec)

Fig. 6. The number of peers on the aggregate peer list collected by the
crawler for one channel

We now investigate how accurately an aggregate list reflects
the actual peers participating in a channel. One possibly way
to verify whether a peer on the aggregate list is actually an
active peer is to probe the peer by querying it for its peer
list. Unfortunately, a large fraction of PPLive peers (more
than 50%) are behind NATs and do not respond to contact
initiated from the outside. Since probing is not viable, we
instead performed the following experiment to investigate the
accuracy of the aggregate peer list:

1) For a given channel, we start the crawler with rounds of
T = 60 seconds.

2) We have a peer under our control join the channel. We
record the time s when it connects to the channel.

3) We determine the time t when this controlled peer first
appears on one of the aggregate lists Li. We define the
arrival lag as t− s.

4) Subsequently, we remove the controlled peer from the
channel and record the time u.

5) We determine the time v when the controlled peer no
longer appears in the aggregate lists. We define the
departure lag as v − u.

We repeated this experiment under a variety of conditions,
with the controlled peer being behind a NAT in half of the
experiments. In each experiment, the controlled peer was
eventually observed on an aggregate list. Therefore, we can
safely assume that every peer that joins a channel eventually
appears on an aggregate list. Also in each experiment, once the
controlled peer was removed from the channel, it eventually
disappeared from the aggregate lists. Therefore, we can safely
assume that after a peer leaves a channel, it eventually departs
from the aggregate list. On average over 33 experiments, a
peer’s arrival lag was 31.6 seconds; a peer’s departure lag
was 104.2 seconds. One explanation for the faster detection
of peer arrivals is that a peer leaves the aggregate list only
after it disappears from the peer lists of all peers, whereas a
peer arrival can be detected as long as it appears on a peer list
returned by the peer-list root server or any other peer. There
are several implications of the results of this experiment:

6

• The arrival and departure curves generated from the
sequence of aggregate lists reflect the actual arrival and
departure rate curves, but include random lags. The lags
are small compared to the time-scale we are interested
in.

• Due to the mismatch between the arrival and departure
lags, a peer’s sojourn time inferred from the aggregate
lists is, in average, around 70 seconds longer than its
actual value. This has two consequences. First, it skews
the peer lifetime distribution. However, since the mea-
sured average sojourn times for different channels are
in the range of 800 ∼ 1600 seconds, the skew is minor.
Second, it overestimates the number of active peers. From
Little’s law, the overestimate ratio can be calculated as 70

X ,
where X is the real average peer sojourn time measured
in seconds. Consequently, the active peer numbers we
subsequently report overestimate the real active peer
numbers by 5 ∼ 9%.

B. Evolution of Participating Users

We would like to understand how the number of P2P IPTV
users evolve over time. We explore peer participation evolution
for all channels, for popular and unpopular TV channels,
and for a popular movie channel. The time in the figures
are labeled in US Eastern Standard Time (GMT-5). Figure
7 shows the total peer participation evolution for one day
and one week, aggregated over all the PPLive 400+ channels.
The diurnal trend is clearly demonstrated in Figure 7(a). The
major peaks appear during 8AM to 12PM EST, translating
into 8PM to 12AM China local time (GMT+8). As we shall
see, those peaks are mostly contributed by users from China.
(We remind the reader that our crawling methodology slightly
overestimates the number of participating peers.)

In Figure7(b), for the week of Feb. 12 18th, 2007, the daily
PPLive users remain with a constant diurnal viewing pattern.
We also observed similar trends in other monitored weeks.
This might suggest that IPTV users have different profiles and
viewing habits than regular TV/movie audiences.

One important characteristic of IPTV is its ability to reach a
global audience. A traditional broadcast television channel typ-
ically offers its most popular content when its local audience
is most available (for example, in the evening). But because
an IPTV service can reach a global audience in all time zones
(see Figure 15 and Table IV), there will be incentives to offer
popular content more evenly throughout the 24-hour day. Thus,
in the future, we may see a flattening of the diurnal patterns.

We ranked each of the crawled channels according to their
peak number of participating peers. In Figure 8 we plot the
peak number of participating peers versus channel rank in the
log-log scale. We observe a clear linear relationship (with a
slope 0.41) between peer population vs. channels, especially
for the top 100 channels.

Figure 9 shows how the number of participating users
evolves for a popular and a less-popular TV channel. We
first observe that the numbers of participating peers are quite
different for the two programs. The maximum number of peers
for the popular program reaches nearly 2, 700; however, that

4 8 12 16 20 24
0.5

1

1.5

2

2.5

3

3.5
x 10

5

Time(h)

of

 P
ee

rs

(a) One day (Oct. 3, 2006)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

02/05
00:00

02/06
00:00

02/07
00:00

02/08
00:00

02/09
00:00

02/10
00:00

02/11
00:00

02/12
00:00

of

 p
ee

rs

Time

(b) One week (Feb. 5 to Feb. 12, 2007)

Fig. 7. Evolution of total number of peers in the PPLive network

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Channel Rank

of

 P
ee

rs

Fig. 8. Distribution of peak number of peers among all channels at EST
08:30AM Oct.03, 2006

of the unpopular program is just around 65. The major peaks
appear during 7AM to 12PM EST, translating into 7PM to
12AM China local time. This suggests that people tend to use
IPTV to watch TV programs outside of office hours, consistent
with the behavior of regular TV users. In contrast, a recent
measurement study on Skype [15] suggests that people tend
to use VoIP service at work.

