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Defintion of P2P 

1) Significant autonomy from central servers

2) Exploits resources at the edges of the 
Internet

storage and content

CPU cycles

human presence

3) Resources at edge have intermittent 
connectivity, being added & removed
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It’s a broad definition:

P2P file sharing
Napster, Gnutella, 
KaZaA, eDonkey, etc

P2P communication
Instant messaging
Voice-over-IP: Skype

P2P computation 
seti@home

DHTs & their apps
Chord, CAN, Pastry, 
Tapestry

P2P apps built over 
emerging overlays

PlanetLab

Wireless ad-hoc networking 
not covered here
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Tutorial Outline (1)

1. Overview: overlay networks, P2P 
applications, copyright issues, worldwide 
computer vision
2. Unstructured P2P file sharing: Napster, 
Gnutella, KaZaA, search theory, 
flashfloods
3. Structured DHT systems: Chord, CAN, 
Pastry, Tapestry, etc.
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Tutorial Outline (cont.)

4. Applications of DHTs: persistent file 
storage, mobility management, etc.
5. Security issues: vulnerabilities, 
solutions, anonymity
6. Graphical structure: random graphs, 
fault  tolerance
7. Experimental observations: measurement 
studies
8. Wrap up
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1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision
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Overlay networks
overlay edge
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Overlay graph
Virtual edge

TCP connection
or simply a pointer to an IP address

Overlay maintenance
Periodically ping to make sure neighbor is 
still alive
Or verify liveness while messaging
If neighbor goes down, may want to 
establish new edge
New node needs to bootstrap
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More about overlays 

Unstructured overlays
e.g., new node randomly chooses three 
existing nodes as neighbors

Structured overlays
e.g., edges arranged in restrictive structure

Proximity
Not necessarily taken into account
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Overlays: all in the application layer
Tremendous design 

flexibility
Topology, maintenance
Message types
Protocol
Messaging over TCP or UDP

Underlying physical net is 
transparent to developer

But some overlays exploit 
proximity

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical
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Examples of overlays

DNS
BGP routers and their peering relationships
Content distribution networks (CDNs)
Application-level multicast

economical way around barriers to IP multicast

And P2P apps !
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1. Overview of P2P

overlay networks
current P2P applications

P2P file sharing & copyright issues
Instant messaging / voice over IP
P2P distributed computing

worldwide computer vision
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P2P file sharing

Alice runs P2P client 
application on her 
notebook computer
Intermittently 
connects to Internet; 
gets new IP address 
for each connection
Registers her content 
in P2P system

Asks for “Hey Jude”
Application displays 
other peers that have 
copy of Hey Jude.
Alice chooses one of 
the peers, Bob.
File is copied from 
Bob’s PC to Alice’s 
notebook: P2P
While Alice downloads, 
other users uploading 
from Alice.
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Millions of content servers

Hey 
Jude

Magic 
Flute

Star
Wars

ERNPR

Blue
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Killer deployments

Napster
disruptive; proof of concept 

Gnutella
open source

KaZaA/FastTrack
Today more KaZaA traffic then Web traffic!

eDonkey / Overnet
Becoming popular in Europe
Appears to use a DHT

Is success due to massive number of servers, 
or simply because content is free?
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P2P file sharing software

Allows Alice to open up 
a directory in her file 
system

Anyone can retrieve a 
file from directory
Like a Web server

Allows Alice to copy 
files from other users’ 
open directories:

Like a Web client

Allows users to search 
nodes for content 
based on keyword 
matches:

Like Google

Seems harmless 
to me !
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Copyright issues (1)

Direct infringement:
end users who 
download or upload 
copyrighted works

Indirect infringement:
Hold an individual 
accountable for 
actions of others
Contributory
Vicarious

direct infringers
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Copyright issues (2)

Contributory infringer:
knew of underlying 
direct infringement, 
and
caused, induced, or 
materially contributed 
to direct infringement

Vicarious infringer:
able to control the 
direct infringers (e.g., 
terminate user 
accounts), and
derived direct financial 
benefit from direct 
infringement (money, 
more users)

(knowledge not necessary)
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Copyright issues (3)
Betamax VCR defense

Manufacturer not 
liable for contributory 
infringement
“capable of substantial 
non-infringing use”
But in Napster case, 
court found defense 
does not apply to all 
vicarious liability

Guidelines for P2P developers
total control so that 
there’s no direct 
infringement

or
no control over users – no 
remote kill switch, 
automatic updates, actively 
promote non-infringing 
uses of product
Disaggregate functions: 
indexing, search, transfer
No customer support
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Instant Messaging

Alice runs IM client on 
her PC
Intermittently 
connects to Internet; 
gets new IP address 
for each connection
Registers herself with 
“system”
Learns from “system” 
that Bob in her buddy 
list is active

Alice initiates direct 
TCP connection with 
Bob: P2P
Alice and Bob chat.

Can also be voice, 
video and text.

We’ll see that Skype
is a VoIP P2P system
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P2P Distributed Computing

seti@home
Search for ET 
intelligence
Central site collects 
radio telescope data
Data is divided into 
work chunks of 300 
Kbytes
User obtains client, 
which runs in backgrd

Peer sets up TCP 
connection to central 
computer, downloads 
chunk
Peer does FFT on 
chunk, uploads results, 
gets new chunk

Not peer to peer, but exploits
resources at network edge
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1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision
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Worldwide Computer Vision

Alice’s home computer:
Working for biotech, 
matching gene sequences
DSL connection downloading 
telescope data
Contains encrypted 
fragments of thousands of 
non-Alice files
Occasionally a fragment is 
read; it’s part of a movie 
someone is watching in Paris
Her laptop is off, but it’s 
backing up others’ files

Alice’s computer is 
moonlighting
Payments come from 
biotech company, movie 
system and backup service

Your PC is only a component
in the “big” computer
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Worldwide Computer (2)

Anderson & Kubiatowicz:
Internet-scale OS 

Thin software layer running 
on each host & central 
coordinating system 
running on ISOS server 
complex
allocating resources, 
coordinating currency 
transfer
Supports data processing & 
online services

Challenges
heterogeneous hosts
security
payments

Central server complex
needed to ensure privacy 
of sensitive data
ISOS server complex  
maintains databases of 
resource descriptions, 
usage policies, and task 
descriptions
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2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds
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Napster

Paradigm shift
not the first (c.f. probably Eternity, from 
Ross Anderson in Cambridge)
but instructive for what it gets right, and
also wrong…
also had a political message…and economic 
and legal…
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Napster
program for sharing files over the Internet
a “disruptive” application/technology?
history:

5/99: Shawn Fanning (freshman, Northeasten U.) 
founds Napster Online music service
12/99: first lawsuit
3/00: 25%  UWisc traffic Napster
2/01: US Circuit Court of 

Appeals: Napster knew users 
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K,                   

Morpheus (KaZaA): 300K
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Napster

judge orders Napster 
to pull plug in July ‘01 
other file sharing apps 
take over!

gnutella
napster
fastrack (KaZaA)

8M

6M

4M

2M

0.0
bi

ts
 p

er
 s

ec
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Napster: how did it work

Application-level, client-server protocol over 
point-to-point TCP 
Centralized directory server

Steps:
connect to Napster server
upload your list of files to server.
give server keywords to search the full list with.
select “best” of correct answers. (pings)
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Napster

File list 
and IP 
address is 
uploaded

1.
napster.com
centralized directory
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Napster
napster.com
centralized directory

Query
and

results

User   
requests 
search at 
server.

2.
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Napster

pings
pings

User pings 
hosts that 
apparently 
have data.

Looks for 
best transfer 
rate.

3.
napster.com
centralized directory
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Napster
napster.com
centralized directory

Retrieves
file

User chooses
server

4.

