
1

P2P Systems
Keith W. Ross
Polytechnic University
http://cis.poly.edu/~ross
ross@poly.edu

Dan Rubenstein
Columbia University
http://www.cs.columbia.edu/~danr
danr@ee.columbia.edu

Thanks to: B. Bhattacharjee, A. Rowston, Don
Towsley

© Keith Ross and Dan Rubenstein

2

Defintion of P2P

1) Significant autonomy from central servers

2) Exploits resources at the edges of the
Internet

storage and content

CPU cycles

human presence

3) Resources at edge have intermittent
connectivity, being added & removed

3

It’s a broad definition:

P2P file sharing
Napster, Gnutella,
KaZaA, eDonkey, etc

P2P communication
Instant messaging
Voice-over-IP: Skype

P2P computation
seti@home

DHTs & their apps
Chord, CAN, Pastry,
Tapestry

P2P apps built over
emerging overlays

PlanetLab

Wireless ad-hoc networking
not covered here

4

Tutorial Outline (1)

1. Overview: overlay networks, P2P
applications, copyright issues, worldwide
computer vision
2. Unstructured P2P file sharing: Napster,
Gnutella, KaZaA, search theory,
flashfloods
3. Structured DHT systems: Chord, CAN,
Pastry, Tapestry, etc.

5

Tutorial Outline (cont.)

4. Applications of DHTs: persistent file
storage, mobility management, etc.
5. Security issues: vulnerabilities,
solutions, anonymity
6. Graphical structure: random graphs,
fault tolerance
7. Experimental observations: measurement
studies
8. Wrap up

6

1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision

7

Overlay networks
overlay edge

8

Overlay graph
Virtual edge

TCP connection
or simply a pointer to an IP address

Overlay maintenance
Periodically ping to make sure neighbor is
still alive
Or verify liveness while messaging
If neighbor goes down, may want to
establish new edge
New node needs to bootstrap

9

More about overlays

Unstructured overlays
e.g., new node randomly chooses three
existing nodes as neighbors

Structured overlays
e.g., edges arranged in restrictive structure

Proximity
Not necessarily taken into account

10

Overlays: all in the application layer
Tremendous design

flexibility
Topology, maintenance
Message types
Protocol
Messaging over TCP or UDP

Underlying physical net is
transparent to developer

But some overlays exploit
proximity

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

11

Examples of overlays

DNS
BGP routers and their peering relationships
Content distribution networks (CDNs)
Application-level multicast

economical way around barriers to IP multicast

And P2P apps !

12

1. Overview of P2P

overlay networks
current P2P applications

P2P file sharing & copyright issues
Instant messaging / voice over IP
P2P distributed computing

worldwide computer vision

13

P2P file sharing

Alice runs P2P client
application on her
notebook computer
Intermittently
connects to Internet;
gets new IP address
for each connection
Registers her content
in P2P system

Asks for “Hey Jude”
Application displays
other peers that have
copy of Hey Jude.
Alice chooses one of
the peers, Bob.
File is copied from
Bob’s PC to Alice’s
notebook: P2P
While Alice downloads,
other users uploading
from Alice.

14

Millions of content servers

Hey
Jude

Magic
Flute

Star
Wars

ERNPR

Blue

15

Killer deployments

Napster
disruptive; proof of concept

Gnutella
open source

KaZaA/FastTrack
Today more KaZaA traffic then Web traffic!

eDonkey / Overnet
Becoming popular in Europe
Appears to use a DHT

Is success due to massive number of servers,
or simply because content is free?

16

P2P file sharing software

Allows Alice to open up
a directory in her file
system

Anyone can retrieve a
file from directory
Like a Web server

Allows Alice to copy
files from other users’
open directories:

Like a Web client

Allows users to search
nodes for content
based on keyword
matches:

Like Google

Seems harmless
to me !

17

Copyright issues (1)

Direct infringement:
end users who
download or upload
copyrighted works

Indirect infringement:
Hold an individual
accountable for
actions of others
Contributory
Vicarious

direct infringers

18

Copyright issues (2)

Contributory infringer:
knew of underlying
direct infringement,
and
caused, induced, or
materially contributed
to direct infringement

Vicarious infringer:
able to control the
direct infringers (e.g.,
terminate user
accounts), and
derived direct financial
benefit from direct
infringement (money,
more users)

(knowledge not necessary)

19

Copyright issues (3)
Betamax VCR defense

Manufacturer not
liable for contributory
infringement
“capable of substantial
non-infringing use”
But in Napster case,
court found defense
does not apply to all
vicarious liability

Guidelines for P2P developers
total control so that
there’s no direct
infringement

or
no control over users – no
remote kill switch,
automatic updates, actively
promote non-infringing
uses of product
Disaggregate functions:
indexing, search, transfer
No customer support

20

Instant Messaging

Alice runs IM client on
her PC
Intermittently
connects to Internet;
gets new IP address
for each connection
Registers herself with
“system”
Learns from “system”
that Bob in her buddy
list is active

Alice initiates direct
TCP connection with
Bob: P2P
Alice and Bob chat.

Can also be voice,
video and text.

We’ll see that Skype
is a VoIP P2P system

21

P2P Distributed Computing

seti@home
Search for ET
intelligence
Central site collects
radio telescope data
Data is divided into
work chunks of 300
Kbytes
User obtains client,
which runs in backgrd

Peer sets up TCP
connection to central
computer, downloads
chunk
Peer does FFT on
chunk, uploads results,
gets new chunk

Not peer to peer, but exploits
resources at network edge

22

1. Overview of P2P

overlay networks
P2P applications
worldwide computer vision

23

Worldwide Computer Vision

Alice’s home computer:
Working for biotech,
matching gene sequences
DSL connection downloading
telescope data
Contains encrypted
fragments of thousands of
non-Alice files
Occasionally a fragment is
read; it’s part of a movie
someone is watching in Paris
Her laptop is off, but it’s
backing up others’ files

Alice’s computer is
moonlighting
Payments come from
biotech company, movie
system and backup service

Your PC is only a component
in the “big” computer

24

Worldwide Computer (2)

Anderson & Kubiatowicz:
Internet-scale OS

Thin software layer running
on each host & central
coordinating system
running on ISOS server
complex
allocating resources,
coordinating currency
transfer
Supports data processing &
online services

Challenges
heterogeneous hosts
security
payments

Central server complex
needed to ensure privacy
of sensitive data
ISOS server complex
maintains databases of
resource descriptions,
usage policies, and task
descriptions

25

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds

26

Napster

Paradigm shift
not the first (c.f. probably Eternity, from
Ross Anderson in Cambridge)
but instructive for what it gets right, and
also wrong…
also had a political message…and economic
and legal…

27

Napster
program for sharing files over the Internet
a “disruptive” application/technology?
history:

5/99: Shawn Fanning (freshman, Northeasten U.)
founds Napster Online music service
12/99: first lawsuit
3/00: 25% UWisc traffic Napster
2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K,

Morpheus (KaZaA): 300K

28

Napster

judge orders Napster
to pull plug in July ‘01
other file sharing apps
take over!

gnutella
napster
fastrack (KaZaA)

8M

6M

4M

2M

0.0
bi

ts
 p

er
 s

ec

29

Napster: how did it work

Application-level, client-server protocol over
point-to-point TCP
Centralized directory server

Steps:
connect to Napster server
upload your list of files to server.
give server keywords to search the full list with.
select “best” of correct answers. (pings)

30

Napster

File list
and IP
address is
uploaded

1.
napster.com
centralized directory

31

Napster
napster.com
centralized directory

Query
and

results

User
requests
search at
server.

2.

32

Napster

pings
pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.
napster.com
centralized directory

33

Napster
napster.com
centralized directory

Retrieves
file

User chooses
server

4.

Napster’s
centralized
server farm had
difficult time
keeping
up with traffic

34

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds

35

Distributed Search/Flooding

36

Distributed Search/Flooding

37

Gnutella

focus: decentralized method of searching
for files

central directory server no longer the
bottleneck
more difficult to “pull plug”

each application instance serves to:
store selected files
route queries from and to its neighboring peers
respond to queries if file stored locally
serve files

38

Gnutella

Gnutella history:
3/14/00: release by AOL, almost immediately
withdrawn
became open source
many iterations to fix poor initial design (poor
design turned many people off)

issues:
how much traffic does one query generate?
how many hosts can it support at once?
what is the latency associated with querying?
is there a bottleneck?