As with many other P2P applications, the number of IPTV
users is largely determined by the popularity of the program.
The annual Spring Festival Gala on Chinese New Year is one
of the most popular TV programs within Chinese communities
all over the world. Starting from 3AM EST, January 28, 2006
(Chinese New Year Eve day), we ran the crawler to collect
all peer IP addresses from 14 PPLive channels which were
broadcasting the event. Figure 10 plots the number of peers
watching this event live through PPLive. There was a sharp
jump from 50, 000 peers to 200, 000 peers after the event
started at 7AM EST. The number of users held at this high
level for around 4 hours. The number of users went back to
normal when the event finished at about 11AM EST. The near
constant user population during the event suggests that mesh-

7

0 2 4 6 8 10 12 14 16 18 20 22 24
0

500

1000

1500

2000

2500

3000

Time(h)

of

 P
ee

rs

(a) Popular TV channel

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

Time(h)

of

 P
ee

rs

(b) Unpopular TV channel

Fig. 9. Diurnal trend of number of participating users on Oct. 13, 2006

pull P2P streaming systems scales well, handling a flash crowd
in a live broadcasting.

4 8 12 16 20 24 4 8 12 16 20 24
10

3

10
4

10
5

10
6

Time(h)

of

 p
ee

rs

Jan. 28 Jan. 29

Fig. 10. Flash crowd on Chinese new year eve

C. User Arrivals and Departures

In this section, we examine the peer arrival and departure
pattern for various PPLive channels. We plot the numbers of
peer arrivals and departures of the popular movie channel in
every minute of one day in Figure 11. Comparing it with
the evolution of the number of participating peers, we find
that peers join and leave at a higher rate at peak times. We
also see consecutive spikes with a period of about 2 hours
in the departure rate curve in Figure 11(b). The spikes are
due to many peers leaving immediately and simultaneously at
the end of (roughly) two-hour programs. This batch-departure
pattern in P2P IPTV systems is different from P2P file sharing
systems, where peer departures are mostly triggered by the
asynchronous completions (or, the detections of completions)
of file downloads. This suggests that P2P IPTV systems
expect lower peer churn rates in the middle of a program.
Consequently, peers can maintain more stable partnership

with each other. We will address this peer dynamics more
in Section V-D3.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

Time(h)

of

 A
rri

va
l

(a) Peer arrival rate

0 2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

Time(h)

of

 D
ep

ar
tu

re

(b) Peer departure rate

Fig. 11. Peer arrival and departure evolution of a popular movie channel

We also plot the numbers of peer arrivals and departures of
the popular TV channel in every minute of one day in Figure
12. We observe that the arrival pattern of this TV channel
is similar to that of the movie channel. However, there is no
periodic batch departure pattern for this TV channel.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

300

Time(h)

of

 A
rri

va
l

(a) Peer arrival rate

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

250

Time(h)

of

 D
ep

ar
tu

re

(b) Peer departure rate

Fig. 12. Peer arrival and departure evolution of a popular TV channel

We define the peer lifetime as the time between the arrival

8

and the departure of the peer. Our analysis shows that peer
lifetimes vary from very small values up to 16 hours. There
are totally 34, 021 recorded peer sessions for the popular
channel and 2, 518 peer sessions for the unpopular channel.
The peer lifetime distribution in Figure 13 suggests that peers
prefer to stay longer for popular programs than for unpopular
programs. However 90% of peers for both programs have
lifetimes shorter than 1.5 hours.

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(mins)

CD
F

Pr
ob

ab
ili

ty

PopMovie
UnpopTv
PopTv

Fig. 13. Peer lifetime distribution

D. User Geographic Distribution

We classify PPLive users into three regions: users from
Asia, users from North America, and users from the rest of
the world. To accomplish this classification, we map a peer’s
IP address to a region by querying the free MaxMind GeoIP
database [16]. Figure 14 shows the evolution of the geographic
distribution of the popular channel during one full day. The
figure is divided into three regions by two curves. The bottom
region is made up of the peers from Asia, the middle region
is for the peers from North America, and the top region is
for peers from the rest of the world. We can see that most of
users come from Asia. Again, the percentage of peers from
Asia reaches the lowest point around 7PM to 8PM EST.

0 2 4 6 8 10 12 14 16 18 20 22 24
85%

90%

95%

100%

Time(h)

Di
st

rib
ut

io
n

of
 P

ee
rs

Others
North America
Asia

Fig. 14. Geographic distribution of popular movie channel

Fig 15 plots the evolution of peer geographic distribution for
the Spring Festival Gala event on the past Chinese New Year’s
Eve. This figure has the same format as Figure 14, with three
regions denoting three different geographical regions. We can
see that for this event, many peers from outside of Asia were
watching this live broadcast – in fact, a significantly higher
percentage of peers were from outside of Asia as compared
with Figure 14. The geographic distribution evolution is con-
sistent with the observations in Section III-C: Peers from North
America have the smallest share at about 7AM EST, and the

largest share at about 8PM EST. Thus the behavior of users
in North America is quite similar to users in Asia.

4 8 12 16 20 24 4 8 12 16 20

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Time(h)

Di
st

rib
ut

io
n

of
 p

ee
rs

Others
North America
Asia

Jan. 28 Jan. 29

Others

Fig. 15. Evolution of geographic distribution during Chinese new year’s eve

One lesson learned from this crawling study is that, with
P2P IPTV systems, it is possible to track detailed user be-
havior. Unlike traditional broadcast television, the operators
of a P2P IPTV system can track the type of programs a
user watches, the region in which the user lives, the times
at which the user watches, and the users channel switching
behavior. Such detailed information will likely be used in the
future for targeted, user-specific advertising. This research also
demonstrates that an independent third-party can also track
peer and user characteristics for a P2P IPTV system. Similar
to file-sharing monitoring companies (such as Big Champagne
[17]), IPTV monitoring companies will likely emerge, and will
provide content creators, content distributors, and advertisers
with information about user interests.