Napster’s 
centralized 
server farm had 
difficult time 
keeping 
up with traffic
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2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds
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Distributed Search/Flooding
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Distributed Search/Flooding
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Gnutella

focus: decentralized method of searching 
for files

central directory server no longer the 
bottleneck
more difficult to “pull plug”

each application instance serves to:
store selected files
route queries from and to its neighboring peers
respond to queries if file stored locally
serve files
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Gnutella

Gnutella history:
3/14/00: release by AOL, almost immediately 
withdrawn
became open source
many iterations to fix poor initial design (poor 
design turned many people off)

issues:
how much traffic does one query generate?
how many hosts can it support at once?
what is the latency associated with querying?
is there a bottleneck?
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Gnutella: limited scope query
Searching by flooding:

if you don’t have the file you want, query 7 
of your neighbors.
if they don’t have it, they contact 7 of 
their neighbors, for a maximum hop count 
of 10.
reverse path forwarding for responses (not 
files)

Note: Play gnutella animation at: 
http://www.limewire.com/index.jsp/p2p
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Gnutella overlay management

New node uses bootstrap node to get IP 
addresses of existing Gnutella nodes
New node establishes neighboring relations 
by sending join messages

join
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Gnutella in practice

Gnutella traffic << KaZaA traffic
16-year-old daughter said “it stinks”

Couldn’t find anything
Downloads wouldn’t complete

Fixes: do things KaZaA is doing: hierarchy, 
queue management, parallel download,…
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Gnutella Discussion:

researchers like it because it’s open source
but is it truly representative?

architectural lessons learned?
More details in Kurose and Ross, 3rd edition
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2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds
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KaZaA: The service

more than 3 million up peers sharing over 
3,000 terabytes of content
more popular than Napster ever was
more than 50% of Internet traffic ?
MP3s & entire albums, videos, games
optional parallel downloading of files
automatically switches to new download 
server when current server becomes 
unavailable
provides estimated download times
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KaZaA: The service (2)

User can configure max number of simultaneous 
uploads and max number of simultaneous 
downloads
queue management at server and client

Frequent uploaders can get priority in server queue
Keyword search

User can configure “up to x” responses to keywords
Responses to keyword queries come in waves; 
stops when x responses are found
From user’s perspective, service resembles Google, 
but provides links to MP3s and videos rather than 
Web pages
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KaZaA: Technology

Software
Proprietary
control data encrypted
Everything in HTTP request and response 
messages

Architecture
hierarchical
cross between Napster and Gnutella
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KaZaA: Architecture

Each peer is either a 
supernode or is 
assigned to a 
supernode

56 min avg connect
Each SN has about 
100-150 children
Roughly 30,000 SNs

Each supernode has 
TCP connections with 
30-50 supernodes

0.1% connectivity
23 min avg connect

supernodes
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Measurement study
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Evolution of connections at SN 
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KaZaA: Architecture (2)

Nodes that have more connection 
bandwidth and are more available are 
designated as supernodes
Each supernode acts as a mini-Napster hub, 
tracking the content and IP addresses of 
its descendants
Does a KaZaA SN track only the content of 
its children, or does it also track the 
content under its neighboring SNs?

Testing indicates only children.
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KaZaA metadata

When ON connects to SN, it uploads its metadata.
For each file:

File name
File size
Content Hash
File descriptors: used for keyword matches during query

Content Hash:
When peer A selects file at peer B, peer A sends 
ContentHash in HTTP request
If download for a specific file fails (partially completes), 
ContentHash is used to search for new copy of file.
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KaZaA: Overlay maintenance

List of potential supernodes included within 
software download
New peer goes through list until it finds 
operational supernode

Connects, obtains more up-to-date list, with 
200 entries
Nodes in list are “close” to ON.
Node then pings 5 nodes on list and connects 
with the one

If supernode goes down, node obtains 
updated list and chooses new supernode
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KaZaA Queries

Node first sends query to supernode
Supernode responds with matches
If x matches found, done.

Otherwise, supernode forwards query to 
subset of supernodes

If total of x matches found, done.
Otherwise, query further forwarded

Probably by original supernode rather than 
recursively
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Kazaa-lite

Hacked version of the KaZaA client
No spyware; no pop-up windows
Everyone is rated as a priority user
Supernode hopping

After receiving replies from SN, ON often 
connects to new SN and re-sends query
SN does not cache hopped-out ON’s metadata



55

Parallel Downloading; Recovery

If file is found in multiple nodes, user can 
select parallel downloading

Identical copies identified by ContentHash
HTTP byte-range header used to request 
different portions of the file from 
different nodes
Automatic recovery when server peer 
stops sending file

ContentHash
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KaZaA Corporate Structure

Software developed  by 
Estonians
FastTrack originally 
incorporated in Amsterdam
FastTrack also deploys 
KaZaA service
FastTrack licenses 
software to Music City 
(Morpheus) and Grokster
Later, FastTrack
terminates license, leaves 
only KaZaA with killer 
service

Summer 2001, Sharman 
networks, founded in 
Vanuatu (small island in 
Pacific), acquires 
FastTrack

Board of directors, 
investors: secret

Employees spread 
around, hard to locate
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Lessons learned from KaZaA

Exploit heterogeneity
Provide automatic 
recovery for 
interrupted downloads
Powerful, intuitive 
user interface

Copyright infringement
International cat-and-
mouse game
With distributed, 
serverless
architecture, can the 
plug be pulled?
Prosecute users?
Launch DoS attack on 
supernodes?
Pollute?

KaZaA provides powerful 
file search and transfer 
service without server 
infrastructure
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Measurement studies by Gribble et 
al

2002 U. Wash campus 
study
P2P: 43%; Web: 14%
Kazaa objects fetched 
at most once per client
Popularity distribution 
deviates substantially 
from Zipf distribution

Flat for 100 most 
popular objects

Popularity of objects 
is short.

KaZaA users are patient
Small objects (<10MB): 
30% take more than 
hour to download
Large objects (>100MB): 
50% more than 1 day
Kazaa is a batch-mode 
system, downloads done 
in background
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Pollution in P2P

Record labels hire “polluting companies” to 
put bogus versions of popular songs in file 
sharing systems
Polluting company maintains hundreds of 
nodes with high bandwidth connections
User A downloads polluted file
User B may download polluted file before A 
removes it
How extensive is pollution today?
Anti-pollution mechanisms?



60

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds
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BitTorrent url tracker

1. GET file.torrent

file.torrent info:
• length
• name
• hash
• url of tracker

2. GET 3. list of 
peers

4.
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BitTorrent: Pieces

File is broken into pieces
Typically piece is 256 KBytes
Upload pieces while downloading pieces

Piece selection
Select rarest piece
Except at beginning, select random pieces

Tit-for-tat
Bit-torrent uploads to at most four peers
Among the uploaders, upload to the four that 
are downloading to you at the highest rates
A little randomness too, for probing
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NATs

nemesis for P2P
Peer behind NAT can’t be a TCP server
Partial solution: reverse call

Suppose A wants to download from B, B behind NAT
Suppose A and B have each maintain TCP connection to 
server C (not behind NAT)
A can then ask B, through C, to set up a TCP connection 
from B to A. 
A can then send query over this TCP connection, and B 
can return the file

What if both A and B are behind NATs?
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2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
search theory
dealing with flash crowds
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Modeling Unstructured P2P 
Networks

In comparison to DHT-based searches, 
unstructured searches are

simple to build
simple to understand algorithmically

Little concrete is known about their performance
Q: what is the expected overhead of a search?
Q: how does caching pointers help?
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Replication
Scenario

Nodes cache copies (or pointers to) content
• object info can be “pushed” from nodes that have copies
• more copies leads to shorter searches

Caches have limited size: can’t hold everything
Objects have different popularities: different content 
requested at different rates

Q: How should the cache be shared among the 
different content?