39

Gnutella: limited scope query
Searching by flooding:

if you don’t have the file you want, query 7
of your neighbors.
if they don’t have it, they contact 7 of
their neighbors, for a maximum hop count
of 10.
reverse path forwarding for responses (not
files)

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

40

Gnutella overlay management

New node uses bootstrap node to get IP
addresses of existing Gnutella nodes
New node establishes neighboring relations
by sending join messages

join

41

Gnutella in practice

Gnutella traffic << KaZaA traffic
16-year-old daughter said “it stinks”

Couldn’t find anything
Downloads wouldn’t complete

Fixes: do things KaZaA is doing: hierarchy,
queue management, parallel download,…

42

Gnutella Discussion:

researchers like it because it’s open source
but is it truly representative?

architectural lessons learned?
More details in Kurose and Ross, 3rd edition

43

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds

44

KaZaA: The service

more than 3 million up peers sharing over
3,000 terabytes of content
more popular than Napster ever was
more than 50% of Internet traffic ?
MP3s & entire albums, videos, games
optional parallel downloading of files
automatically switches to new download
server when current server becomes
unavailable
provides estimated download times

45

KaZaA: The service (2)

User can configure max number of simultaneous
uploads and max number of simultaneous
downloads
queue management at server and client

Frequent uploaders can get priority in server queue
Keyword search

User can configure “up to x” responses to keywords
Responses to keyword queries come in waves;
stops when x responses are found
From user’s perspective, service resembles Google,
but provides links to MP3s and videos rather than
Web pages

46

KaZaA: Technology

Software
Proprietary
control data encrypted
Everything in HTTP request and response
messages

Architecture
hierarchical
cross between Napster and Gnutella

47

KaZaA: Architecture

Each peer is either a
supernode or is
assigned to a
supernode

56 min avg connect
Each SN has about
100-150 children
Roughly 30,000 SNs

Each supernode has
TCP connections with
30-50 supernodes

0.1% connectivity
23 min avg connect

supernodes

48

Measurement study

49

Evolution of connections at SN

50

KaZaA: Architecture (2)

Nodes that have more connection
bandwidth and are more available are
designated as supernodes
Each supernode acts as a mini-Napster hub,
tracking the content and IP addresses of
its descendants
Does a KaZaA SN track only the content of
its children, or does it also track the
content under its neighboring SNs?

Testing indicates only children.

51

KaZaA metadata

When ON connects to SN, it uploads its metadata.
For each file:

File name
File size
Content Hash
File descriptors: used for keyword matches during query

Content Hash:
When peer A selects file at peer B, peer A sends
ContentHash in HTTP request
If download for a specific file fails (partially completes),
ContentHash is used to search for new copy of file.

52

KaZaA: Overlay maintenance

List of potential supernodes included within
software download
New peer goes through list until it finds
operational supernode

Connects, obtains more up-to-date list, with
200 entries
Nodes in list are “close” to ON.
Node then pings 5 nodes on list and connects
with the one

If supernode goes down, node obtains
updated list and chooses new supernode

53

KaZaA Queries

Node first sends query to supernode
Supernode responds with matches
If x matches found, done.

Otherwise, supernode forwards query to
subset of supernodes

If total of x matches found, done.
Otherwise, query further forwarded

Probably by original supernode rather than
recursively

54

Kazaa-lite

Hacked version of the KaZaA client
No spyware; no pop-up windows
Everyone is rated as a priority user
Supernode hopping

After receiving replies from SN, ON often
connects to new SN and re-sends query
SN does not cache hopped-out ON’s metadata

55

Parallel Downloading; Recovery

If file is found in multiple nodes, user can
select parallel downloading

Identical copies identified by ContentHash
HTTP byte-range header used to request
different portions of the file from
different nodes
Automatic recovery when server peer
stops sending file

ContentHash

56

KaZaA Corporate Structure

Software developed by
Estonians
FastTrack originally
incorporated in Amsterdam
FastTrack also deploys
KaZaA service
FastTrack licenses
software to Music City
(Morpheus) and Grokster
Later, FastTrack
terminates license, leaves
only KaZaA with killer
service

Summer 2001, Sharman
networks, founded in
Vanuatu (small island in
Pacific), acquires
FastTrack

Board of directors,
investors: secret

Employees spread
around, hard to locate

57

Lessons learned from KaZaA

Exploit heterogeneity
Provide automatic
recovery for
interrupted downloads
Powerful, intuitive
user interface

Copyright infringement
International cat-and-
mouse game
With distributed,
serverless
architecture, can the
plug be pulled?
Prosecute users?
Launch DoS attack on
supernodes?
Pollute?

KaZaA provides powerful
file search and transfer
service without server
infrastructure

58

Measurement studies by Gribble et
al

2002 U. Wash campus
study
P2P: 43%; Web: 14%
Kazaa objects fetched
at most once per client
Popularity distribution
deviates substantially
from Zipf distribution

Flat for 100 most
popular objects

Popularity of objects
is short.

KaZaA users are patient
Small objects (<10MB):
30% take more than
hour to download
Large objects (>100MB):
50% more than 1 day
Kazaa is a batch-mode
system, downloads done
in background

59

Pollution in P2P

Record labels hire “polluting companies” to
put bogus versions of popular songs in file
sharing systems
Polluting company maintains hundreds of
nodes with high bandwidth connections
User A downloads polluted file
User B may download polluted file before A
removes it
How extensive is pollution today?
Anti-pollution mechanisms?

60

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
BitTorrent
search theory
dealing with flash crowds

61

BitTorrent url tracker

1. GET file.torrent

file.torrent info:
• length
• name
• hash
• url of tracker

2. GET 3. list of
peers

4.

62

BitTorrent: Pieces

File is broken into pieces
Typically piece is 256 KBytes
Upload pieces while downloading pieces

Piece selection
Select rarest piece
Except at beginning, select random pieces

Tit-for-tat
Bit-torrent uploads to at most four peers
Among the uploaders, upload to the four that
are downloading to you at the highest rates
A little randomness too, for probing

63

NATs

nemesis for P2P
Peer behind NAT can’t be a TCP server
Partial solution: reverse call

Suppose A wants to download from B, B behind NAT
Suppose A and B have each maintain TCP connection to
server C (not behind NAT)
A can then ask B, through C, to set up a TCP connection
from B to A.
A can then send query over this TCP connection, and B
can return the file

What if both A and B are behind NATs?

64

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
search theory
dealing with flash crowds

65

Modeling Unstructured P2P
Networks

In comparison to DHT-based searches,
unstructured searches are

simple to build
simple to understand algorithmically

Little concrete is known about their performance
Q: what is the expected overhead of a search?
Q: how does caching pointers help?

66

Replication
Scenario

Nodes cache copies (or pointers to) content
• object info can be “pushed” from nodes that have copies
• more copies leads to shorter searches

Caches have limited size: can’t hold everything
Objects have different popularities: different content
requested at different rates

Q: How should the cache be shared among the
different content?

Favor items under heavy demand too much then lightly
demanded items will drive up search costs
Favor a more “flat” caching (i.e., independent of
popularity), then frequent searches for heavily-
requested items will drive up costs

Is there an optimal strategy?

67

Model
Given

m objects, n nodes, each node can hold c objects, total system
capacity = cn
qi is the request rate for the ith object, q1 ≥ q2 ≥ … ≥ qm
pi is the fraction of total system capacity used to store object
i, ∑pi = 1

Then
Expected length of search for object i = K / pi for some
constant K

• note: assumes search selects node w/ replacement, search stops
as soon as object found

Network “bandwidth” used to search for all objects:
B = ∑qi K / pi

Goal: Find allocation for {pi} (as a function of {qi}) to minimize B
Goal 2: Find distributed method to implement this allocation of
{pi}

68

Some possible choices for {pi}

Consider some typical allocations used in practice
Uniform: p1 = p2 = … = pm = 1/m

• easy to implement: whoever creates the object sends out
cn/m copies

Proportional: pi = a qi where a = 1/∑qi is a normalization
constant

• also easy to implement: keep the received copy cached

What is B = ∑qi K / pi for these two policies?
Uniform: B = ∑qi K / (1/m) = Km/a
Proportional: B = ∑qi K / (a qi) = Km/a

B is the same for the Proportional and Uniform
policies!

69

In between Proportional and
Uniform

Uniform: pi / pi+1 = 1, Proportional: pi / pi+1 = qi / qi+1
≥ 1
In between: 1 ≤ pi / pi+1 ≤ qi / qi+1
Claim: any in-between allocation has lower B than B
for Uniform / Proportional
Proof: Omitted here
Consider Square-Root allocation: pi = sqrt(qi) /
∑sqrt(qi)
Thm: Square-Root is optimal
Proof (sketch):

Noting pm = 1 – (p1 + … + pm-1)
write B = F(p1, …, pm-1) = ∑m-1 qi/pi + qm/(1- ∑m-1 pi)
Solving dF/dpi = 0 gives pi = pm sqrt(qi/qm)

70

Distributed Method for
Square-Root Allocation

Assumption: each copy in the cache
disappears from the cache at some rate
independent of the object cached (e.g.,
object lifetime is i.i.d.)
Algorithm Sqrt-Cache: cache a copy of object
i (once found) at each node visited while
searching for object i
Claim Algorithm implements Square-Root
Allocation

71

Proof of Claim
Sketch of Proof of Correctness:

Let fi(t) be fraction of locations holding object i @ time
t

pi = limt→∞ fi(t)

At time t, using Sqrt-Cache, object i populates cache at
avg rate ri = qi / fi(t)

When fi(t) / fj(t) < sqrt(qi) / sqrt(qj), then
• ri (t) / rj (t) = qi fj (t) / qj fi (t) > sqrt(qi) / sqrt(qj)

• hence, ratio fi (t) / fj (t) will increase

When fi (t) / fj (t) > sqrt(qi) / sqrt(qj), then
• ri (t) / rj (t) = qi fj (t) / qj fi (t) < sqrt(qi) / sqrt(qj)

• hence, ratio fi (t) / fj (t) will decrease

Steady state is therefore when fi (t) / fj (t) = sqrt(qi) /
sqrt(qj),

72

2. Unstructured P2P File Sharing

Napster
Gnutella
KaZaA
search theory
dealing with flash crowds

73

Flash Crowd

Def: A sudden, unanticipated growth in demand of
a particular object
Assumption: content was previously “cold” and
hence an insufficient number of copies is loaded
into the cache
How long will it take (on average) for a user to
locate the content of interest?
How many messages can a node expect to receive
due to other nodes’ searches?