IV. PLAYBACK DELAY AND PLAYBACK LAGS AMONG
PEERS

As theoretically demonstrated in [18], appropriate buffering
can significantly improve video streaming quality. However,
too much buffering may make the delay performance unac-
ceptable for a streaming service. In this section, we report
quantitative results on the buffering effect of PPLive peers on
the delay performance. In particular, we used our measurement
platforms, to obtain insights into start-up delay and playback
lags of peers.

A. Start-up Delay

Start-up delay is the time interval from when one channel is
selected until actual playback starts on the screen. For stream-
ing applications in the best-effort Internet, start-up buffering
has always been a useful mechanism to deal with the rate
variations of streaming sessions. P2P streaming applications
additionally have to deal with peer churn, increasing the need
for startup buffering and delay [18]. While short start-up delay
is desirable, certain amount of start-up delay is necessary for
continuous playback. Using our monitored peers (see Section
V), we recorded two types of start-up delays in PPLive: the
delay from when one channel is selected until the streaming
player pops up; and the delay from when the player pops up
until the playback actually starts. For a popular channel, the
measured player pop-up delay was from 5 to 10 seconds and
the player buffering delay was 5 to 10 seconds. Therefore,

9

the total start-up delay was from 10 to 20 seconds; however,
less popular channels had start-up delays of up to 2 minutes.
These delays are, of course, significantly longer than what are
provided by traditional television. Hence, the current state-
of-the art of mesh-pull P2P streaming technology does not
provide users with the same channel-surfing experience as
traditional television.

B. Video Buffering

As illustrated in Section II, in mesh-pull systems, peers
exchanges video chunk information between themselves using
buffer maps. To monitor the buffer content of PPLive clients,
we augmented the crawler with a TCP component that re-
trieves the buffer map from the peers during the peer list
crawling process, as shown in Section III-A. As we crawl
each peer, the crawler sends a PPLive request for the peer’s
buffer map. We then parse the buffer maps off-line, to glean
information about buffer resources and timing issues at remote
peers throughout the PPLive network.

In this subsection, we quantify buffer levels across peers
actively watching a specific channel. As illustrated in Figure 3,
a buffer map returned by a peer not only indicates how many
video chunks are buffered at that peer (the number of 1s in
the buffer map), but also indicates how many video chunks
can be played continuously on that peer when the buffer map
was returned to the crawler (the number of consecutive bit-
1s at the left side of the buffer map). We plot in Figure 16
the CDF of the buffer levels among 200+ peers over a 600-
minute crawling period for a gaming channel. Both the total
buffer levels and continuous playable buffer levels are plotted.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

C
D

F
F(

x)

Size x (MByte)

BM width
BM playable video

Fig. 16. CDF of buffer level for a game channel among 200+ peers over a
600-minute crawling period.

In Figure 16, we observe that peers seem to strive for buffer
levels of 7 Mbytes or higher. With only a small probability
peer buffers went under 1 Mbytes.

C. Playback Lags among Peers

One unfortunate characteristic of a mesh-pull P2P streaming
system is the possibility of playback lags among peers due
to the deployment of the buffering mechanisms. Specifically,
some peers watch frames in a channel minutes behind other
peers. Thus, for example, in a soccer game some peers will
see a goal minutes after other peers. Additionally, peers with
large playback lags won’t upload useful chunks to peers with
smaller lags, decreasing the aggregate uploading capacity of
the system.

To analyze this lagging effect, we again use the buffer
maps harvested from our crawler. Recall that each buffer map
includes an offset, which provides the earliest chunk buffered
in the PPLive engine. This offset increases along with the
playback. We use the buffer map offset as a reference point of
the actual playback. Therefore, the lags of buffer map offsets
among peers watching the same channel reflect the lags of the
actual playbacks among them. We intensively probed peers
participating in a specific TV channel, ATV, to retrieve their
buffer maps for 40 minutes. We clustered the harvested buffer
maps according to the time when they are received by the
crawler. Received buffer maps are clustered into time bins of
5 seconds. For buffer maps within each bin, we calculated
the difference between the maximum and minimum offset.
Figure 17 plots the maximum playback time differences over
all bins. We observe that the lag among peers can be huge
- with around 35 probed peers within one bin, the maximum
playback time difference of these peers are as high as 140
seconds.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

Ti
m

e
(s

ec
)

Time (min)

maximum playback time difference

Fig. 17. Maximum playback time difference for the ATV channel over a
40-minute period.

V. CONNECTION AND TRAFFIC CHARACTERISTICS

In this section we explore connection and traffic character-
istics of mesh-pull P2P streaming systems. We explore degree
of packet redundancy, download and upload traffic levels,
properties of TCP connections, and whether the underlying
traffic flows are similar to those of BitTorrent or tree-pull P2P
streaming systems.

To this end, we sniffed and collected multiple PPLive packet
traces from four PCs: two PCs connected to Polytechnic
University campus network with 100 Mbps Ethernet access;
and two PCs connected to residential networks through cable
modem. Most of the PPLive users today have either one
of these two types of network connections. The PCs with
residential access were located at Manhattan and Brooklyn.
Each PC ran Ethereal [19] to capture all inbound and outbound
PPLive traffic. We built our own customized PPLive packet
analyzer to analyze the various fields in the various PPLive
signaling and content packets.

As summarized in Table I, we collected traces from four
peers, each of which was watching one of two channels (either
the popular CCTV3 or the less popular CCTV10) from either
a campus network or residential networks. Data were obtained
at different granularities, including byte-level, packet-level and
session-level, to help us understand PPLive’s signaling and
streaming protocols and its impact on the Internet.