Favor items under heavy demand too much then lightly 
demanded items will drive up search costs
Favor a more “flat” caching (i.e., independent of 
popularity), then frequent searches for heavily-
requested items will drive up costs

Is there an optimal strategy?
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Model
Given

m objects, n nodes, each node can hold c objects, total system 
capacity = cn
qi is the request rate for the ith object, q1 ≥ q2 ≥ … ≥ qm
pi is the fraction of total system capacity used to store object 
i, ∑pi = 1

Then
Expected length of search for object i = K / pi for some 
constant K

• note: assumes search selects node w/ replacement, search stops 
as soon as object found

Network “bandwidth” used to search for all objects:               
B = ∑qi K / pi

Goal: Find allocation for {pi} (as a function of {qi}) to minimize B
Goal 2: Find distributed method to implement this allocation of 
{pi}
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Some possible choices for {pi}

Consider some typical allocations used in practice
Uniform: p1 = p2 = … = pm = 1/m

• easy to implement: whoever creates the object sends out 
cn/m copies

Proportional: pi = a qi where a = 1/∑qi is a normalization 
constant

• also easy to implement: keep the received copy cached

What is B = ∑qi K / pi for these two policies?
Uniform: B = ∑qi K / (1/m) = Km/a
Proportional: B = ∑qi K / (a qi) = Km/a

B is the same for the Proportional and Uniform 
policies!
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In between Proportional and 
Uniform

Uniform: pi / pi+1 = 1, Proportional: pi / pi+1 = qi / qi+1
≥ 1
In between: 1 ≤ pi /  pi+1 ≤ qi / qi+1
Claim: any in-between allocation has lower B than B 
for Uniform / Proportional
Proof: Omitted here
Consider Square-Root allocation: pi = sqrt(qi) / 
∑sqrt(qi)
Thm: Square-Root is optimal
Proof  (sketch):

Noting pm = 1 – (p1 + … + pm-1)
write B = F(p1, …, pm-1) = ∑m-1 qi/pi + qm/(1- ∑m-1 pi)
Solving dF/dpi = 0 gives pi = pm sqrt(qi/qm)
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Distributed Method for 
Square-Root Allocation

Assumption: each copy in the cache 
disappears from the cache at some rate 
independent of the object cached (e.g., 
object lifetime is i.i.d.)
Algorithm Sqrt-Cache: cache a copy of object 
i (once found) at each node visited while 
searching for object i
Claim Algorithm implements Square-Root 
Allocation
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Proof of Claim
Sketch of Proof of Correctness:

Let fi(t) be fraction of locations holding object i @ time 
t

pi = limt→∞ fi(t)

At time t, using Sqrt-Cache, object i populates cache at 
avg rate            ri =  qi / fi(t) 

When fi(t) / fj(t) < sqrt(qi) / sqrt(qj), then
• ri (t) / rj (t) = qi fj (t) / qj fi (t) > sqrt(qi) / sqrt(qj)

• hence, ratio fi (t) / fj (t) will increase 

When fi (t) / fj (t) > sqrt(qi) / sqrt(qj), then 
• ri (t) / rj (t) = qi fj (t) / qj fi (t) < sqrt(qi) / sqrt(qj)

• hence, ratio fi (t) / fj (t) will decrease

Steady state is therefore when fi (t) / fj (t) = sqrt(qi) / 
sqrt(qj), 



72

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
search theory
dealing with flash crowds
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Flash Crowd

Def: A sudden, unanticipated growth in demand of 
a particular object
Assumption:  content was previously “cold” and 
hence an insufficient number of copies is loaded 
into the cache
How long will it take (on average) for a user to 
locate the content of interest?
How many messages can a node expect to receive 
due to other nodes’ searches?
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Generic Search Protocol

Initiator sends queries to f 
randomly chosen neighbors
Node receiving query

with object: forwards object 
directly (via IP) to the 
initiator
w/o object TTL not 
exceeded: forwards query to 
f neighbors, else does 
nothing
w/o object and TTL 
exceeded: do nothing

If object not found, increase 
TTL and try again (to some 
maximum TTL)
Note: dumb protocol, nodes 
do not supress repeat queries

f = 3

Randomized TTL-scoped search
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Analysis of the Search Protocol

Modeling assumptions:
Neighbor overlay is fully-connected

• queries are “memoryless” – if a node is queried multiple 
times, it acts each time as if it’s the first time (and a node 
may even query itself)

• Accuracy of analysis verified via comparison to simulation on 
neighbor overlays that are sparsely connected

Protocol is round-based: query received by participant in 
round i is forwarded to f neighbors in round i+1

Time searchers start their searches: will evaluate 2 
extremes

• sequential: one user searches at a time
• simultaneous: all users search simultaneously
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Search Model: Preliminaries

Parameters
N = # nodes in the overlay (fully connected)
H = # nodes that have a copy of the desired object (varies w/ 
time)

Performance Measures
R = # rounds needed to locate the object
T = # query transmissions

p = P(Randomly chosen node does not have object) = 1-(H/N)
Recall: f = # neighbors each node forwards query to

P(R > i) = p^(f+f2+f3+…+fi) = p^((fi+1-f)/(f-1))
E[R] = ∑ P(R > i)

i≥0
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Search Model cont’d
To compute E[T]:

Create a schedule: Each node 
determines in advance who to query  
if a query is necessary 
Ni,j is the jth node at depth i in the 
schedule
Xi,j = 1 if the query scheduled at Ni,j
is executed and is 0 otherwise 
Xi,j= 1 if and only if both

• Xi’,j’=1 for the i-1 entries Ni’,j’ along 
the path from N1,1 to Ni,j

• Ni,j does not have a copy of the 
object

P(Xi,j=1) = pi-1

E[T] = ∑ P(Xi,j=1) = ∑ p^(0+f+f2+…+fi-1) = ∑ p^((fi-1)/(f-1))
i,j                         i                                   i

N2,1

5

5

1

3

N1,1

N1,3

N1,2

N2,2

N2,3

N2,9

N2,4…
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Single-user search results

Search cost inversely proportional to fraction of 
nodes w/ object
Varying f and I (max TTL) has more of an affect 
on rounds than on transmissions
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Analyzing undirected searches 
during a flash crowd

Scenario: A large majority of users suddenly want 
the same object
Numerous independent searches for the same 
object are initiated throughout the network

Nodes cannot suppress one user’s search for an object 
with the other.  Each search has different location 
where object should be delivered

What is the cost of using an unstructured search 
protocol?
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One-after-the-other Searches

Nh = # nodes that initially have object, I = max TTL
Sequential searches,f = 10, terminates when all nodes have object
Analytical Results (confirmed with simulation):

Expected transmissions sent and received per node is small (max is 
manageable)
Expected # of rounds small (unless max TTL kept small)
Simulation results use overlay graphs where # of neighbors bounded by 
100: Note error using full connectivity is negligible
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Flash Crowd Scalability: 
Intuitive Explanation

Gnutella scales poorly when different users search 
for different objects: high transmission overhead
Q: Why will expanding-ring TTL search achieve 
better scalability?
A:

Popular objects 
propagate through 
overlay via successful 
searches 
Subsequent searches 
often succeed with 
smaller TTL: require 
less overhead
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Simultaneous Searches

Model: Start measuring at a point in time where 
Nh have copies and Nd nodes have been actively 
searching for a “long time”
Compute upper bound on expected # 
transmissions and rounds
Details omitted here…
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Simultaneous Search Results

Simulation results show upper bounds to be extremely 
conservative (using branching process model of search 
starts)
Conclusion (conservative) : 

less than  400 transmissions on average received and sent per 
node to handle delivery to millions of participants
less than 15 query rounds on average
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Simultaneous Search Intuition

Let h(t) be the number of nodes that have the object after 
the tth round where d of N nodes are searching
Each searching node contacts s nodes on average per round
Approximation: h(t) = h(t-1) + (d – h(t-1)) s *        h(t-1)/N, 
h(0) > 0
Even when h(t)/N is small, some node has high likelihood of 
finding object
h(t) grows quickly even when small when many users search 
simultaneously
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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Challenge: Locating Content

Simplest strategy: expanding ring search 

If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

Need many cached copies to keep search overhead small

I’m looking for 
NGC’02 Tutorial 

Notes

Here you go!
Here you go!
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Directed Searches

Idea: 
assign particular nodes to hold particular content (or 
pointers to it, like an information booth)
when a node wants that content, go to the node that is 
supposed to have or know about it

Challenges:
Distributed: want to distribute responsibilities among 
existing nodes in the overlay
Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute responsibility knowledge from leaving 

nodes
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DHT Step 1: The Hash
Introduce a hash function to map the object being searched 
for to a unique identifier:

e.g., h(“NGC’02 Tutorial Notes”) → 8045
Distribute the range of the hash function among all nodes in 
the network

Each node must “know about” at least one copy of each 
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045



89

“Knowing about objects”

Two alternatives
Node can cache each (existing) object that 
hashes within its range
Pointer-based: level of indirection - node 
caches pointer to location(s) of object

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500
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DHT Step 2: Routing