74

Generic Search Protocol

Initiator sends queries to f
randomly chosen neighbors
Node receiving query

with object: forwards object
directly (via IP) to the
initiator
w/o object TTL not
exceeded: forwards query to
f neighbors, else does
nothing
w/o object and TTL
exceeded: do nothing

If object not found, increase
TTL and try again (to some
maximum TTL)
Note: dumb protocol, nodes
do not supress repeat queries

f = 3

Randomized TTL-scoped search

75

Analysis of the Search Protocol

Modeling assumptions:
Neighbor overlay is fully-connected

• queries are “memoryless” – if a node is queried multiple
times, it acts each time as if it’s the first time (and a node
may even query itself)

• Accuracy of analysis verified via comparison to simulation on
neighbor overlays that are sparsely connected

Protocol is round-based: query received by participant in
round i is forwarded to f neighbors in round i+1

Time searchers start their searches: will evaluate 2
extremes

• sequential: one user searches at a time
• simultaneous: all users search simultaneously

76

Search Model: Preliminaries

Parameters
N = # nodes in the overlay (fully connected)
H = # nodes that have a copy of the desired object (varies w/
time)

Performance Measures
R = # rounds needed to locate the object
T = # query transmissions

p = P(Randomly chosen node does not have object) = 1-(H/N)
Recall: f = # neighbors each node forwards query to

P(R > i) = p^(f+f2+f3+…+fi) = p^((fi+1-f)/(f-1))
E[R] = ∑ P(R > i)

i≥0

77

Search Model cont’d
To compute E[T]:

Create a schedule: Each node
determines in advance who to query
if a query is necessary
Ni,j is the jth node at depth i in the
schedule
Xi,j = 1 if the query scheduled at Ni,j
is executed and is 0 otherwise
Xi,j= 1 if and only if both

• Xi’,j’=1 for the i-1 entries Ni’,j’ along
the path from N1,1 to Ni,j

• Ni,j does not have a copy of the
object

P(Xi,j=1) = pi-1

E[T] = ∑ P(Xi,j=1) = ∑ p^(0+f+f2+…+fi-1) = ∑ p^((fi-1)/(f-1))
i,j i i

N2,1

5

5

1

3

N1,1

N1,3

N1,2

N2,2

N2,3

N2,9

N2,4…

78

Single-user search results

Search cost inversely proportional to fraction of
nodes w/ object
Varying f and I (max TTL) has more of an affect
on rounds than on transmissions

79

Analyzing undirected searches
during a flash crowd

Scenario: A large majority of users suddenly want
the same object
Numerous independent searches for the same
object are initiated throughout the network

Nodes cannot suppress one user’s search for an object
with the other. Each search has different location
where object should be delivered

What is the cost of using an unstructured search
protocol?

80

One-after-the-other Searches

Nh = # nodes that initially have object, I = max TTL
Sequential searches,f = 10, terminates when all nodes have object
Analytical Results (confirmed with simulation):

Expected transmissions sent and received per node is small (max is
manageable)
Expected # of rounds small (unless max TTL kept small)
Simulation results use overlay graphs where # of neighbors bounded by
100: Note error using full connectivity is negligible

81

Flash Crowd Scalability:
Intuitive Explanation

Gnutella scales poorly when different users search
for different objects: high transmission overhead
Q: Why will expanding-ring TTL search achieve
better scalability?
A:

Popular objects
propagate through
overlay via successful
searches
Subsequent searches
often succeed with
smaller TTL: require
less overhead

82

Simultaneous Searches

Model: Start measuring at a point in time where
Nh have copies and Nd nodes have been actively
searching for a “long time”
Compute upper bound on expected #
transmissions and rounds
Details omitted here…

83

Simultaneous Search Results

Simulation results show upper bounds to be extremely
conservative (using branching process model of search
starts)
Conclusion (conservative) :

less than 400 transmissions on average received and sent per
node to handle delivery to millions of participants
less than 15 query rounds on average

84

Simultaneous Search Intuition

Let h(t) be the number of nodes that have the object after
the tth round where d of N nodes are searching
Each searching node contacts s nodes on average per round
Approximation: h(t) = h(t-1) + (d – h(t-1)) s * h(t-1)/N,
h(0) > 0
Even when h(t)/N is small, some node has high likelihood of
finding object
h(t) grows quickly even when small when many users search
simultaneously

85

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

86

Challenge: Locating Content

Simplest strategy: expanding ring search

If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

Need many cached copies to keep search overhead small

I’m looking for
NGC’02 Tutorial

Notes

Here you go!
Here you go!

87

Directed Searches

Idea:
assign particular nodes to hold particular content (or
pointers to it, like an information booth)
when a node wants that content, go to the node that is
supposed to have or know about it

Challenges:
Distributed: want to distribute responsibilities among
existing nodes in the overlay
Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute responsibility knowledge from leaving

nodes

88

DHT Step 1: The Hash
Introduce a hash function to map the object being searched
for to a unique identifier:

e.g., h(“NGC’02 Tutorial Notes”) → 8045
Distribute the range of the hash function among all nodes in
the network

Each node must “know about” at least one copy of each
object that hashes within its range (when one exists)

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

8045

89

“Knowing about objects”

Two alternatives
Node can cache each (existing) object that
hashes within its range
Pointer-based: level of indirection - node
caches pointer to location(s) of object

0-999
9500-9999

1000-1999
1500-4999

9000-9500

4500-6999

8000-8999 7000-8500

90

DHT Step 2: Routing

For each object, node(s) whose range(s) cover that object
must be reachable via a “short” path
by the querier node (assumed can be chosen arbitrarily)
by nodes that have copies of the object (when pointer-based
approach is used)

The different approaches (CAN,Chord,Pastry,Tapestry)
differ fundamentally only in the routing approach

any “good” random hash function will suffice

91

DHT Routing: Other Challenges

neighbors for each node should scale with growth in
overlay participation (e.g., should not be O(N))
DHT mechanism should be fully distributed (no centralized
point that bottlenecks throughput or can act as single point
of failure)
DHT mechanism should gracefully handle nodes
joining/leaving the overlay

need to repartition the range space over existing nodes
need to reorganize neighbor set
need bootstrap mechanism to connect new nodes into the
existing DHT infrastructure

92

DHT API

each data item (e.g., file or metadata
containing pointers) has a key in some ID
space
In each node, DHT software provides API:

Application gives API key k
API returns IP address of node that is
responsible for k

API is implemented with an underlying DHT
overlay and distributed algorithms

93

DHT API

application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
a t

io
n

D
H

T
s u

bs
tra

te
A

PI

app licat ion

D
H

T su bstrat e
A

P I

overlay
network

key
responsible
node

each data item (e.g., file or metadata
pointing to file copies) has a key

94

DHT Layered Architecture

TCP/IP

DHT

Network
storage

Event
notification

Internet

P2P substrate
(self-organizing
overlay network)

P2P application layer?

95

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

96

CARP

DHT for cache clusters
Each proxy has unique
name

key = URL = u
calc h(proxyn, u) for all
proxies
assign u to proxy with
highest h(proxyn, u)

institutional
network

proxies

clients

Internet

if proxy added or
removed, u is likely
still in correct proxy

97

CARP (2)

circa 1997
Internet draft:
Valloppillil and Ross

Implemented in
Microsoft & Netscape
products
Browsers obtain script
for hashing from
proxy automatic
configuration file
(loads automatically)

Not good for P2P:
Each node needs to
know name of all other
up nodes
i.e., need to know O(N)
neighbors
But only O(1) hops in
lookup

98

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

99

Consistent hashing (1)

Overlay network is a circle
Each node has randomly chosen id

Keys in same id space
Node’s successor in circle is node with next
largest id

Each node knows IP address of its successor
Key is stored in closest successor

100

Consistent hashing (2)
0001

0011

0100

0101

1000
1010

1100

1111

file 1110
stored here

Who’s resp
for file 1110

I am

O(N) messages
on avg to resolve
query

Note: no locality
among neighbors

101

Consistent hashing (3)

Node departures
Each node must track
s ≥ 2 successors
If your successor
leaves, take next one
Ask your new
successor for list of
its successors; update
your s successors

Node joins
You’re new, node id k
ask any node n to find
the node n’ that is the
successor for id k
Get successor list
from n’
Tell your predecessors
to update their
successor lists
Thus, each node must
track its predecessor

102

Consistent hashing (4)

Overlay is actually a circle with small
chords for tracking predecessor and k
successors
of neighbors = s+1: O(1)

The ids of your neighbors along with their IP
addresses is your “routing table”

average # of messages to find key is O(N)

Can we do better?