10

TABLE I
DATA SETS

Trace Name Trace size Duration Playback Rate Download Upload
(Byte) (Sec) (Kbps) (Mbyte) (Mbyte)

CCTV3-Campus 784,411,647 7676 340 360.99 4574.57
CCTV3-Residence 132,494,879 7257 340 372.53 352.75
CCTV10-Campus 652,000,813 7285 312 317.08 3815.34

CCTV10-Residence 66,496,909 9216 312 385.50 7.68

A. Methodology for Isolating Video Traffic

A PPLive peer generates and receives both video and
signaling traffic. In this paper, we are mainly concerned with
the video traffic, since it is responsible for the majority of
the traffic in most P2P streaming systems. In order to present
a clear picture of the nature of the PPLive video traffic, we
use a simple heuristic to filter out the signaling traffic from
our traces. The ideas behind heuristic can likely be employed
for the analysis of many P2P streaming systems, including
PPLive.

In a mesh-pull P2P video streaming system, a peer normally
has a large number of ongoing TCP connections with other
peers. Some of these connections contain only signaling traffic;
other connections contain video chunks and possibly some
signaling traffic. The chunk size is typically much larger than
the maximum payload size of a TCP segment (typically 1460
bytes). For example, in PPLive, the chunk size is larger than
14 Kbytes (the exact chunk size depends on the bit rate).
Thus, if a TCP connection carries video, it should have a
large number (say, at least 10) of large size TCP segments
(say, > 1200 bytes) during its lifetime. These observations
lead to the following heuristic:

1) For a given TCP connection, we count the cumulative
number of large packets (> 1200 bytes) during the
connection’s lifetime. If the cumulative number of large
packets is larger than 10, this connection is labeled as
a “video TCP connection”; otherwise, the connection is
labeled as a “signaling TCP connection”. We filter out
all signaling TCP connections from the traces.

2) A video TCP connection may include some signaling
traffic as well. For each video TCP connection, we
further filter out all packets smaller than 1200 bytes.

We first use this heuristic to estimate the fraction of up-
stream and downstream signaling overhead for each of the four
traced peers. The signaling overhead consists of the payloads
of all UDP packets, plus the payloads of all the TCP packets
in the signaling connections, plus the payloads of all the TCP
packets less than 1200 bytes in all of the video connections.
From Table II we see that the signaling overhead is generally
in the 5% to 8% range except for the upload traffic in trace
CCTV10-Residence. The reason is that the uploading video
traffic in that trace is extremely low.

B. Video Traffic Redundancy

Due to the distributed nature of mesh-pull P2P streaming, it
is possible that a peer downloads duplicate chunks from mul-
tiple partners. The transmission of redundant chunks wastes
network and access bandwidth; hence, we are interested in

measuring the traffic redundancy after the streaming player
begins to playback steadily. To this end, to minimize the
impact of transient behavior, the first 10 minutes of the traces
are not used for this redundancy analysis . Excluding TCP/IP
headers, we determine the total streaming payload for the
download traffic. Utilizing the video traffic filtering heuristic
rule, presented in Section V-A, we are able to extract the video
traffic. Given the playback interval and the media playback
speed, we obtain a rough estimate of the media segment size
for the playback interval. We compute the redundant traffic as
the difference between the total received video traffic and the
estimated media segment size. We define the redundancy ratio
as the ratio between the redundant traffic and the estimated
media segment size. From Table III, we observe that the traffic
redundancy is small. This is partially due to the long buffer
time period so that PPLive peers have enough time to locate
peers in the same streaming channel and exchange content
availability information between themselves.

The negative redundancy ratio (−3.5%) for CCTV3-
Campus indicates that the video download chunks are not
sufficient for smooth video playback. As shown in Figure
18(a), at time 10 < t < 20 minute and 60 < t < 64 minute
for CCTV3-Campus, the download rate decreases significantly
and the PPLive playback may suffer seriously lacking of video
chunks. Given the good connectivity of campus network, this
abnormal case requires further investigation.

C. Download and Upload Video Traffic

Having isolated the video traffic, we examine the aggregate
amount of upload and download video traffic leaving and
entering the four peers. Figure 18 plots the upload and
download rates of the video traffic for the four traces beginning
from startup. Each data point is the average bit rate over a 30
second interval. We make the following observations:

1) The aggregate download rates closely hug the video
playback rates, even for campus peers where the avail-
able bandwidth greatly exceeds the playback rate. This
is very different from BitTorrent, which tries to use as
much of its downstream bandwidth as possible.

2) A P2P streaming peer’s aggregate upload rate can greatly
exceed the aggregate download rate. For example, we
see that for two campus peers, the upload rate exceeds
the download rate by (approximately) a factor of 10.
This is also very different from BitTorrent, whose tit-
for-tat mechanism encourages peers of roughly equal
capacity to partner with each other.

3) In a P2P streaming system, not all peers have an
aggregate upload rate exceeding the download rate.
For example, we see that one of the residential peers

11

TABLE II
PPLIVE TRAFFIC OVERHEAD

Trace name upload (Mbyte) download(Mbyte)
Signaling Video Percentage Signaling Video Percentage

UDP TCP TCP Overhead(%) UDP TCP TCP Overhead(%)
CCTV3-Campus 0.60 43.7 3951.4 1.11 0.88 22.6 285.7 7.59

CCTV3-Residence 2.87 19.9 313.2 6.78 4.40 23.5 314.9 8.14
CCTV10-Campus 1.23 73.8 3406.3 2.16 1.28 21.6 259.4 8.11

CCTV10-Residence 1.55 2.7 4.4 49.13 2.76 23.9 351.6 7.05

TABLE III
VIDEO TRAFFIC REDUNDANCY

Trace name Interval Total download Video download Estimated media segment size Redundancy
(second) (Mbyte) (Mbyte) (Mbyte) ratio

CCTV3-Campus 6966.2 308.3 285.7 296.1 -3.5%
CCTV3-Residence 6512.6 338.4 314.9 276.8 13.8%
CCTV10-Campus 6600.7 281.0 259.4 257.4 0.76%

CCTV10-Residence 8230.5 375.5 351.6 321.0 9.5%

uploads at an average rate approximately equal to the
average download rate, and the other residential peer
does almost no uploading. Thus, some peers act as
amplifiers, pumping out bytes at rates higher than the
receive rate; some peers act as forwarders, pumping out
bytes at roughly the same average rate as the receive
rate; and some peers act as sinks, forwarding very little
traffic over their lifetimes.