For each object, node(s) whose range(s) cover that object 
must be reachable via a “short” path
by the querier node (assumed can be chosen arbitrarily)
by nodes that have copies of the object (when pointer-based 
approach is used)

The different approaches (CAN,Chord,Pastry,Tapestry) 
differ fundamentally only in the routing approach

any “good” random hash function will suffice
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DHT Routing: Other Challenges

# neighbors for each node should scale with growth in 
overlay participation (e.g., should not be O(N))
DHT mechanism should be fully distributed (no centralized 
point that bottlenecks throughput or can act as single point 
of failure)
DHT mechanism should gracefully handle nodes 
joining/leaving the overlay

need to repartition the range space over existing nodes
need to reorganize neighbor set
need bootstrap mechanism to connect new nodes into the 
existing DHT infrastructure
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DHT API

each data item (e.g., file or metadata 
containing pointers) has a key in some ID 
space
In each node, DHT software provides API:

Application gives API key k
API returns IP address of node that is 
responsible for k

API is implemented with an underlying DHT 
overlay and distributed algorithms 
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DHT API

application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
a t

io
n

D
H

T  
s u

bs
tra

te
A

PI

app licat ion

D
H

T su bstrat e
A

P I

overlay
network

key
responsible
node

each data item (e.g., file or metadata 
pointing to file copies) has a key 
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DHT Layered Architecture

TCP/IP

DHT

Network 
storage

Event 
notification

Internet

P2P substrate 
(self-organizing
overlay network)

P2P application layer?
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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CARP

DHT for cache clusters
Each proxy has unique 
name

key = URL = u
calc h(proxyn, u) for all 
proxies
assign u to proxy with 
highest h(proxyn, u) 

institutional
network

proxies

clients

Internet

if proxy added or 
removed, u is likely 
still in correct proxy
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CARP (2)

circa 1997
Internet draft: 
Valloppillil and Ross

Implemented in 
Microsoft & Netscape 
products
Browsers obtain script 
for hashing from 
proxy automatic 
configuration file 
(loads automatically)

Not good for P2P:
Each node needs to 
know name of all other 
up nodes
i.e., need to know O(N) 
neighbors
But only O(1) hops in 
lookup
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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Consistent hashing (1)

Overlay network is a circle
Each node has randomly chosen id

Keys in same id space
Node’s successor in circle is node with next 
largest id

Each node knows IP address of its successor
Key is stored in closest successor
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Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110 
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors
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Consistent hashing (3)

Node departures
Each node must track 
s ≥ 2 successors
If your successor 
leaves, take next one
Ask your new 
successor for list of 
its successors; update 
your s successors

Node joins
You’re new, node id k
ask any node n to find 
the node n’ that is the 
successor for id k
Get successor list 
from n’
Tell your predecessors 
to update their 
successor lists
Thus, each node must 
track its predecessor  
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Consistent hashing (4)

Overlay is actually a circle with small 
chords for tracking predecessor and k 
successors
# of neighbors = s+1: O(1)

The ids of your neighbors along with their IP 
addresses is your “routing table”

average # of messages to find key is O(N)

Can we do better?
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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Chord

Nodes assigned 1-dimensional IDs in hash space at 
random (e.g., hash on IP address)
Consistent hashing: Range covered by node is from 
previous ID up to its own ID (modulo the ID 
space)

124

874

3267

6783

8723
8723

874

3267

6783

8654

124
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Chord Routing
A node s’s ith neighbor has the ID that is equal to  
s+2i or is the next largest ID (mod ID space), i≥0
To reach the node handling ID t, send the message 
to neighbor #log2(t-s)
Requirement: each node s must know about the next 
node that exists clockwise on the Chord (0th

neighbor)
Set of known neighbors called a finger table
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Chord Routing (cont’d)
A node s is node t’s neighbor if s is the closest node to t+2i mod H 
for some i.  Thus,

each node has at most log2 N neighbors
for any object, the node whose range contains the object is reachable 
from any node in no more than log2 N overlay hops 

(each step can always traverse at least half the distance to the ID)
Given K objects, with high probability each node has at most
(1 + log2 N) K / N in its range

When a new node joins or leaves the overlay,                    
O(K / N) objects move between nodes

326

15

864

863

722

721

720

Finger 
table for 
node 67

i

1

8

32

87
86

72
67

Closest 
node 
clockwise 
to 

67+2i mod 
100
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Chord Node Insertion
One protocol addition: each node knows its closest counter-
clockwise neighbor
A node selects its unique (pseudo-random) ID and uses a 
bootstrapping process to find some node in the Chord
Using Chord, the node identifies its successor in the 
clockwise direction
An newly inserted node’s predecessor is its successor’s 
former predecessor 82 1

8

32

67

87
86

72

pred(86)=72
Example: Insert 82
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Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

First: set added node s’s fingers correctly
s’s predecessor t does the lookup for each distance of 2i

from s

676

325

14

13

862

861

860

Finger 
table for 
node 82

i

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86
Lookups from node 72
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Chord Node Insertion (cont’d)
Next, update other nodes’ fingers 
about the entrance of s (when 
relevant).  For each i:

Locate the closest node to s 
(counter-clockwise) whose 2i-finger 
can point to s: largest possible is     
s - 2i

Use Chord to go (clockwise) to 
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger 
node, select its predecessor as t

If t’s 2i-finger routes to a node 
larger than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

Else i++, repeat from top
O(log2 N) time to find and update 
nodes

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67X
X

e.g., for i=3
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Chord Node Deletion

Similar process can perform deletion
1

8

32

67

87
86

72

82-23

86 23-finger=82
86

23-finger=67X
X

e.g., for i=3

23-finger=82
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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CAN
hash value is viewed as a point in a D-dimensional cartesian space
each node responsible for a D-dimensional “cube” in the space
nodes are neighbors if their cubes “touch” at more than just a 
point 
(more formally, nodes s & t are neighbors when

s contains some 
[<n1, n2, …, ni, …, nj, …, nD>, <n1, n2, …, mi, …, nj, … nD>]

and t contains
[<n1, n2, …, ni, …, nj+δ, …, nD>, <n1, n2, …, mi, …, nj+ δ, … nD>])

• Example: D=2

• 1’s neighbors: 2,3,4,6

• 6’s neighbors: 1,2,4,5

• Squares “wrap around”, e.g., 7 and 8 are 
neighbors

• expected # neighbors: O(D)

1 6 5

4

3

2

7
8



113

CAN routing

To get to <n1, n2, …, nD> from <m1, m2, …, mD>
choose a neighbor with smallest cartesian distance from 

<m1, m2, …, mD> (e.g., measured from neighbor’s center)

1 6 5

4

3

2

7
8

• e.g., region 1 needs to send to node 
covering X

• checks all neighbors, node 2 is closest

• forwards message to node 2

• Cartesian distance monotonically 
decreases with each transmission

• expected # overlay hops: (DN1/D)/4X
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CAN node insertion
To join the CAN:

find some node in the CAN (via 
bootstrap process)
choose a point in the space 
uniformly at random
using CAN, inform the node that 
currently covers the space
that node splits its space in half

• 1st split along 1st dimension
• if last split along dimension i < D, 

next split along i+1st dimension
• e.g., for 2-d case, split on x-axis, 

then y-axis
keeps half the space and gives 
other half to joining node

1 6 5

4

3

2

7
8

X

Observation: the 
likelihood of a rectangle 
being selected is 
proportional to it’s size, 
i.e., big rectangles chosen 
more frequently

910
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CAN node removal
Underlying cube structure should 
remain intact

i.e., if the spaces covered by s & t were 
not formed by splitting a cube, then 
they should not be merged together

Sometimes, can simply collapse 
removed node’s portion to form bigger 
rectangle

e.g., if 6 leaves, its portion goes back to 
1

Other times, requires juxtaposition of 
nodes’ areas of coverage

e.g., if 3 leaves, should merge back into 
square formed by 2,4,5
cannot simply collapse 3’s space into 4 
and/or 5
one solution: 5’s old space collapses into 
2’s space, 5 takes over 3’s space

1 6

5
4

3

2

1 6

5
4

3

2
4 2

5
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CAN (recovery from) removal process

View partitioning as a binary tree of
leaves represent regions covered by overlay nodes (labeled by 
node that covers the region)
intermediate nodes represent “split” regions that could be 
“reformed”, i.e., a leaf can appear at that position
siblings are regions that can be merged together (forming the 
region that is covered by their parent)

1 6

5
4

3

2
7

8 9

10

11
12

13 14

109

8

7

2

4

5

3

13

12

14

11

61



117

CAN (recovery from) removal process

Repair algorithm when leaf s is removed
Find a leaf node t that is either

• s’s sibling 
• descendant of s’s sibling where t’s sibling is also a leaf node 

t takes over s’s region (moves to s’s position on the tree)
t’s sibling takes over t’s previous region

Distributed process in CAN to find appropriate t w/ sibling:
current (inappropriate) t sends msg into area that would be covered by 
a sibling
if sibling (same size region) is there, then done.  Else receiving node 
becomes t & repeat

109

8

7

2

4

5

3

13

12

14

11

61

X

1 6

5
4

3

2
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3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry
Hierarchical lookup services
Topology-centric lookup service
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Pseudo-Pastry: basic idea

Example: nodes & keys have n-digit base-3 ids, eg, 
02112100101022
Each key is stored in node with closest id
Node addressing defines nested groups

0.. 1.. 2..
00.. 10..