103

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

104

Chord

Nodes assigned 1-dimensional IDs in hash space at
random (e.g., hash on IP address)
Consistent hashing: Range covered by node is from
previous ID up to its own ID (modulo the ID
space)

124

874

3267

6783

8723
8723

874

3267

6783

8654

124

105

Chord Routing
A node s’s ith neighbor has the ID that is equal to
s+2i or is the next largest ID (mod ID space), i≥0
To reach the node handling ID t, send the message
to neighbor #log2(t-s)
Requirement: each node s must know about the next
node that exists clockwise on the Chord (0th

neighbor)
Set of known neighbors called a finger table

106

Chord Routing (cont’d)
A node s is node t’s neighbor if s is the closest node to t+2i mod H
for some i. Thus,

each node has at most log2 N neighbors
for any object, the node whose range contains the object is reachable
from any node in no more than log2 N overlay hops

(each step can always traverse at least half the distance to the ID)
Given K objects, with high probability each node has at most
(1 + log2 N) K / N in its range

When a new node joins or leaves the overlay,
O(K / N) objects move between nodes

326

15

864

863

722

721

720

Finger
table for
node 67

i

1

8

32

87
86

72
67

Closest
node
clockwise
to

67+2i mod
100

107

Chord Node Insertion
One protocol addition: each node knows its closest counter-
clockwise neighbor
A node selects its unique (pseudo-random) ID and uses a
bootstrapping process to find some node in the Chord
Using Chord, the node identifies its successor in the
clockwise direction
An newly inserted node’s predecessor is its successor’s
former predecessor 82 1

8

32

67

87
86

72

pred(86)=72
Example: Insert 82

108

Chord Node Insertion (cont’d)

1

8

32

67

87
86

72

82

First: set added node s’s fingers correctly
s’s predecessor t does the lookup for each distance of 2i

from s

676

325

14

13

862

861

860

Finger
table for
node 82

i

Lookup(86) = 86

Lookup(90) = 1

Lookup(98) = 1

Lookup(14) = 32

Lookup(46) = 67

Lookup(84) = 86

Lookup(83) = 86
Lookups from node 72

109

Chord Node Insertion (cont’d)
Next, update other nodes’ fingers
about the entrance of s (when
relevant). For each i:

Locate the closest node to s
(counter-clockwise) whose 2i-finger
can point to s: largest possible is
s - 2i

Use Chord to go (clockwise) to
largest node t before or at s - 2i

• route to s - 2i, if arrived at a larger
node, select its predecessor as t

If t’s 2i-finger routes to a node
larger than s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

Else i++, repeat from top
O(log2 N) time to find and update
nodes

1

8

32

67

87
86

72

82 82-23

23-finger=86
82 23-finger=86

82

23-finger=67X
X

e.g., for i=3

110

Chord Node Deletion

Similar process can perform deletion
1

8

32

67

87
86

72

82-23

86 23-finger=82
86

23-finger=67X
X

e.g., for i=3

23-finger=82

111

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

112

CAN
hash value is viewed as a point in a D-dimensional cartesian space
each node responsible for a D-dimensional “cube” in the space
nodes are neighbors if their cubes “touch” at more than just a
point
(more formally, nodes s & t are neighbors when

s contains some
[<n1, n2, …, ni, …, nj, …, nD>, <n1, n2, …, mi, …, nj, … nD>]

and t contains
[<n1, n2, …, ni, …, nj+δ, …, nD>, <n1, n2, …, mi, …, nj+ δ, … nD>])

• Example: D=2

• 1’s neighbors: 2,3,4,6

• 6’s neighbors: 1,2,4,5

• Squares “wrap around”, e.g., 7 and 8 are
neighbors

• expected # neighbors: O(D)

1 6 5

4

3

2

7
8

113

CAN routing

To get to <n1, n2, …, nD> from <m1, m2, …, mD>
choose a neighbor with smallest cartesian distance from

<m1, m2, …, mD> (e.g., measured from neighbor’s center)

1 6 5

4

3

2

7
8

• e.g., region 1 needs to send to node
covering X

• checks all neighbors, node 2 is closest

• forwards message to node 2

• Cartesian distance monotonically
decreases with each transmission

• expected # overlay hops: (DN1/D)/4X

114

CAN node insertion
To join the CAN:

find some node in the CAN (via
bootstrap process)
choose a point in the space
uniformly at random
using CAN, inform the node that
currently covers the space
that node splits its space in half

• 1st split along 1st dimension
• if last split along dimension i < D,

next split along i+1st dimension
• e.g., for 2-d case, split on x-axis,

then y-axis
keeps half the space and gives
other half to joining node

1 6 5

4

3

2

7
8

X

Observation: the
likelihood of a rectangle
being selected is
proportional to it’s size,
i.e., big rectangles chosen
more frequently

910

115

CAN node removal
Underlying cube structure should
remain intact

i.e., if the spaces covered by s & t were
not formed by splitting a cube, then
they should not be merged together

Sometimes, can simply collapse
removed node’s portion to form bigger
rectangle

e.g., if 6 leaves, its portion goes back to
1

Other times, requires juxtaposition of
nodes’ areas of coverage

e.g., if 3 leaves, should merge back into
square formed by 2,4,5
cannot simply collapse 3’s space into 4
and/or 5
one solution: 5’s old space collapses into
2’s space, 5 takes over 3’s space

1 6

5
4

3

2

1 6

5
4

3

2
4 2

5

116

CAN (recovery from) removal process

View partitioning as a binary tree of
leaves represent regions covered by overlay nodes (labeled by
node that covers the region)
intermediate nodes represent “split” regions that could be
“reformed”, i.e., a leaf can appear at that position
siblings are regions that can be merged together (forming the
region that is covered by their parent)

1 6

5
4

3

2
7

8 9

10

11
12

13 14

109

8

7

2

4

5

3

13

12

14

11

61

117

CAN (recovery from) removal process

Repair algorithm when leaf s is removed
Find a leaf node t that is either

• s’s sibling
• descendant of s’s sibling where t’s sibling is also a leaf node

t takes over s’s region (moves to s’s position on the tree)
t’s sibling takes over t’s previous region

Distributed process in CAN to find appropriate t w/ sibling:
current (inappropriate) t sends msg into area that would be covered by
a sibling
if sibling (same size region) is there, then done. Else receiving node
becomes t & repeat

109

8

7

2

4

5

3

13

12

14

11

61

X

1 6

5
4

3

2

118

3. Structured P2P: DHT Approaches

DHT service and issues
CARP
Consistent Hashing
Chord
CAN
Pastry
Hierarchical lookup services
Topology-centric lookup service

119

Pseudo-Pastry: basic idea

Example: nodes & keys have n-digit base-3 ids, eg,
02112100101022
Each key is stored in node with closest id
Node addressing defines nested groups

0.. 1.. 2..
00.. 10..

222..
inner group

120

Pseudo-Pastry (2)

Nodes in same inner group know each other’s IP
address
Each node knows IP address of one delegate node
in some of the other groups

0.. 1.. 2..
00.. 10..

222..
inner group

121

Pastry: basic idea (3)
Each node needs to know the IP addresses of all
up nodes in its inner group.
Each node needs to know IP addresses of some
delegate nodes. Which delegate nodes?
Node in 222…: 0…, 1…, 20…, 21…, 220…, 221…
Thus, 6 delegate nodes rather than 27

0.. 1.. 2..
00.. 10..

222..
inner group

122

Pseudo-Pastry (4)
Suppose node in group 222… wants to lookup key
k= 02112100210. Divide and conquer
Forward query to node node in 0…, then to node in
02…, then to node in 021…
Node in 021… forwards to closest to key in 1 hop

0.. 1.. 2..
00.. 10..

222..

123

Pastry (in truth)

Nodes are assigned a 128-bit identifier
The identifier is viewed in base 16

e.g., 65a1fc04
16 subgroups for each group

Each node maintains a routing table and a
leaf set

routing table provides delegate nodes in nested
groups
inner group idea flawed: might be empty or have
too many nodes

124

Routing table (node: 65a1fc04)

log16 N
rows

Row 0

Row 1

Row 2

Row 3

0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x
9
x
a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

125

Pastry: Routing procedure
if (destination is within range of our leaf set)

forward to numerically closest member
else

if (there’s a longer prefix match in table)
forward to node with longest match

else
forward to node in table
(a) shares at least as long a prefix
(b) is numerically closer than this node

126

Pastry: Performance
Integrity of overlay/ message delivery:

guaranteed unless L/2 simultaneous failures of
nodes with adjacent nodeIds

Number of routing hops:
No failures: < log16 N expected
During failure recovery:

O(N) worst case, average case much better

127

Pastry: Experimental results

Prototype
implemented in Java

deployed testbed (currently ~25 sites
worldwide)

Simulations for large networks

128

Pastry: Average # of hops

L=16, 100k random queries

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000

Number of nodes

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Pastry
Log(N)

129

Pastry: # of hops (100k nodes)

L=16, 100k random queries

0.0000 0.0006 0.0156

0.1643

0.6449

0.1745

0.0000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

Number of hops

Pr
ob

ab
ili

ty

130

Pastry: # routing hops
(failures)

L=16, 100k random queries, 5k nodes, 500 failures

2.73

2.96

2.74

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

No Failure Failure After routing table repair

A
ve

ra
ge

 h
op

s
pe

r
lo
ok

up

131

Pastry: Proximity routing

Assumption: scalar proximity metric
e.g. ping delay, # IP hops
a node can probe distance to any other
node

Proximity invariant:
Each routing table entry refers to a node close
to the local node (in the proximity space),
among all nodes with the appropriate nodeId
prefix.