One important lesson learned is that even though an access link
may have asymmetric downstream and upstream bandwidths
(such as ADSL), with the downstream bandwidth being higher
than the upstream bandwidth, the actual bit rates can have
opposite behavior, with uploading rates being higher than the
downloading rates. Thus, P2P video streaming can potentially
severely stress the upstream capacity of access ISPs.

Note that in trace CCTV10-Residence, the download rate
falls significantly below the playback rate for about 4 minutes
at about time t = 33 minutes. After this decrease, the peer
aggressively downloads from the network, downloading at a
rate higher than the playback rate for about 3 minutes. Then
the download rate becomes steady again. Despite the PPLive
and media player buffering, this download rate deficit may
have impacted the quality of the video playback.

Although not as high as the two campus peers, the res-
idential peer watching CCTV3 contributed traffic volume
comparable to its download traffic volume. However, the other
residual peer (watching CCTV10) only uploaded 4.6 Mbytes
of video to other peers. Since the two residential peers have
similar access bandwidth, we seek an explanation for why
this one peer hardly uploaded any video. One possibility is
that the other peers contribute sufficient upload bandwidth, so
that this residential peer simply doesn’t need to contribute.
Another possibility is that the buffering and rendering for this
residential peer lags behind most of the other peers; thus,
relatively few other peers can use the residential peer’s chunks
(as discussed in Section IV-C).

D. Properties of Video TCP Connections

In this section we examine the basic properties of video TCP
connections in PPLive, including connection duration, number

of partners, partner churn, and upload/download traffic to/from
partners.

1) Duration of Video TCP Connections: A video TCP
connection begins with the TCP SYN packet; we say that the
connection ends when we see a TCP FIN packet or when
we see a packet that is not followed by any other packet in
the connection for two minutes. Figure 19 provides a typical
Complementary Cumulative Distribution Function (CCDF)
of video TCP connection durations. Note that the durations
spread over a wide range and have a skewed distribution.
The median duration is 22.5 seconds and the mean is 381.1
seconds. Only about 10% of the connections last for over
15 minutes and the longest session lasts for more than 2
hours. Because many connections are short, a peer may only
exchange a few video chunks with its partner before the
connection ends.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Video session duration x(sec)

CC
DF

 (1
−F

(x
))

Fig. 19. CCDF of duration of video TCP connection for CCTV3-Campus

2) Number of Partners: For each of the four peers, Figure
20 plots the number of partners (that is, its number of video
TCP connections) the peer has as a function of time. Note that
campus peers have many more partners than residential peers.
A campus peer utilizes its high-bandwidth access, maintaining
a steady number of partners for video traffic exchange. Content
popularity also has a significant impact on the number of
partners for residential peers. In particular, the residential
peer with the less-popular CCTV10 channel seems to have
difficulty in finding enough partners for streaming the media.
At time t = 33 minutes, the number of partners drops to 1.
This reduction in partners significantly impacts the download

12

 100

 1000

 10000

 0 20 40 60 80 100 120

Vi
de

o
ra

te
 (K

bp
s)

Time (min)

upload
download

(a) CCTV3-Campus

 100

 1000

 0 20 40 60 80 100 120

Vi
de

o
ra

te
 (K

bp
s)

Time (min)

upload
download

(b) CCTV3-Residence

 1000

 10000

 0 20 40 60 80 100 120

Vi
de

o
ra

te
 (K

bp
s)

Time (min)

upload
download

(c) CCTV10-Campus

 1

 10

 100

 1000

 0 20 40 60 80 100 120

Vi
de

o
ra

te
 (K

bp
s)

Time (min)

upload
download

(d) CCTV10-Residence

Fig. 18. Upload and download video bit rates for the four traces

rate of this residential peer, as shown in Figure 18(d). In this
experiment, the peer detected this rate reduction quickly and
started to search for new partners. New partners were quickly
found and fresh streaming flows were established; hence, the
video download rate recovered quickly as a result.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

of

 a
ct

iv
e

vi
de

o
pe

er
s

Time (min)

campus
residence

(a) CCTV3

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

of

 a
ct

iv
e

vi
de

o
pe

er
s

Time (min)

campus
residence

(b) CCTV10

Fig. 20. Evolution of numbers of partners for each of four peers

3) Dynamics of Partners: During its lifetime, a peer con-
tinually changes its partners. This is illustrated in Figure 21, in

which the number of partners (video chunk exchange sessions)
is sampled every 30 seconds. A changed partner refers to either
a new partner or a partner that stops to exchange video chunks.
For both types of access networks, over a 30 second period,
typically several partners leave and several new partners arrive.
Nevertheless, compared with the total number of partners, the
average number of the changed peers in 30 seconds is less
than 10% of the total video peers for campus peers. However,
the changed partners make up a larger percentage of the total
number of partners for residential peers. One consequence is
that the download video rates of residential peers are likely to
fluctuate more significantly.