222.. 
inner group
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Pseudo-Pastry (2)

Nodes in same inner group know each other’s IP 
address
Each node knows IP address of one delegate node 
in some of the other groups

0.. 1.. 2..
00.. 10..

222.. 
inner group
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Pastry: basic idea (3)
Each node needs to know the IP addresses of all 
up nodes in its inner group.
Each node needs to know IP addresses of some 
delegate nodes. Which delegate nodes?
Node in 222…: 0…, 1…, 20…, 21…, 220…, 221…
Thus, 6 delegate nodes rather than 27

0.. 1.. 2..
00.. 10..

222.. 
inner group
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Pseudo-Pastry (4)
Suppose node in group 222… wants to lookup key 
k= 02112100210. Divide and conquer
Forward query to node node in 0…, then to node in 
02…, then to node in 021… 
Node in 021… forwards to closest to key in 1 hop

0.. 1.. 2..
00.. 10..

222.. 
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Pastry (in truth)

Nodes are assigned a 128-bit identifier
The identifier is viewed in base 16 

e.g., 65a1fc04
16 subgroups for each group

Each node maintains a routing table and a 
leaf set

routing table provides delegate nodes in nested 
groups
inner group idea flawed: might be empty or have 
too many nodes 



124

Routing table (node: 65a1fc04)

log16 N
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Pastry: Routing procedure
if (destination is within range of our leaf set) 

forward to numerically closest member
else

if (there’s a longer prefix match in table)
forward to node with longest match

else
forward to node in table 
(a) shares at least as long a prefix
(b) is numerically closer than this node
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Pastry: Performance
Integrity of overlay/ message delivery:

guaranteed unless L/2 simultaneous failures of 
nodes with adjacent nodeIds

Number of routing hops:
No failures: < log16 N   expected
During failure recovery:

O(N) worst case, average case much better 
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Pastry: Experimental results

Prototype
implemented in Java

deployed testbed (currently ~25 sites 
worldwide)

Simulations for large networks
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Pastry: Average # of hops

L=16, 100k random queries
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Pastry: # of hops (100k nodes)

L=16, 100k random queries
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Pastry: # routing hops 
(failures)

L=16, 100k random queries, 5k nodes, 500 failures
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Pastry: Proximity routing

Assumption: scalar proximity metric 
e.g. ping delay, # IP hops
a node can probe distance to any other 
node

Proximity invariant: 
Each routing table entry refers to a node close 
to the local node (in the proximity space), 
among all nodes with the appropriate nodeId
prefix.
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Pastry: Routes in proximity 
space 

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

NodeId space

d467c4

65a1fc
d13da3

d4213f

d462ba

Proximity space
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Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space
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Pastry: Locality properties
1)  Expected distance traveled by a message in the 

proximity space is within a small constant of the 
minimum

2)  Routes of messages sent by nearby nodes with 
same keys converge at a node near the source  
nodes

3)  Among k nodes with nodeIds closest to the key, 
message likely to reach the node closest to the 
source node first
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Pastry delay vs IP delay
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Pastry: Summary

O(log N) routing steps (expected)
O(log N) routing table size
Network proximity routing
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3. Structured P2P: DHT Approaches

The DHT service and API
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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Hierarchical Lookup Service

KaZaA is hierarchical but unstructured 

Routing in Internet is hierarchical

Perhaps DHTs can benefit from 
hierarchies too?

Peers are organized into groups
Inter-group lookup, then intra-group lookup
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Hierarchical framework
= supernode

CAN

Chord

Pastry

Tapestry
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Hierarchical Lookup

CAN

Chord

Pastry

Tapestry

Where’s
Key k

I have k
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Cooperative group caching

CAN

Chord

Pastry

Tapestry

Where’s
Key k

I have k

Nope, but
I’ll cache
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Hierarchical Lookup (2)

Benefits
Can reduce number of hops, particularly when 
nodes have heterogeneous availabilities
Groups can cooperatively cache popular files, 
reducing average latency
Facilitates large scale deployment by 
providing administrative autonomy to groups

Each ISP can use it is own DHT protocol
Similar to intra-AS routing
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Inter-lookup: Chord
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3. Structured P2P: DHT Approaches

The DHT service and API
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service
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Topology Centric: TOPLUS

Lookup delay ≈ IP delay (stretch =1)
Idea

Node ids are IP addresses
Nested groups: unbalanced
Get groups from prefixes in BGP routing 
tables

Each group is contiguous set of IP addresses of 
form w.x.y.z/n  (e.g., 128.15.6/23)
massaging
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Nested Groups
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TOPLUS: Delegate Nodes
Delegates: as you pass through groups towards 
root, take delegate from each descendant
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TOPLUS

Node state:
Other nodes in inner group
“descendant” delegate

Routing:
Longest IP-prefix match
Use optimized techniques in IP routers
Number of hops < H+1, H = height of tree
Typically, big jumps made initially into 
destinations AS (opposite of Pastry)



149

TOPLUS

Caching
A group G = w.x.y.z/r agrees to be a 
cooperative regional cache
When node in X in G wants to lookup k for 
file f, it creates kG: 

first r bits of k replaced with first r bits of 
w.x.y.z/r

X discovers node Yin G that’s responsible 
for kG
X requests f through Y
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TOPLUS: some results

250,252 prefixes from BGP tables
47,000 tier-1 groups
10,000 of which have sub groups
11 tiers

Used King to estimate delay between 
arbitrary nodes
Stretch: 1.17
Aggregated groups: 8000 tier-1 groups, 
40% having subgroups; stretch = 1.28
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TOPLUS issues

Inner group can be too big/small
Use XOR distance metric

Non-uniform population of node id space
Lack of virtual nodes
Correlated node failures
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4. Applications using DHTs

TCP/IP

DHT

Persist
storage

Mobility
managemnt

Internet

P2P substrate 
(self-organizing
overlay network)

P2P application layer
P2P
e-mail
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4. Applications using DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS
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File sharing using DHT

Advantages
Always find file 
Quickly find file
Potentially better 
management of 
resources

Challenges
File replication for 
availability
File replication for 
load balancing
Keyword searches

There is at least one file sharing system 
using DHTs: Overnet, using Kademlia
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File sharing: what’s under key?

Data item is file itself
Replicas needed for availability
How to load balance?

Data item under key is list of pointers to file
Must replicate pointer file
Must maintain pointer files: consistency
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File sharing: keywords

Recall that unstructured file sharing 
provides keyword search

Each stored file has associated metadata, 
matched with queries

DHT: Suppose key = h(artist, song)
If you know artist/song exactly, DHT can find 
node responsible for key
Have to get spelling/syntax right!

Suppose you only know song title, or only 
artist name?
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Keywords: how might it be done?