132

Pastry: Routes in proximity
space

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

NodeId space

d467c4

65a1fc
d13da3

d4213f

d462ba

Proximity space

133

Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space

0.8

0.9

1

1.1

1.2

1.3

1.4

1000 10000 100000
Number of nodes

R
el

at
iv

e
D

is
ta

nc
e

Pastry

Complete routing table

134

Pastry: Locality properties
1) Expected distance traveled by a message in the

proximity space is within a small constant of the
minimum

2) Routes of messages sent by nearby nodes with
same keys converge at a node near the source
nodes

3) Among k nodes with nodeIds closest to the key,
message likely to reach the node closest to the
source node first

135

Pastry delay vs IP delay

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

Distance between source and destination

D
is

ta
nc

e
tr

av
el

ed
 b

y
P

as
tr

y
m

es
sa

ge Mean = 1.59

GATech top., .5M hosts, 60K nodes, 20K random messages

136

Pastry: Summary

O(log N) routing steps (expected)
O(log N) routing table size
Network proximity routing

137

3. Structured P2P: DHT Approaches

The DHT service and API
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

138

Hierarchical Lookup Service

KaZaA is hierarchical but unstructured

Routing in Internet is hierarchical

Perhaps DHTs can benefit from
hierarchies too?

Peers are organized into groups
Inter-group lookup, then intra-group lookup

139

Hierarchical framework
= supernode

CAN

Chord

Pastry

Tapestry

140

Hierarchical Lookup

CAN

Chord

Pastry

Tapestry

Where’s
Key k

I have k

141

Cooperative group caching

CAN

Chord

Pastry

Tapestry

Where’s
Key k

I have k

Nope, but
I’ll cache

142

Hierarchical Lookup (2)

Benefits
Can reduce number of hops, particularly when
nodes have heterogeneous availabilities
Groups can cooperatively cache popular files,
reducing average latency
Facilitates large scale deployment by
providing administrative autonomy to groups

Each ISP can use it is own DHT protocol
Similar to intra-AS routing

143

Inter-lookup: Chord

144

3. Structured P2P: DHT Approaches

The DHT service and API
CARP
Consistent Hashing
Chord
CAN
Pastry/Tapestry
Hierarchical lookup services
Topology-centric lookup service

145

Topology Centric: TOPLUS

Lookup delay ≈ IP delay (stretch =1)
Idea

Node ids are IP addresses
Nested groups: unbalanced
Get groups from prefixes in BGP routing
tables

Each group is contiguous set of IP addresses of
form w.x.y.z/n (e.g., 128.15.6/23)
massaging

146

Nested Groups

147

TOPLUS: Delegate Nodes
Delegates: as you pass through groups towards
root, take delegate from each descendant

148

TOPLUS

Node state:
Other nodes in inner group
“descendant” delegate

Routing:
Longest IP-prefix match
Use optimized techniques in IP routers
Number of hops < H+1, H = height of tree
Typically, big jumps made initially into
destinations AS (opposite of Pastry)

149

TOPLUS

Caching
A group G = w.x.y.z/r agrees to be a
cooperative regional cache
When node in X in G wants to lookup k for
file f, it creates kG:

first r bits of k replaced with first r bits of
w.x.y.z/r

X discovers node Yin G that’s responsible
for kG
X requests f through Y

150

TOPLUS: some results

250,252 prefixes from BGP tables
47,000 tier-1 groups
10,000 of which have sub groups
11 tiers

Used King to estimate delay between
arbitrary nodes
Stretch: 1.17
Aggregated groups: 8000 tier-1 groups,
40% having subgroups; stretch = 1.28

151

TOPLUS issues

Inner group can be too big/small
Use XOR distance metric

Non-uniform population of node id space
Lack of virtual nodes
Correlated node failures

152

4. Applications using DHTs

TCP/IP

DHT

Persist
storage

Mobility
managemnt

Internet

P2P substrate
(self-organizing
overlay network)

P2P application layer
P2P
e-mail

153

4. Applications using DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS

154

File sharing using DHT

Advantages
Always find file
Quickly find file
Potentially better
management of
resources

Challenges
File replication for
availability
File replication for
load balancing
Keyword searches

There is at least one file sharing system
using DHTs: Overnet, using Kademlia

155

File sharing: what’s under key?

Data item is file itself
Replicas needed for availability
How to load balance?

Data item under key is list of pointers to file
Must replicate pointer file
Must maintain pointer files: consistency

156

File sharing: keywords

Recall that unstructured file sharing
provides keyword search

Each stored file has associated metadata,
matched with queries

DHT: Suppose key = h(artist, song)
If you know artist/song exactly, DHT can find
node responsible for key
Have to get spelling/syntax right!

Suppose you only know song title, or only
artist name?

157

Keywords: how might it be done?

Each file has XML descriptor

<song>
<artist>David

Bowie</artist>
<title>Changes</title>
<album>Hunky Dory</album>
<size>3156354</size>
</song>

Key is hash of descriptor: k =
h(d)

Store file at node responsible
for k

Plausible queries
q1 = /song[artist/David

Bowie][title/Changes]
[album/Hunky Dory]
[size/3156354]

q2 = /song[artist/David
Bowie][title/Changes]

q3 = /song/artist/David
Bowie

q4 = /song/title/Changes

Create keys for each plausible
query: kn = h(qn)

For each query key kn, store
descriptors d at node
responsible for kn

158

Keywords: continued

Suppose you input q4 = /song/title/Changes
Locally obtain key for q4, submit key to
DHT
DHT returns node n responsible for q4
Obtain from n the descriptors of all songs
called Changes
You choose your song with descriptor d,
locally obtain key for d, submit key to DHT
DHT returns node n’ responsible for
desired song

159

Blocks

HeyJude MP3

HeyJude1 HeyJude8

Each block is assigned to a different node

160

Blocks (2)

Benefits
Parallel downloading

Without wasting global
storage

Load balancing
Transfer load for
popular files
distributed over
multiple nodes

Drawbacks
Must locate all blocks
Must reassemble
blocks
More TCP connections
If one block is
unavailable, file is
unavailable

161

Erasures (1)

HeyJude

• Reconstruct file with any m of r pieces

• Increases storage overhead by factor r/m

162

Erasures (2)

Benefits
Parallel downloading

Can stop when you get
the first m pieces

Load balancing
More efficient copies
of blocks

Improved availability
for same amount of
global storage

Drawbacks
Must reassemble
blocks
More TCP connections

163

4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
I3

SOS

164

Cache: campus community

campus
peers

world-wide
Internet

peers

up node
down node

campus
access
link

165

Cache: distribution engine

up node
down node

community

miss

response
server
farm

Permanent
archive

166

Replication in cache: The problem

Lot’s of nodes
Which go up & down

Lot’s of files
Some more popular than
others
Popularities changing

How many copies of
each file? Where?
Want to optimize
availability

167

DHT: Recall
For a given key, DHT returns current up
node responsible for key

Can extend API to provide 1st place winner,
2nd place winner, etc.

168

Desirable properties of content
management algorithm

Distributed
Adaptive

No a priori knowledge about file popularities,
node availabilities
New files inserted continually

High hit rate performance
Replicate while satisfying requests

169

Adaptive algorithm: simple
version

ordinary up node

down node

X

i

outside

LRU

Problem: Can miss even though object
is in an up node in the community

170

Top-K algorithm
top-K up node

ordinary up node

down node

•If i doesn’t have o, i pings top-K winners.
•i retrieves o from one of the top K if present.
•If none of the top K has o, i retrieves o from outside.

X

i

171

Simulation

Adaptive and optimal algorithms

100 nodes, 10,000 objects

Zipf = 0.8, 1.2

Storage capacity 5-30 objects/node

All objects the same size

Up probs 0.2, 0.5, and 0.9

Top K with K = {1,2, 5}

172

Hit-probability vs. node storage
p = P(up)

= .5

173

Number of replicas

p = P(up)
= .5

15 objects
per node

K = 1

174

Most frequently requested
(MFR)

Each peer estimates local request rate for each
object.

denote λo(i) for rate at peer i for object o

Peer only stores the most requested objects.
packs as many objects as possible

Suppose i receives a request for o:
i updates λo(i)
If i doesn’t have o & MFR says it should:

i retrieves o from the outside

175

Influence the rates

λo(i) should reflect the “place” of node i

Don’t request o from top-K in parallel
Instead, sequentially request

Resulting λo(i) are thinned by previous
winners

176

Most-frequently-requested
top-K algorithm

top-K up node

ordinary up node

down node

X

i1

outside
i2

i3

i4

I should
have o

177

Hit-probability vs. node storage

p = P(up)
= .5

MFR: K=5

178

Top-I MFR vs. optimal

Perf of Top-I MFR can be evaluated by a
reduced-load iterative procedure

30 cases, each with 100 nodes & bj = 1

28 out of 30 cases:

Top-I MFR converges to optimal!