4) Locality of Partners: It would be a waste of network
resources to download from another continent if a channel
could be downloaded from a source in the same continent.
We investigated whether a PPLive peer takes locality into
account when it determines which peer to download from.
We employed the same technique as that of Section III-D to
determine the geographic location of a peer.

For the three traced peers (all located in New York) with
substantial upload traffic, Table IV shows the geographic
distribution of the peer’s partners. We observe that a large
fraction of partners are located in Asia, and these Asian
partners contribute the majority of the download traffic. On
the other hand, the majority of the traffic uploaded by each of
our traced peers is to partners in North America. For example,
in Table IV(b), the CCTV3-residential peer downloads 81.0%
video traffic from partners in Asia and 18.3% video traffic
from partners in North America; however, it uploads only
6.4% video traffic to Asia and 64.1% to North America. We
can see that there are still space of improvement for PPLive
to take advantage of peer locality. It is more beneficial for

13

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

of

 v
id

eo
 p

ee
rs

Time (min)

of video peers
of changed video peers

(a) CCTV3-Campus

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

of

 v
id

eo
 p

ee
rs

Time (min)

of video peers
of changed video peers

(b) CCTV3-Residence

Fig. 21. Partner departures and arrivals

the CCTV3-residential peer to download more video traffic
from peers in North America instead of downloading too much
video across inter-continental links.

TABLE IV
GEOGRAPHIC DISTRIBUTION OF PARTNERS

(a) CCTV3-Campus
Asia North America Other Places

peer(%) 19.1 73.5 7.4
Download(%) 72.3 26.2 1.5

Upload(%) 1.1 83.9 15.0

(b) CCTV3-Residence
Asia North America Other Places

peer(%) 63.5 29.5 7.0
Download(%) 81.0 18.3 0.7

Upload(%) 6.4 64.1 29.5

(c) CCTV10-Campus
Asia North America Other Places

peer(%) 37.1 55.7 7.2
Download(%) 92.1 6.9 1.0

Upload(%) 2.6 76.2 21.2

5) Traffic Volume Breakdowns across Video TCP Connec-
tions: Although PPLive uses a mesh-pull architecture, it is
possible that the underlying traffic patterns follow those of a
tree, where each peer is primarily fed by one peer over times
of minutes. We now disprove this conjecture.

We now examine how the download rates differ among
partners and how the upload rates differ among partners. For
a campus peer, Figure 22(a) compares the peer’s aggregate
download video rate with the download rate from the greatest
contributing peer. This top peer contributes on average about
50% of the total video download traffic. However, the down-
load rate from this top peer is highly dynamic, most likely due

to content availability from the top peer and congestion in the
network between the two peers. One important consequence
is that a peer typically receives video from more than one
peer at any given time. We also plot analogous curves, in log
scale, for video upload in Figure 22(b). Since the campus node
uploads to many peers, the top peer video upload session only
accounts for about 5% of the total video upload traffic.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120

Vi
de

o
ra

te
 (K

bp
s)

Time (min)

aggregate-download
top-download-session

(a) Download

 10

 100

 1000

 10000

 0 20 40 60 80 100 120

Vi
de

o
ra

te
(K

bp
s)

Time (min)

aggregate-upload
top-upload-session

(b) Upload

Fig. 22. Peer download and upload video traffic breakdown for CCTV3-
Campus

6) Uni-Directional or Bi-Directional Traffic?: Having now
shown that a peer can be concurrently fed by multiple parents,
one may conjecture that the traffic flows are nevertheless uni-
directional, that is, between each pair of partners, traffic flows
primarily in one direction over all short time scales. We now
show by example that this conjecture does not generally hold.
In trace CCTV3-Campus, the campus peer under control has
two neighbors A and B. As shown in Figure 23, we plot the
video traffic download and upload bit rate between this sniffed
peer and its peer neighbors, A and B. The average time interval
is 15 seconds. We can clearly observe that there exists bi-
directional video traffic exchange between a pair of peers even
in a small time scale (< 1 minute).

Thus, traffic flows are neither tree-like nor unidirectional,
that is, PPLive has a true mesh overlay, without parent/child
relationships. These traffic flows are very different from those
in a P2P tree-push architecture, but are similar in character
to those of BitTorrent. One important lesson learned from this
study is that mesh-pull architectures are more correctly viewed
as variations on BitTorrent rather than variations on tree-pull
architectures such as end-system multicast.

VI. RELATED WORK

CoolStreaming [4], the first large-scale mesh-pull live
streaming system, demonstrated the feasibility to support a

14

 1

 10

 100

 30 35 40 45 50 55 60 65 70

Vi
de

o
ra

te
(K

bp
s)

Time (min)

download from peer X
upload to peer X

(a) Peer A

 1

 10

 100

 30 40 50 60 70 80

Vi
de

o
ra

te
(K

bp
s)

Time (min)

download from peer X
upload to peer X

(b) Peer B

Fig. 23. Video traffic exchange between two selected peer neighbors with
the sniffed campus peer for CCTV3-Campus

scalable video delivery service with reasonably good viewing
quality over the best-effort Internet. Performance evaluation
over the Internet and the PlanetLab showed that mesh-pull
live streaming systems achieve significant more continuous
media playback than tree based systems [20]. Research efforts
and prototyping initiatives have continued along this direction
from both the academic community and industry [21]. This
new paradigm brings opportunities as well as challenges in
broadcasting video over the Internet [22]. Researchers have
proposed a number of mesh-pull P2P streaming systems [23],
[4], [24], [25], [26], [27], [28], [29], [30]. These research
systems are usually evaluated via simulation or a small-scale
testbed in constrained environments. Recently, there has been
a number of theoretical studies of mesh-pull streaming systems
[18], [31].