Each file has XML descriptor

<song>
<artist>David 

Bowie</artist>
<title>Changes</title>
<album>Hunky Dory</album>
<size>3156354</size>
</song>

Key is hash of descriptor: k = 
h(d)

Store file at node responsible 
for k

Plausible queries
q1 = /song[artist/David 

Bowie][title/Changes] 
[album/Hunky Dory] 
[size/3156354]

q2 = /song[artist/David 
Bowie][title/Changes]

q3 = /song/artist/David 
Bowie

q4 = /song/title/Changes

Create keys for each plausible 
query: kn = h(qn)

For each query key kn, store 
descriptors d at node 
responsible for kn
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Keywords: continued

Suppose you input q4 = /song/title/Changes
Locally obtain key for q4, submit key to 
DHT
DHT returns node n responsible for q4
Obtain from n the descriptors of all songs 
called Changes
You choose your song with descriptor d, 
locally obtain key for d, submit key to DHT
DHT returns node n’ responsible for 
desired song
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Blocks

HeyJude MP3

HeyJude1 HeyJude8

Each block is assigned to a different node
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Blocks (2)

Benefits
Parallel downloading 

Without wasting global 
storage

Load balancing
Transfer load for 
popular files 
distributed over 
multiple nodes

Drawbacks
Must locate all blocks
Must reassemble 
blocks
More TCP connections
If one block is 
unavailable, file is 
unavailable
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Erasures (1)

HeyJude

• Reconstruct file with any m of r pieces

• Increases storage overhead by factor r/m
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Erasures (2)

Benefits
Parallel downloading

Can stop when you get 
the first m pieces

Load balancing
More efficient copies 
of blocks

Improved availability 
for same amount of 
global storage

Drawbacks
Must reassemble 
blocks
More TCP connections
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4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
I3

SOS
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Cache: campus community

campus 
peers

world-wide
Internet 

peers

up node
down node

campus
access
link
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Cache: distribution engine

up node
down node

community

miss

response
server
farm

Permanent
archive
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Replication in cache: The problem

Lot’s of nodes
Which go up & down

Lot’s of files
Some more popular than 
others
Popularities changing

How many copies of 
each file? Where?
Want to optimize 
availability



167

DHT: Recall
For a given key, DHT returns current up 
node responsible for key

Can extend API to provide 1st place winner, 
2nd place winner, etc.



168

Desirable properties of content 
management algorithm

Distributed
Adaptive

No a priori knowledge about file popularities, 
node availabilities
New files inserted continually

High hit rate performance
Replicate while satisfying requests
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Adaptive algorithm: simple 
version

ordinary up node

down node

X

i

outside

LRU

Problem: Can miss even though object 
is in an up node in the community
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Top-K algorithm
top-K up node

ordinary up node

down node

•If i doesn’t have o, i pings top-K winners.
•i retrieves o from one of the top K if present.
•If none of the top K has o, i retrieves o from outside.

X

i
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Simulation

Adaptive and optimal algorithms

100 nodes, 10,000 objects

Zipf = 0.8, 1.2

Storage capacity 5-30 objects/node

All objects the same size

Up probs 0.2, 0.5, and 0.9

Top K with K = {1,2, 5}
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Hit-probability vs. node storage
p = P(up) 

= .5
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Number of replicas

p = P(up) 
= .5

15 objects 
per node

K = 1
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Most frequently requested 
(MFR)

Each peer estimates local request rate for each 
object.

denote λo(i) for rate at peer i for object o

Peer only stores the most requested objects.
packs as many objects as possible

Suppose i receives a request for o:
i updates λo(i) 
If i doesn’t have o & MFR says it should:

i retrieves o from the outside
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Influence the rates

λo(i) should reflect the “place” of node i

Don’t request o from top-K in parallel
Instead, sequentially request

Resulting λo(i)  are thinned by previous 
winners
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Most-frequently-requested 
top-K algorithm

top-K up node

ordinary up node

down node

X

i1

outside
i2

i3

i4

I should
have o
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Hit-probability vs. node storage

p = P(up) 
= .5

MFR: K=5
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Top-I MFR vs. optimal

Perf of Top-I MFR can be evaluated by a 
reduced-load iterative procedure

30 cases, each with 100 nodes & bj = 1

28 out of 30 cases: 

Top-I MFR converges to optimal!

But there are counter examples
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Summary: MFR top-K algorithm

Implementation
layers on top of location substrate
decentralized
simple: each peer keeps track of a local 
MFR table

Performance
provides near-optimal replica profile
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4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS
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Optimization theory
J objects, I peers in community
object j

requested with probability qj

size bj

peer i
up with probability pi

storage capacity Si

decision variable
xij = 1 if a replica of j is put in i; 0 otherwise

Goal: maximize hit probability (availability)
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Optimization problem
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Special case of Integer programming
problem: NP
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Homogeneous up probabilities 

Suppose pi = p

Let                 = number of replicas of object j

Let  S = total group storage capacity 

Minimize

subject to:    

∑
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Can be solved by
dynamic programming
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Erasures

Each object consists of Rj erasure packets
Need Mj erasure packets to reconstruct 
object 
Size of erasure packet is bj/Mj

Potentially improves hit probability
Potentially abate hot-spot problem
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Continuous optimization

Minimize

subject to
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Theorem: Following optimization problem provides
upper bound on hit probability:

Easy to solve!
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Steps in proof:

Allow for continuous number of copies of 
each erasure packet
Allocate space zj to each object
For given object j, use Shur convexity to 
show that optimal solution achieved when 
there’s the same number of copies of each 
of the Rj erasure packets
Optimize over possible zj allocations
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(1) Order objects according to qj/bj, largest to smallest

(2) There is an L such that               for all j > L.

(3) For j <= L , “logarithmic assignment rule”:
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No erasures
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Logarithmic behavior

up prob = .9
up prob = .5
up prob = .2
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4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS
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Persistent file storage

PAST layered on Pastry
CFS layered on Chord

P2P Filesystems
Oceanstore
FarSite
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PAST: persistence file storage

Goals
Strong persistence
High availability
Scalability 

nodes, files, 
queries, users

Efficient use of pooled 
resources

Benefits
Provides powerful 
backup and archiving 
service
Obviates need for 
explicit mirroring 
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Pastry: A self-organizing P2P 
overlay network 

k

Route k

Msg with key k
is 
routed to live 
node with 
nodeId closest 
to k 
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Pastry: Properties 

Properties
• log16 N steps 
• O(log N) state
• leaf sets

• diversity
• network locality

X

Le
af 

Set 
of 

Y

Route X

Y
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PAST: File storage 

fileIdPastry 
nodeId
space

Insert fileId
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PAST: File storage 

Storage 
Invariant: 
File “replicas” are 
stored on r nodes 
with nodeIds
closest to fileId

(r is bounded by 
the leaf set size)

fileIdPastry 
nodeId
space

r=4

Insert fileId
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PAST: File Retrieval

fileId

Pastry 
nodeId
space

• file located 
in  log16 N steps

• usually locates
replica nearest
client C

Lookup

r replicasC
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Maintaining the storage 
invariant

Pastry maintains leaf set membership 
notifies PAST of changes

Node arrival
refer to existing replicas  (“replica diversion”)
lazy fetch

Node failure
re-replicate file on k closest nodeIds
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4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management 
SOS
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Mobility management

Alice wants to contact bob smith
Instant messaging
IP telephony

But what is bob’s current IP address?
DHCP
Switching devices
Moving to new domains
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Mobility Management (2)

Bob has a unique identifier:
bob.smith@foo.com
k =h(bob.smith@foo.com)

Closest DHT nodes are responsible for k
Bob periodically updates those nodes with 
his current IP address
When Alice wants Bob’s IP address, she 
sends query with k =h(bob.smith@foo.com)
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Mobility management (3)

Obviates need for SIP servers/registrars
Can apply the same idea to DNS
Can apply the same idea to any directory 
service

e.g., P2P search engines
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4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS
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SOS: Preventing DoS Attacks

1. Select Target to attack
2. Break into accounts 

(around the network)

3. Have these accounts 
send packets toward 
the target

4. Optional: Attacker 
“spoofs” source address 
(origin of attacking 
packets)

To perform a DoS Attack:
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Goals of SOS

Allow moderate number of legitimate users to 
communicate with a target destination, where

DoS attackers will attempt to stop communication to the 
target
target difficult to replicate (e.g., info highly dynamic)
legitimate users may be mobile (source IP address may 
change)

Example scenarios
FBI/Police/Fire personnel in the field communicating 
with their agency’s database
Bank users’ access to their banking records
On-line customer completing a transaction
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SOS: The Players