But there are counter examples

179

Summary: MFR top-K algorithm

Implementation
layers on top of location substrate
decentralized
simple: each peer keeps track of a local
MFR table

Performance
provides near-optimal replica profile

180

4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS

181

Optimization theory
J objects, I peers in community
object j

requested with probability qj

size bj

peer i
up with probability pi

storage capacity Si

decision variable
xij = 1 if a replica of j is put in i; 0 otherwise

Goal: maximize hit probability (availability)

182

Optimization problem

∏∑
==

−
I

i

x
i

J

j
j

ijpq
11

)1(

IiSxb iij

J

j
j ,,1,

1
K=≤∑

=

Minimize

subject to

JjIixij ,,1,,,1},1,0{ KK ==∈

Special case of Integer programming
problem: NP

183

Homogeneous up probabilities

Suppose pi = p

Let = number of replicas of object j

Let S = total group storage capacity

Minimize

subject to:

∑
=

=
I

i
ijj xn

1

jn
J

j
j pq)1(

1
−∑

=

Snb j

J

j
j ≤∑

=1

Can be solved by
dynamic programming

184

Erasures

Each object consists of Rj erasure packets
Need Mj erasure packets to reconstruct
object
Size of erasure packet is bj/Mj

Potentially improves hit probability
Potentially abate hot-spot problem

185

Continuous optimization

Minimize

subject to

)(
1 j

J

j j zf∑ =

JjzSz j

J

j
j ,,1,0

1
K=≥=∑

=

mRzcmzc
R

Mm

j
jj

jjj
j

j

pp
m
R

qzf −

=

−−−

= ∑])1[(])1(1[)(jjjj RbMc /=

Theorem: Following optimization problem provides
upper bound on hit probability:

Easy to solve!

186

Steps in proof:

Allow for continuous number of copies of
each erasure packet
Allocate space zj to each object
For given object j, use Shur convexity to
show that optimal solution achieved when
there’s the same number of copies of each
of the Rj erasure packets
Optimize over possible zj allocations

187

()))1/(1ln(
)/ln(

1ln
)/ln(

1*

p
bq

pB
bqb

B
Sn jj

L

L

l lll

L
j −

+
−

+= ∑ =

(1) Order objects according to qj/bj, largest to smallest

(2) There is an L such that for all j > L.

(3) For j <= L , “logarithmic assignment rule”:

0* =jn

No erasures

)/ln(21 jj bqKK +=

188

Logarithmic behavior

up prob = .9
up prob = .5
up prob = .2

189

4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS

190

Persistent file storage

PAST layered on Pastry
CFS layered on Chord

P2P Filesystems
Oceanstore
FarSite

191

PAST: persistence file storage

Goals
Strong persistence
High availability
Scalability

nodes, files,
queries, users

Efficient use of pooled
resources

Benefits
Provides powerful
backup and archiving
service
Obviates need for
explicit mirroring

192

Pastry: A self-organizing P2P
overlay network

k

Route k

Msg with key k
is
routed to live
node with
nodeId closest
to k

193

Pastry: Properties

Properties
• log16 N steps
• O(log N) state
• leaf sets

• diversity
• network locality

X

Le
af

Set
of

Y

Route X

Y

194

PAST: File storage

fileIdPastry
nodeId
space

Insert fileId

195

PAST: File storage

Storage
Invariant:
File “replicas” are
stored on r nodes
with nodeIds
closest to fileId

(r is bounded by
the leaf set size)

fileIdPastry
nodeId
space

r=4

Insert fileId

196

PAST: File Retrieval

fileId

Pastry
nodeId
space

• file located
in log16 N steps

• usually locates
replica nearest
client C

Lookup

r replicasC

197

Maintaining the storage
invariant

Pastry maintains leaf set membership
notifies PAST of changes

Node arrival
refer to existing replicas (“replica diversion”)
lazy fetch

Node failure
re-replicate file on k closest nodeIds

198

4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS

199

Mobility management

Alice wants to contact bob smith
Instant messaging
IP telephony

But what is bob’s current IP address?
DHCP
Switching devices
Moving to new domains

200

Mobility Management (2)

Bob has a unique identifier:
bob.smith@foo.com
k =h(bob.smith@foo.com)

Closest DHT nodes are responsible for k
Bob periodically updates those nodes with
his current IP address
When Alice wants Bob’s IP address, she
sends query with k =h(bob.smith@foo.com)

201

Mobility management (3)

Obviates need for SIP servers/registrars
Can apply the same idea to DNS
Can apply the same idea to any directory
service

e.g., P2P search engines

202

4. Applications for DHTs

file sharing
Issues
Caching
Optimal replication theory

persistent file storage
PAST

mobility management
SOS

203

SOS: Preventing DoS Attacks

1. Select Target to attack
2. Break into accounts

(around the network)

3. Have these accounts
send packets toward
the target

4. Optional: Attacker
“spoofs” source address
(origin of attacking
packets)

To perform a DoS Attack:

204

Goals of SOS

Allow moderate number of legitimate users to
communicate with a target destination, where

DoS attackers will attempt to stop communication to the
target
target difficult to replicate (e.g., info highly dynamic)
legitimate users may be mobile (source IP address may
change)

Example scenarios
FBI/Police/Fire personnel in the field communicating
with their agency’s database
Bank users’ access to their banking records
On-line customer completing a transaction

205

SOS: The Players

Target: the node/end-
system/server to be protected
from DOS attacks

Legitimate (Good) User:
node/end-system/user that is
authenticated (in advance) to
communicate with the target

Attacker (Bad User): node/end-
system/user that wishes to
prevent legitimate users’ access
to targets

206

SOS: The Basic Idea
DoS Attacks are effective because
of their many-to-one nature: many
attack one

SOS Idea: Send traffic across an
overlay:

Force attackers to attack many overlay
points to mount successful attack
Allow network to adapt quickly: the
“many” that must be attacked can be
changed

207

Goal
Allow pre-approved legitimate users to communicate with a target
Prevent illegitimate attackers’ packets from reaching the target
Want a solution that

is easy to distribute: doesn’t require mods in all network routers
does not require high complexity (e.g., crypto) ops at/near the target

Assumption: Attacker cannot deny service to core network routers and can
only simultaneously attack a bounded number of distributed end-systems

208

SOS: Step 1 - Filtering
Routers “near” the target apply simple packet filter
based on IP address

legitimate users’ IP addresses allowed through
illegitimate users’ IP addresses aren’t

Problems: What if
good and bad users have same IP address?
bad users know good user’s IP address and spoofs?
good IP address changes frequently (mobility)? (frequent
filter updates)

209

SOS: Step 2 - Proxies
Step 2: Install Proxies outside the filter
whose IP addresses are permitted through
the filter

proxy only lets verified packets from legitimate
sources through the filter

w.x.y.z
not
done
yet…

210

Problems with a known Proxy

Proxies introduce other problems
Attacker can breach filter by attacking with
spoofed proxy address
Attacker can DoS attack the proxy, again
preventing legitimate user communication

w.x.y.z

I’m w.x.y.z

I’m w.x.y.z

I’m w.x.y.z

211

SOS: Step 3 - Secret Servlets

Step 3: Keep the identity of the proxy
“hidden”

hidden proxy called a Secret Servlet
only target, the secret servlet itself, and a few
other points in the network know the secret
servlet’s identity (IP address)

212

SOS: Steps 4&5 - Overlays

Step 4: Send traffic to the secret servlet via a
network overlay

nodes in virtual network are often end-systems
verification/authentication of “legitimacy” of traffic can
be performed at each overlay end-system hop (if/when
desired)

Step 5: Advertise a set of nodes that can be used
by the legitimate user to access the overlay

these access nodes participate within the overlay
are called Secure Overlay Access Points (SOAPs)

User → SOAP → across overlay → Secret Servlet → (through
filter) → target

213

SOS with “Random” routing

With filters, multiple SOAPs, and hidden secret
servlets, attacker cannot “focus” attack

SOAP

?SOAPSOAP

SOAP

secret
servlet

214

Better than “Random” Routing
Must get from SOAP to Secret Servlet in a “hard-to-predict
manner”: But random routing routes are long (O(n))
Routes should not “break” as nodes join and leave the overlay
(i.e., nodes may leave if attacked)
Current proposed version uses DHT routing (e.g., Chord, CAN,
PASTRY, Tapestry). We consider Chord:

Recall: A distributed protocol, nodes are used in homogeneous
fashion
identifier, I, (e.g., filename) mapped to a unique node h(I) = B in
the overlay
Implements a route from any node to B containing O(log N)
overlay hops, where N = # overlay nodes

h(I)

to h(I)

to h(I)

215

Step 5A: SOS with Chord

Utilizes a Beacon to go
from overlay to secret
servlet
Using target IP address A,
Chord will deliver packet
to a Beacon, B, where h(A)
= B
Secret Servlet chosen by
target (arbitrarily)