Recently, a number of startup companies have been to
provide IPTV services using mesh-pull streaming architectures
[5], [7], [8], [9], [10], [11]. The scale of these streaming
networks have exceeded that of CoolStreaming significantly.
Little is known, however, about these proprietary systems.
Researchers have begun to study various performance metrics
of these systems, including user behaviors and traffic patterns.
The measurement techniques fall into two categories: passive
sniffing and active crawling.

For passive sniffing, our previous work in [12] was the
first measurement study of a large-scale P2P streaming system
to study the traffic pattern and peer dynamics of the PPLive
network, which is one of the most popular IPTV systems. Our
work was followed by two other passive measurement studies
[32] and [33]. Ali et al. [32] focus on the traffic characteristics
of controlled PPLive peers on PPLive and SopCast. Passive
sniffing was also utilized to study the traffic pattern of PPLive,

PPStream, TVAnts and SopCast in [33].
Passive sniffing techniques are often constrained to measure

a small set of controlled peers. We also developed active
crawling apparatus to measure the global view of the PPLive
network in [13]. After our work in [13], another crawler-based
measurement study was conducted in [34]. Vu et al. [34] only
focused on the measurement of peer dynamics for a small
number of PPLive channels.

There are a number of measurement studies of other types
of P2P systems, including file sharing, content-distribution,
and VoIP. For file sharing, Saroiu et al. measured the Napster
and Gnutella [35] and provided a detailed characterization
of end-user hosts in these two systems. Their measurement
results showed significant heterogeneity and lack of cooper-
ation across peers participating in P2P systems. Gummadi et
al. monitored KaZaa traffic [36] for characterizing KaZaa’s
multimedia workload and they showed locality-aware P2P
file-sharing architectures can achieve significant bandwidth
savings. Ripeanu et al. crawled the one-tier Gnutella network
to extract its overlay topology. For the latest two-tier Gnutella
network, Stutzbach et al. provided a detailed characterization
of P2P overlay topologies and their dynamics in [37]. Liang
et al. deployed active crawling in [38] to reveal in-depth
understanding of KaZaa overlay structure and dynamics. In
[39], Liang et al. further demonstrated the existence of content
pollution and poisoning in KaZaa using an active crawler.

A measurement study was carried out for the live streaming
workload from a large content delivery network in [40]. For
content distribution, Izal et al. and Pouwelse et al. reported
measurement results for BitTorrent [41] and [42]. For VoIP,
two measurement studies of Skype are available [43] and [15].
A detailed protocol analysis of Skype was presented in [43]
and Skype traffic pattern reported in [15] differs fundamentally
from previous file-sharing P2P systems. Performance evalua-
tion of CoolStreaming was carried out over PlanetLab [4] and
the measurement results showed that mesh-pull live streaming
systems achieve significant more continuous media playback
than tree based systems.

VII. CONCLUSIONS AND FUTURE WORK

IPTV is an emerging Internet application which may dra-
matically reshape the traffic profile in both access and back-
bone networks. We conducted a measurement study on a pop-
ular P2P IPTV application, PPLive. Our study demonstrates
that the current Internet infrastructure is capable of providing
the performance requirements of IPTV at low cost and with
minimal dedicated infrastructure. Through passive and active
measurements, we characterized P2P IPTV user behavior and
traffic profiles at packet, connection and application levels.
More importantly, the measurement results provide an under-
standing of how to architect a successful large scale P2P IPTV
system. Insights obtained in this study should be valuable for
the development and deployment of future P2P IPTV systems.

Although large-scale P2P IPTV systems are feasible in
today’s Internet, this class of applications is in its infancy, and
performance remains to be improved in several directions:
• Shorter Start-up Delay. We showed that at start-up,

PPLive buffers tens of seconds of video before playback

15

to compensate for peer churn and rate fluctuations of
video connections. However, many users of ordinary tele-
vision enjoy rapidly switching among channels. Thus, if
P2P IPTV is truly going enhance ordinary television, the
start-up delay needs to be reduced to from tens of seconds
to a few seconds. Possible directions to be investigated
include redundant downloading and/or network coding of
video chunks. This would come at the price of increased
video traffic redundancy.

• Higher Rate Streaming. Unlike BitTorrent file distribution
system, it is difficult to enforce the tit-for-tat policy in
a P2P streaming system, since many peers have upload
capacity less than the compressed playback rate of video.
To compensate, peers with higher uploading capacity
upload much more than what they download to sustain
steady playback at all peers. To support higher bit rates,
the workload on those “amplifier” nodes will be further
increased. It becomes questionable whether an ordinary
peer, and the access ISP to which it is connected, will
have the capability and incentive to continue to provide
the additional upload traffic. Thus, in the future, some
level of dedicated infrastructure (such as dedicated proxy
nodes), may have to be combined with the P2P distribu-
tion to deliver videos at higher rates.

• Smaller Peer Lags. In our measurement study we ob-
served large playback lags, that is, some peers watch
frames in a channel minutes behind other peers. To
reduce the lags, better peering strategies and video chuck
scheduling schemes are needed.

• Better NAT Traversal. We observed lots of private IP
addresses in collected peer lists. The peers behind NATs
are often not fully reachable. To utilize the uploading
capacities from peers behind NATs, better NAT traversal
schemes need to be employed.

REFERENCES

[1] S. Deering and D. Cheriton, “Multicast Routing in Datagram Internet-
works and Extended LANs,” ACM Trans. on Computer Systems, pp.
85–111, May 1990.

[2] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw, and D. Stodolsky, “A transport layer for live
streaming in a content delivery network,” Proc. IEEE, vol. 92, no. 9,
pp. 1408– 1419, Sep. 2004.