Target: the node/end-
system/server to be protected 
from DOS attacks

Legitimate (Good) User: 
node/end-system/user that is 
authenticated (in advance) to 
communicate with the target

Attacker (Bad User): node/end-
system/user that wishes to 
prevent legitimate users’ access 
to targets
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SOS: The Basic Idea
DoS Attacks are effective because 
of their many-to-one nature: many 
attack one

SOS Idea: Send traffic across an 
overlay: 

Force attackers to attack many overlay 
points to mount successful attack
Allow network to adapt quickly: the 
“many” that must be attacked can be 
changed
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Goal
Allow pre-approved legitimate users to communicate with a target
Prevent illegitimate attackers’ packets from reaching the target
Want a solution that

is easy to distribute: doesn’t require mods in all network routers
does not require high complexity (e.g., crypto) ops at/near the target

Assumption: Attacker cannot deny service to core network routers and can 
only simultaneously attack a bounded number of distributed end-systems
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SOS: Step 1 - Filtering
Routers “near” the target apply simple packet filter 
based on IP address

legitimate users’ IP addresses allowed through
illegitimate users’ IP addresses aren’t

Problems: What if
good and bad users have same IP address?
bad users know good user’s IP address and spoofs?
good IP address changes frequently (mobility)? (frequent 
filter updates)
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SOS: Step 2 - Proxies
Step 2: Install Proxies outside the filter 
whose IP addresses are permitted through 
the filter

proxy only lets verified packets from legitimate 
sources through the filter

w.x.y.z
not 
done 
yet…
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Problems with a known Proxy

Proxies introduce other problems
Attacker can breach filter by attacking with 
spoofed proxy address
Attacker can DoS attack the proxy, again 
preventing legitimate user communication

w.x.y.z

I’m w.x.y.z

I’m w.x.y.z

I’m w.x.y.z
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SOS: Step 3 - Secret Servlets

Step 3: Keep the identity of the proxy 
“hidden”

hidden proxy called a Secret Servlet
only target, the secret servlet itself, and a few 
other points in the network know the secret 
servlet’s identity (IP address)
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SOS: Steps 4&5 - Overlays

Step 4: Send traffic to the secret servlet via a 
network overlay

nodes in virtual network are often end-systems
verification/authentication of “legitimacy” of traffic can 
be performed at each overlay end-system hop (if/when 
desired)

Step 5: Advertise a set of nodes that can be used 
by the legitimate user to access the overlay

these access nodes participate within the overlay
are called Secure Overlay Access Points (SOAPs)

User → SOAP → across overlay → Secret Servlet → (through 
filter) → target
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SOS with “Random” routing

With filters, multiple SOAPs, and hidden secret 
servlets, attacker cannot “focus” attack

SOAP

?SOAPSOAP

SOAP

secret 
servlet
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Better than “Random” Routing
Must get from SOAP to Secret Servlet in a “hard-to-predict 
manner”: But random routing routes are long (O(n))
Routes should not “break” as nodes join and leave the overlay 
(i.e., nodes may leave if attacked)
Current proposed version uses DHT routing (e.g., Chord, CAN, 
PASTRY, Tapestry).  We consider Chord:

Recall: A distributed protocol, nodes are used in homogeneous 
fashion
identifier, I, (e.g., filename)  mapped to a unique node h(I) = B in 
the overlay
Implements a route from any node to B containing O(log N) 
overlay hops,  where N = # overlay nodes

h(I)

to h(I)

to h(I)
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Step 5A: SOS with Chord

Utilizes a Beacon to go 
from overlay to secret 
servlet
Using target IP address A, 
Chord will deliver packet 
to a Beacon, B, where h(A) 
= B
Secret Servlet chosen by 
target (arbitrarily)

SOAP

IP address A

Beacon

IP address B

I’m a secret 
servlet for A

To h(A)

Be my secret 
servlet

To h
(A)

SOS protected data packet forwarding
1. Legitimate user forwards packet to 

SOAP
2. SOAP forwards verified packet to 

Beacon (via Chord)
3. Beacon forwards verified packet to 

secret servlet
4. Secret Servlet forwards verified 

packet to target
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Adding Redundancy in SOS

Each special role can be duplicated if desired
Any overlay node can be a SOAP
The target can select multiple secret servlets
Multiple Beacons can be deployed by using multiple hash 
functions

An attacker that successfully attacks a SOAP, 
secret servlet or beacon brings down only a subset 
of connections, and only while the overlay detects 
and adapts to the attacks
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Why attacking SOS is difficult
Attack the target directly (without 
knowing secret servlet ID): filter 
protects the target
Attack secret servlets:

Well, they’re hidden…
Attacked servlets “shut down” and 
target selects new servlets

Attack beacons: beacons “shut down” 
(leave the overlay) and new nodes 
become beacons

attacker must continue to attack a “shut 
down” node or it will return to the overlay

Attack other overlay nodes: nodes 
shut down or leave the overlay, 
routing self-repairs

SOAP

beacon

secret
servlet

Chord
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Attack Success Analysis

N nodes in the overlay
For a given target

S = # of secret servlet nodes
B = # of beacon nodes
A = # of SOAPs

Static attack: Attacker chooses M of N nodes at random and 
focuses attack on these nodes, shutting them down
What is Pstatic(N,M,S,B,A)  = P(attack prevents communication with 
target)
P(n,b,c) = P(set of b nodes chosen at random (uniform w/o 
replacement) from n nodes contains a specific set of c nodes)

P(n,b,c) =                             = 
n-c

b-c

n

b   

b

c

n

c

Node jobs are assigned 
independently (same node can 
perform multiple jobs)
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Pstatic(N,M,S,B,A) = 1 - (1 - P(N,M,S))(1 – P(N,M,B))(1 
– P(N,M,A))

Attack Success Analysis cont’d

Almost all overlay nodes must be attacked to achieve a 
high likelihood of DoS
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Dynamic Attacks
Ongoing attack/repair battle:

SOS detects & removes attacked 
nodes from overlay, repairs take 
time TR
Attacker shifts from removed node 
to active node, detection/shift takes 
time TA (freed node rejoins overlay)

Assuming TA and TR are 
exponentially distributed R.V.’s, can 
be modeled as a birth-death process

…0 1

µ1 µ2

λ1 λ2

M-1 M

µM-1 µM

λM-1 λM

M = Max # nodes 
simultaneously attacked

πi = P(i attacked nodes 
currently in overlay)

Pdynamic =∑0 ≤i ≤M (πi •
Pstatic(N-M+i,i,S,B,A))

Centralized attack: λi = λ
Distributed attack: λi = (M-i)λ

Centralized repair: µi = µ
Distributed repair: µi = iµ
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Dynamic Attack Results

1000 overlay nodes, 10 SOAPs, 10 secret servlets, 10 
beacons
If repair faster than attack, SOS is robust even 
against large attacks (especially in centralized case)

centralized attack and repair distributed attack and repair
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SOS Summary

SOS protects a target from DoS attacks
lets legitimate (authenticated) users through

Approach
Filter around the target
Allow “hidden” proxies to pass through the filter
Use network overlays to allow legitimate users to reach 
the “hidden” proxies

Preliminary Analysis Results
An attacker without overlay “insider” knowledge must 
attack majority of overlay nodes to deny service to 
target
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5. Security in Structured P2P 
Systems

Structured Systems described thusfar
assume all nodes “behave”

Position themselves in forwarding structure to 
where they belong (based on ID)
Forward queries to appropriate next hop
Store and return content they are assigned 
when asked to do so

How can attackers hinder operation of 
these systems?
What can be done to hinder attacks?
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Attacker Assumptions

The attacker(s) participate in the P2P 
group
Cannot view/modify packets not sent to 
them
Can collude
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Classes of Attacks

Routing Attacks: re-route traffic in a “bad’ 
direction
Storage/Retrieval Attacks: prevent 
delivery of requested data
Miscellaneous

DoS (overload) nodes
Rapid joins/leaves
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Identity Spoofing

Problem:
Node claims to have an identity that belongs to 
other node
Node delivers bogus content

Solution:
Nodes have certificates signed by trusted 
authority
Preventing spoofed identity: base identity on IP 
address, send query to verify the address.
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Routing Attacks 1: redirection

Malicious node redirects queries in wrong 
direction or to non-existent nodes (drops)

YX
locate Y
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Suggested Solution: Part I

Use iterative approach to reach 
destination.

verify that each hop moves closer (in ID space) 
to destination

YX
locate Y

?