SOAP

IP address A

Beacon

IP address B

I’m a secret
servlet for A

To h(A)

Be my secret
servlet

To h
(A)

SOS protected data packet forwarding
1. Legitimate user forwards packet to

SOAP
2. SOAP forwards verified packet to

Beacon (via Chord)
3. Beacon forwards verified packet to

secret servlet
4. Secret Servlet forwards verified

packet to target

216

Adding Redundancy in SOS

Each special role can be duplicated if desired
Any overlay node can be a SOAP
The target can select multiple secret servlets
Multiple Beacons can be deployed by using multiple hash
functions

An attacker that successfully attacks a SOAP,
secret servlet or beacon brings down only a subset
of connections, and only while the overlay detects
and adapts to the attacks

217

Why attacking SOS is difficult
Attack the target directly (without
knowing secret servlet ID): filter
protects the target
Attack secret servlets:

Well, they’re hidden…
Attacked servlets “shut down” and
target selects new servlets

Attack beacons: beacons “shut down”
(leave the overlay) and new nodes
become beacons

attacker must continue to attack a “shut
down” node or it will return to the overlay

Attack other overlay nodes: nodes
shut down or leave the overlay,
routing self-repairs

SOAP

beacon

secret
servlet

Chord

218

Attack Success Analysis

N nodes in the overlay
For a given target

S = # of secret servlet nodes
B = # of beacon nodes
A = # of SOAPs

Static attack: Attacker chooses M of N nodes at random and
focuses attack on these nodes, shutting them down
What is Pstatic(N,M,S,B,A) = P(attack prevents communication with
target)
P(n,b,c) = P(set of b nodes chosen at random (uniform w/o
replacement) from n nodes contains a specific set of c nodes)

P(n,b,c) = =
n-c

b-c

n

b

b

c

n

c

Node jobs are assigned
independently (same node can
perform multiple jobs)

219

Pstatic(N,M,S,B,A) = 1 - (1 - P(N,M,S))(1 – P(N,M,B))(1
– P(N,M,A))

Attack Success Analysis cont’d

Almost all overlay nodes must be attacked to achieve a
high likelihood of DoS

220

Dynamic Attacks
Ongoing attack/repair battle:

SOS detects & removes attacked
nodes from overlay, repairs take
time TR
Attacker shifts from removed node
to active node, detection/shift takes
time TA (freed node rejoins overlay)

Assuming TA and TR are
exponentially distributed R.V.’s, can
be modeled as a birth-death process

…0 1

µ1 µ2

λ1 λ2

M-1 M

µM-1 µM

λM-1 λM

M = Max # nodes
simultaneously attacked

πi = P(i attacked nodes
currently in overlay)

Pdynamic =∑0 ≤i ≤M (πi •
Pstatic(N-M+i,i,S,B,A))

Centralized attack: λi = λ
Distributed attack: λi = (M-i)λ

Centralized repair: µi = µ
Distributed repair: µi = iµ

221

Dynamic Attack Results

1000 overlay nodes, 10 SOAPs, 10 secret servlets, 10
beacons
If repair faster than attack, SOS is robust even
against large attacks (especially in centralized case)

centralized attack and repair distributed attack and repair

222

SOS Summary

SOS protects a target from DoS attacks
lets legitimate (authenticated) users through

Approach
Filter around the target
Allow “hidden” proxies to pass through the filter
Use network overlays to allow legitimate users to reach
the “hidden” proxies

Preliminary Analysis Results
An attacker without overlay “insider” knowledge must
attack majority of overlay nodes to deny service to
target

223

5. Security in Structured P2P
Systems

Structured Systems described thusfar
assume all nodes “behave”

Position themselves in forwarding structure to
where they belong (based on ID)
Forward queries to appropriate next hop
Store and return content they are assigned
when asked to do so

How can attackers hinder operation of
these systems?
What can be done to hinder attacks?

224

Attacker Assumptions

The attacker(s) participate in the P2P
group
Cannot view/modify packets not sent to
them
Can collude

225

Classes of Attacks

Routing Attacks: re-route traffic in a “bad’
direction
Storage/Retrieval Attacks: prevent
delivery of requested data
Miscellaneous

DoS (overload) nodes
Rapid joins/leaves

226

Identity Spoofing

Problem:
Node claims to have an identity that belongs to
other node
Node delivers bogus content

Solution:
Nodes have certificates signed by trusted
authority
Preventing spoofed identity: base identity on IP
address, send query to verify the address.

227

Routing Attacks 1: redirection

Malicious node redirects queries in wrong
direction or to non-existent nodes (drops)

YX
locate Y

228

Suggested Solution: Part I

Use iterative approach to reach
destination.

verify that each hop moves closer (in ID space)
to destination

YX
locate Y

?

229

Suggested Solution: Part II

Provide multiple paths to “re-route” around
attackers

YX

230

Choosing the Alternate paths:
e.g., a CAN enhancement

Use a butterfly network of
virtual nodes w/ depth
log n – log log n

Use:
Each real node maps to a set
of virtual nodes
If edge (A,B) exists in
Butterfly network, then form
(A,B) in actual P2P overlay
“Flood” requests across the
edges that form the butterfly

Results: For any ε, there are
constants such that

search time is O(log n)
insertion is O(log n)
search messages is O(log2n)
each node stores O(log3n)
pointers to other nodes and
O(log n) data items
All but a fraction ε of peers
can access all but a fraction ε
of content

231

Routing Attack 2: Misleading
updates

An attacker could trick
nodes into thinking other
nodes have left the system
Chord Example: node “kicks
out” other node
Similarly, could claim another
(non-existent) node has
joined
Proposed solution: random
checks of nodes in P2P
overlay, exchange of info
among “trusted” nodes

1

8

32

67

87
86

72

82-23

86 23-finger=82
86

X
X

e.g., for i=3

23-finger=82

82

Malicious node 86
“kicks out” node 82

232

Routing Attack 3: Partition

A malicious bootstrap node sends
newcomers to a P2P system that is disjoint
from (no edges to) the main P2P system
Solutions:

Use a trusted bootstrap server
Cross-check routing via random queries,
compare with trusted neighbors (found outside
the P2P ring)

233

Storage/Retrieval Attacks

Node is responsible for holding data item
D. Does not store or deliver it as required
Proposed solution: replicate object and
make available from multiple sites

234

Miscellaneous Attacks

Problem: Inconsistent Behavior - Node
sometimes behaves, sometimes does not
Solution: force nodes to “sign” all
messages. Can build body of evidence over
time
Problem: Overload, i.e., DoS attack
Solution: replicate content and spread out
over network
Problem: Rapid Joins/Leaves
Solutions: ?

235

5. Anonymnity

Suppose clients want to perform
anonymous communication

requestor wishes to keep its identity secret
deliverer wishes to also keep identity secret

236

Onion Routing

A Node N that wishes to send a message to a node
M selects a path (N, V1, V2, …, Vk, M)

Each node forwards message received from previous
node
N can encrypt both the message and the next hop
information recursively using public keys: a node only
knows who sent it the message and who it should send to

N’s identity as originator is not revealed

237

Anonymnity on both sides
A requestor of an object receives the object from the
deliverer without these two entities exhanging identities
Utilizes a proxy

Using onion routing, deliverer reports to proxy (via onion
routing) the info it can deliver, but does not reveal its identity
Nodes along this onion-routed path, A, memorize their previous
hop
Requestor places request to proxy via onion-routing, each node
on this path, B, memorize previous hop
Proxy→Deliverer follows “memorized” path A
Deliverer sends article back to proxy via onion routing
Proxy→Requestor via “memorized” path B

Proxy
Requestor Deliverer

238

6. P2P Graph Structure

What are “good” P2P graphs and how are
they built?
Graphs we will consider

Random (Erdos-Renyi)
Small-World
Scale-free

239

“Good” Unstructured P2P
Graphs

Desirable properties
each node has small to moderate degree
expected # of hops needed to go from a node u
to a node v is small
easy to figure out how to find the right path
difficult to attack the graph (e.g., by knocking
out nodes)
don’t need extensive modifications when nodes
join/leave (e.g., like in Chord, CAN, Pastry)

Challenge: Difficult to enforce structure

240

Random (Erdos-Renyi) Graphs

For all nodes u,v, edge (u,v) is added with
fixed probability p
Performance in P2P Context: In some
sense, these graphs are too random

long distance between pairs of nodes likely
difficult to build a good distributed algorithm
that can find a short route between arbitrary
pair of nodes

241

Small World Model

Nodes have positions (e.g., on a 2D graph)
Let d(u,v) be the distance between nodes u & v
Constants p, q, r chosen:

each node u connects to all other nodes v where d(u,v) < p
each node connects to q additional (far away) nodes
drawn from distribution where edge (u,v) is selected with
probability proportional to d(u,v)-r

Each node knows all neighbors within distance p and also
knows q far neighbors
Search method: choose the neighbor that is closest (in
distance) to the desired destination

242

Optimal Small-World Config

Proven in [Kle00]
that only for r=2
can a distributed
algorithm reach the
destination in
expected time
O(log2n)
For other r, time is
polynomial in n

Degree of polynomial

243

Small-World Freenet

Freenet Architecture
each object has unique identifier/key (similar to DHTs)
search method is unstructured

Small-World Modification using Kleinberg’s result:
each node maintains a set of neighbors according
to Small-World criterion
Search algorithm: always get as close to
destination as possible, reverse path if node has
no neighbors that are closest to destination
Result: search time/messaging is O(log2n) with
nodes having O(log2n) neighbors.