[3] Y. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,”
in ACM SIGMETRICS, 2000, pp. 1–12.

[4] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A
Data-driven Overlay Network for Peer-to-Peer Live Media Streaming,”
in IEEE INFOCOM, vol. 3, Mar. 2005, pp. 2102 – 2111.

[5] “PPLive,” http://www.pplive.com.
[6] B. Cohen, “Incentives Build Robustness in BitTorrent,” in P2P-Econ,

June 2003.
[7] “PPStream,” http://www.ppstream.com.
[8] “UUSee.” [Online]. Available: http://www.uusee.com/
[9] “SopCast,” http://www.sopcast.org/.

[10] “TVAnts,” http://www.tvants.com.
[11] “VVSky,” http://www.vvsky.com.cn.
[12] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insights into

PPLive: A measurement study of a large-scale P2P IPTV system,” in
IPTV workshop in conjunction with WWW2006, May 2006. [Online].
Available: http://cis.poly.edu/∼ross/papers/ppliveWorkshop.pdf

[13] ——, “A measurement study of a large-scale P2P IPTV system,”
Polytechnic University, Tech. Rep., May 26 2006. [Online]. Available:
http://cis.poly.edu/∼ross/papers/P2PliveStreamingMeasurement.pdf

[14] “BitTorrent,” http://bittorrent.com/.

[15] S. Guha, N. Daswani, and R. Jain, “An Experimental Study of the Skype
Peer-to-Peer VoIP System,” in IPTPS’06, Feb. 2006.

[16] “Maxmind,” http://www.maxmind.com/app/country.
[17] “Big champagne,” http://www.bigchampagne.com/.
[18] R. Kumar, Y. Liu, and K. W. Ross, “Stochastic fluid theory for P2P

streaming systems,” in Proceedings of INFOCOM, 2007.
[19] “Ethereal,” http://www.ethereal.com/.
[20] X. Zhang, J. Liu, and B. Li, “On large-scale peer-to-peer live video

distribution: Coolstreaming and its preliminary experimental results,” in
IEEE MMSP’2005, Oct. 2005.

[21] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges
of peer-to-peer Internet video broadcast,” Nov. 2006.

[22] R. Rejaie, “Anyone can broadcast video over the Internet,” Commun.
ACM, vol. 49, no. 11, pp. 55–57, 2006.

[23] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in IPTPS’05, Feb.
2005.

[24] M. Zhang, L. Zhao, Y. Tang, J.-G. Luo, and S.-Q. Yang, “Large-scale live
media streaming over peer-to-peer networks through global Internet,” in
P2PMMS’05, 2005, pp. 21–28.

[25] C. Dana, D. Li, D. Harrison, and C. N. Chuah, “BASS: BitTorrent
assisted streaming system for video-on-demand,” in IEEE MMSP, Oct.
2005.

[26] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer
live streaming,” in IEEE INFOCOM, Apr. 2006.

[27] F. Pianese, J. Keller, and E. W. Biersack, “PULSE, a flexible P2P live
streaming system,” in Global Internet, Apr. 2006.

[28] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for supporting streaming applications,” in Global Internet,
Apr. 2006.

[29] N. Magharei and R. Rejaie, “Understanding mesh-based peer-to-peer
streaming,” in NOSSDAV ’06, May 2006.

[30] T. Piotrowski, S. Banerjee, S. Bhatnagar, S. Ganguly, and R. Izmailov,
“Peer-to-peer streaming of stored media: the indirect approach,” in
SIGMETRICS ’06/Performance ’06, 2006, pp. 371–372.

[31] S. Tewari and L. Kleinrock, “Analytical model for BitTorrent-based live
video streaming,” in IEEE NIME 2007 Workshop, Jan. 2007.

[32] S. Ali, A. Mathur, and H. Zhang, “Measurement of commercial
peer-to-peer live video streaming,” in First Workshop on Recent
Advances in Peer-to-Peer Streaming, Waterloo, Canada, August 10
2006. [Online]. Available: http://wraips.org/measurement.pdf

[33] T. Silverston and O. Fourmaux, “P2P IPTV measurement: A comparison
study,” University Paris 6 C LIP6/NPA Laboratory, Tech. Rep., Oct.
2006. [Online]. Available: http://www.arxiv.org/abs/cs.NI/0610133

[34] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt, “Mapping the PPLive
network: Studying the impacts of media streaming on P2P overlays,”
Department of Computer Science, University of Illinois at Urbana-
Champaign, Tech. Rep. UIUCDCS-R-2006-275, Aug. 2006.

[35] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing
the characteristics of Napster and Gnutella hosts,” Multimedia Syst.,
vol. 9, no. 2, pp. 170–184, 2003.

[36] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer
File-sharing Workload,” in ACM SOSP, 2003, pp. 314–329.

[37] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing Unstructured
Overlay Topologies in Modern P2P File-Sharing Systems,” in ACM IMC,
Oct. 2005.

[38] J. Liang, R. Kumar, and K. W. Ross, “The FastTrack Overlay: A
Measurement Study,” Computer Networks, vol. 50, no. 6, pp. 842–858,
Apr. 2006.

[39] J. Liang, N. Naoumov, and K. Ross, “The Index Poisoning Attack in
P2P File-Sharing Systems,” in IEEE INFOCOM, Apr. 2006.

[40] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the Internet,” in ACM IMC, 2004, pp. 41–54.

[41] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra,
and L. Garcés-Erice, “Dissecting bittorrent: Five months in a torrent’s
lifetime.” in PAM, 2004, pp. 1–11.

[42] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P
File-sharing System: Measurements and Analysis,” in IPTPS’05, Feb.
2005.

[43] S. A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol,” in IEEE INFOCOM, Apr. 2006.