229

Suggested Solution: Part II

Provide multiple paths to “re-route” around 
attackers

YX
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Choosing the Alternate paths: 
e.g., a CAN enhancement

Use a butterfly network of 
virtual nodes w/ depth     
log n – log log n

Use:
Each real node maps to a set 
of virtual nodes
If edge (A,B) exists in 
Butterfly network, then form 
(A,B) in actual P2P overlay
“Flood” requests across the 
edges that form the butterfly

Results: For any ε, there are 
constants such that 

search time is O(log n)
insertion is O(log n)
# search messages is O(log2n)
each node stores O(log3n) 
pointers to other nodes and 
O(log n) data items
All but a fraction ε of peers 
can access all but a fraction ε 
of content
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Routing Attack 2: Misleading 
updates

An attacker could trick 
nodes into thinking other 
nodes have left the system
Chord Example: node “kicks 
out” other node
Similarly, could claim another 
(non-existent) node has 
joined
Proposed solution: random 
checks of nodes in P2P 
overlay, exchange of info 
among “trusted” nodes

1

8

32

67

87
86

72

82-23

86 23-finger=82
86

X
X

e.g., for i=3

23-finger=82

82

Malicious node 86 
“kicks out” node 82
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Routing Attack 3: Partition

A malicious bootstrap node sends 
newcomers to a P2P system that is disjoint 
from (no edges to) the main P2P system
Solutions:

Use a trusted bootstrap server
Cross-check routing via random queries, 
compare with trusted neighbors (found outside 
the P2P ring)
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Storage/Retrieval Attacks

Node is responsible for holding data item 
D.  Does not store or deliver it as required
Proposed solution: replicate object and 
make available from multiple sites
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Miscellaneous Attacks

Problem: Inconsistent Behavior - Node 
sometimes behaves, sometimes does not
Solution: force nodes to “sign” all 
messages.  Can build body of evidence over 
time
Problem: Overload, i.e., DoS attack
Solution: replicate content and spread out 
over network
Problem: Rapid Joins/Leaves
Solutions: ?
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5. Anonymnity

Suppose clients want to perform 
anonymous communication

requestor wishes to keep its identity secret
deliverer wishes to also keep identity secret
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Onion Routing

A Node N that wishes to send a message to a node 
M selects a path (N, V1, V2, …, Vk, M)

Each node forwards message received from previous 
node
N can encrypt both the message and the next hop 
information recursively using public keys: a node only 
knows who sent it the message and who it should send to

N’s identity as originator is not revealed
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Anonymnity on both sides
A requestor of an object receives the object from the 
deliverer without these two entities exhanging identities
Utilizes a proxy

Using onion routing, deliverer reports to proxy (via onion 
routing) the info it can deliver, but does not reveal its identity
Nodes along this onion-routed path, A,  memorize their previous 
hop
Requestor places request to proxy via onion-routing, each node 
on this path, B,  memorize previous hop
Proxy→Deliverer follows “memorized” path A
Deliverer sends article back to proxy via onion routing
Proxy→Requestor via “memorized” path B

Proxy
Requestor Deliverer
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6. P2P Graph Structure

What are “good” P2P graphs and how are 
they built?
Graphs we will consider

Random (Erdos-Renyi)
Small-World
Scale-free
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“Good” Unstructured P2P 
Graphs

Desirable properties
each node has small to moderate degree
expected # of hops needed to go from a node u 
to a node v is small 
easy to figure out how to find the right path
difficult to attack the graph (e.g., by knocking 
out nodes)
don’t need extensive modifications when nodes 
join/leave (e.g., like in Chord, CAN, Pastry)

Challenge: Difficult to enforce structure
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Random (Erdos-Renyi) Graphs

For all nodes u,v, edge (u,v) is added with 
fixed probability p
Performance in P2P Context: In some 
sense, these graphs are too random

long distance between pairs of nodes likely
difficult to build a good distributed algorithm 
that can find a short route between arbitrary 
pair of nodes
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Small World Model

Nodes have positions (e.g., on a 2D graph)
Let d(u,v) be the distance between nodes u & v
Constants p, q, r chosen:

each node u connects to all other nodes v where d(u,v) < p
each node connects to q additional (far away) nodes 
drawn from distribution where edge (u,v) is selected with 
probability proportional to d(u,v)-r

Each node knows all neighbors within distance p and also 
knows q far neighbors
Search method: choose the neighbor that is closest (in 
distance) to the desired destination
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Optimal Small-World Config

Proven in [Kle00] 
that only for r=2 
can a distributed 
algorithm reach the 
destination in 
expected time 
O(log2n)
For other r, time is 
polynomial in n

Degree of polynomial
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Small-World Freenet

Freenet Architecture
each object has unique identifier/key (similar to DHTs)
search method is unstructured

Small-World Modification using Kleinberg’s result: 
each node maintains a set of neighbors according 
to Small-World criterion
Search algorithm: always get as close to 
destination as possible, reverse path if node has 
no neighbors that are closest to destination
Result: search time/messaging is O(log2n) with 
nodes having O(log2n) neighbors.
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Scale-Free Graphs

Erdos-Renyi and Small-World 
graphs are exponential: the 
degree of nodes in the network 
decays exponentially
Scale-free graph: node connects 
to node with current degree k 
with probability proportional to k

nodes with many neighbors more 
likely to get more neighbors

Scale-free graphs’ degree 
decays according to a power law: 
Pr(node has k neighbors) = k-α
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Are Scale-Free Networks 
Better?
Average diameter lower in 
Scale-Free than in 
Exponential graphs
What if nodes are 
removed?

at random: scale free keeps 
lower diameter
by knowledgable attacker: 
(nodes of highest degree 
removed first): scale-free 
diameter grows quickly

Same results apply using 
sampled Internet and 
WWW graphs (that 
happen to be scale-free)
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7. Measurement of Existing P2P 
Systems

Systems observed
Gnutella
Kazaa
Overnet (DHT-based)

Measurements described
fraction of time hosts are available 
(availability)
popularity distribution of files requested
# of files shared by host
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Results from 3 studies

[Sar02]
Sampled Gnutella and Napster clients for 8 and 4 day 
period
measured availability, bandwidths, propagation delays, 
file sizes, file popularities

[Chu02]
Sampled Gnutella and Napster clients for monthlong
period
measured availability, file sizes and popularities

[Bha03]
Sampled Overnet clients for a week-long period
Measured availability, error due to use of IP address as 
identifier
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Methods used

Identifying clients
Napster: ask central server for clients that provide 
popular names of files
Gnutella: send pings to well-known (bootstrap) peers and 
obtain their peer lists
Overnet: search for random IDs

Probing:
Bandwidth/latency: tools that take advantage of TCP’s 
reliability and congestion control mechanism
Availability/Files offered, etc: pinging host (by whatever 
means is necessary for the particular protocol, usually by 
mechanism provided in protocol)
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Availability

[Sar02] results: 
application uptime 
CDF is concave
[Chu02]: short 
studies overestimate 
uptime percentage

Implication: clients’ 
use of P2P tool is 
performed in bursty
fashion over long 
timescales
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Availability con’td

[Bha03]: using IP address to identify P2P client 
can be inaccurate

nodes behind NAT box share IP address
address can change when using DHCP
[Chu02] results about availability as function of period 
similar even when clients are not “grouped” by IP address
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Session Duration

[Sar02]:
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File popularity
Popular files 
are more 
popular in 
Gnutella than in 
Napster

Gnutella clients more 
likely to share more 
files
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Bottleneck Bandwidths of 
Clients
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9. Future Research

Specific
Locality in DHT-based systems: how to 
“guarantee” copies of objects in the local area

General
Using DHTs: To hash or not to hash (are DHTs
a good thing)?
Trust: Building a “trusted” system from 
autonomous, untrusted / semi-trusted 
collections
Dynamicity: Building systems that operate in 
environments where nodes join/leave/fail at 
high rates
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