244

Scale-Free Graphs

Erdos-Renyi and Small-World
graphs are exponential: the
degree of nodes in the network
decays exponentially
Scale-free graph: node connects
to node with current degree k
with probability proportional to k

nodes with many neighbors more
likely to get more neighbors

Scale-free graphs’ degree
decays according to a power law:
Pr(node has k neighbors) = k-α

245

Are Scale-Free Networks
Better?
Average diameter lower in
Scale-Free than in
Exponential graphs
What if nodes are
removed?

at random: scale free keeps
lower diameter
by knowledgable attacker:
(nodes of highest degree
removed first): scale-free
diameter grows quickly

Same results apply using
sampled Internet and
WWW graphs (that
happen to be scale-free)

246

7. Measurement of Existing P2P
Systems

Systems observed
Gnutella
Kazaa
Overnet (DHT-based)

Measurements described
fraction of time hosts are available
(availability)
popularity distribution of files requested
of files shared by host

247

Results from 3 studies

[Sar02]
Sampled Gnutella and Napster clients for 8 and 4 day
period
measured availability, bandwidths, propagation delays,
file sizes, file popularities

[Chu02]
Sampled Gnutella and Napster clients for monthlong
period
measured availability, file sizes and popularities

[Bha03]
Sampled Overnet clients for a week-long period
Measured availability, error due to use of IP address as
identifier

248

Methods used

Identifying clients
Napster: ask central server for clients that provide
popular names of files
Gnutella: send pings to well-known (bootstrap) peers and
obtain their peer lists
Overnet: search for random IDs

Probing:
Bandwidth/latency: tools that take advantage of TCP’s
reliability and congestion control mechanism
Availability/Files offered, etc: pinging host (by whatever
means is necessary for the particular protocol, usually by
mechanism provided in protocol)

249

Availability

[Sar02] results:
application uptime
CDF is concave
[Chu02]: short
studies overestimate
uptime percentage

Implication: clients’
use of P2P tool is
performed in bursty
fashion over long
timescales

250

Availability con’td

[Bha03]: using IP address to identify P2P client
can be inaccurate

nodes behind NAT box share IP address
address can change when using DHCP
[Chu02] results about availability as function of period
similar even when clients are not “grouped” by IP address

251

Session Duration

[Sar02]:

252

File popularity
Popular files
are more
popular in
Gnutella than in
Napster

Gnutella clients more
likely to share more
files

253

Bottleneck Bandwidths of
Clients

254

9. Future Research

Specific
Locality in DHT-based systems: how to
“guarantee” copies of objects in the local area

General
Using DHTs: To hash or not to hash (are DHTs
a good thing)?
Trust: Building a “trusted” system from
autonomous, untrusted / semi-trusted
collections
Dynamicity: Building systems that operate in
environments where nodes join/leave/fail at
high rates

255

Selected References
A. Oram (ed), Peer-to-Peer: Harnessing the Power of Disruptive Technologies, O'Reilly & Associates, 2001
F. von Lohmann, “P2P File Sharing and Copyright Law: A Primer for Developers,” IPTPS 2003
David P. Anderson and John Kubiatowicz, The Worldwide Computer, Scientific American, March 2002
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan, “Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications”, Proceedings of ACM SIGCOMM’01, San Diego, CA, August
2001.
Bujor Silaghi, Bobby Bhattacharjee, Pete Keleher, “Query Routing in the TerraDir Distributed Directory”,
Proceedings of SPIE ITCOM, Boston, MA, July 2002.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker, “A Scalable Content-
Addressable Network”, Proceedings of ACM SIGCOMM’01, San Diego, CA, August 2001.
OceanStore: An Architecture for Global-Scale Persistent Storage , John Kubiatowicz, David Bindel, Yan
Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. Appears in Proceedings of the Ninth
international Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000
W. J. Bolosky, J. R. Douceur, D. Ely, M. Theimer; Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs, Proceedings of the international conference on Measurement
and modeling of computer systems, 2000, pp. 34-43
J. Kleinberg, The Small-World Phenomenon: An Algorithmic Perspective, Proc. 32nd ACM Symposium on
Theory of Computing, Portland, OR, May, 2000
R. Albert, H. Joeong, A. Barabasi, Error and Attack Tolerance of Complex Networks, Nature, vol. 46, July
2000.
H. Zhang, A. Goel, R. Govindan, Using the Small-World Model to Improve Freenet Performance, Proceedings
of IEEE Infocom, New York, NY, June 2002.
J. Chu, K. Labonte, B. Levine, Availability and Locality Measurements of Peer-to-Peer File Systems,
Proceedings of SPIE ITCOM, Boston, MA, July 2002.
R. Bhagwan, S. Savage, G. Voelker, Understanding Availability, in Proc. 2nd International Workshop on Peer-
to-Peer Systems (IPTPS), Berkeley, CA, Feb 2003.
S. Saroiu, P. Gummadi, S. Gribble, A Measurement Study of Peer-to-Peer File Sharing Systems, in
Proceedings of Multimedia Computing and Networking 2002 (MMCN'02), San Jose, CA, January 2002.

256

Antony Rowstron and Peter Druschel, “Pastry: Scalable, Decentralized, Object Location and Routing for Large-scale Peer-to-peer
Systems”, Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms (Middelware)’02
Ben Y. Zhao, John Kubiatowicz, Anthony Joseph, “Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and
Routing”, Technical Report, UC Berkeley
A. Rowstron and P. Druschel, "Storage management and caching in PAST, a large-scale, persistent peer-to-peer
storage utility", 18th ACM SOSP'01, Lake Louise, Alberta, Canada, October 2001.
S. Iyer, A. Rowstron and P. Druschel, "SQUIRREL: A decentralized, peer-to-peer web cache", appeared in Principles of
Distributed Computing (PODC 2002), Monterey, CA
Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica, Wide-area cooperative storage with CFS, ACM
SOSP 2001, Banff, October 2001
Ion Stoica, Daniel Adkins, Shelley Zhaung, Scott Shenker, and Sonesh Surana, Internet Indirection Infrastructure, in
Proceedings of ACM SIGCOMM'02, Pittsburgh, PA, August 2002, pp. 73-86
L. Garces-Erce, E. Biersack, P. Felber, K.W. Ross, G. Urvoy-Keller, Hierarchical Peer-to-Peer Systems, 2003,
http://cis.poly.edu/~ross/publications.html
Kangasharju, K.W. Ross, D. Turner, Adaptive Content Management in Structured P2P Communities, 2002,
http://cis.poly.edu/~ross/publications.html
K.W. Ross, E. Biersack, P. Felber, L. Garces-Erce, G. Urvoy-Keller, TOPLUS: Topology Centric Lookup Service, 2002,
http://cis.poly.edu/~ross/publications.html
P. Felber, E. Biersack, L. Garces-Erce, K.W. Ross, G. Urvoy-Keller, Data Indexing and Querying in P2P DHT Networks,
http://cis.poly.edu/~ross/publications.html
K.W. Ross, Hash-Routing for Collections of Shared Web Caches, IEEE Network Magazine, Nov-Dec 1997
A. Keromytis, V. Misra, D. Rubenstein, SOS: Secure Overlay Services, in Proceedings of ACM SIGCOMM'02, Pittsburgh, PA,
August 2002
M. Reed, P. P. Syverson, D. Goldschlag, Anonymous Connections and Onion Routing, IEEE Journal on Selected Areas of
Communications, Volume 16, No. 4, 1998.
V. Scarlata, B. Levine, C. Shields, Responder Anonymity and Anonymous Peer-to-Peer File Sharing, in Proc. IEEE Intl. Conference
on Network Protocols (ICNP), Riverside, CA, November 2001.
E. Sit, R. Morris, Security Considerations for Peer-to-Peer Distributed Hash Tables, in Proc. 1st International Workshop on Peer-
to-Peer Systems (IPTPS), Cambridge, MA, March 2002.
J. Saia, A. Fiat, S. Gribble, A. Karlin, S. Sariou, Dynamically Fault-Tolerant Content Addressable Networks, in Proc. 1st

International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March 2002.
M. Castro, P. Druschel, A. Ganesh, A. Rowstron, D. Wallach, Secure Routing for Structured Peer-to-Peer Overlay Netwirks, In
Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI'02), Boston, MA, December
2002.
Edith Cohen and Scott Shenker, “Replication Strategies in Unstructured Peer-to-Peer Networks”, in Proceedings of ACM
SIGCOMM'02, Pittsburgh, PA, August 2002
Dan Rubenstein and Sambit Sahu, “An Analysis of a Simple P2P Protocol for Flash Crowd Document Retrieval”, Columbia University
Technical Report

