Measuring and Evaluating TCP Splitting for Cloud
Services

Abhinav Pathak, Y. Angela Wang, Cheng Huang
Albert Greenberd Y. Charlie HU, Randy Kerd, Jin Li3, Keith W. Ros$

1 Purdue University
2 Polytechnic Institute of NYU, New York
3 Microsoft Corporation, Redmond

Abstract. In this paper, we examine the benefits of split-TCP proxieplayed
in an operational world-wide network, for acceleratingutdcervices. We con-
sider a fraction of a network consisting of a large numbesatdllite datacenters,
which host split-TCP proxies, and a smaller numbemefa datacenters, which
ultimately perform computation or provide storage. Usingbveearch as an ex-
emplary case study, our detailed measurements reveal ¥hatla TCP splitting
solution deployed at the satellite DCs reducesi¢ percentile of latency by
as much as 43% when compared to serving queries directlytiiermega DCs.
Through careful dissection of the measurement resultsharacterize how indi-
vidual components, including proxy stacks, network protecpacket losses and
network load, can impact the latency. Finally, we shed lmhturther optimiza-
tions that can fully realize the potential of the TCP spiigtsolution.

1 Introduction

Cloud Services are delivered with large pools of computatior storage resources that
are concentrated imega datacenters, being built only in a hand full of remote lomasi
world-wide. The continued growth of Cloud Services, howgestically depends on
providing a level of responsiveness comparable with whabesobtained directly from
dedicated on-site infrastructures. A key challenge heterisake remote infrastructures
appear to end-users as if they were nearby.

Split-TCP proxies [1][2] can be very effective in improvitige responsiveness of
Cloud Services. In particular, Cloud Service providers daploysatellite datacenters
— within or outside of their own networks — close to the endrasThese satellite DCs
host split-TCP proxies, which maintain persistent coniobestover long-haul links to
the mega DCs that ultimately perform computation or prowsttgage. Through by-
passing TCRslow start and avoiding a number of round trips on the long-haul links,
this architecture reduces response time very effectiddny Cloud Services, whose
computation or storage cannot be easily or cost-effegtigeb-distributed and thus
have to remain in the mega DCs, can benefit from this architectncluding Inter-
net search, collaborative online editing, concurrental@@aming, cloud-based storage,
and so on. Although there are existing deployments of 3jilie proxies in commercial
systems (e.g., [3][4]), there are very few published stsidie performance gains based



on real-world Internet measurements. Furthermore, to nankedge, there is no thor-
ough study that dissects each component of a TCP splittihgiaoe, with the aim at
identifying further optimizations and fully realizing iftential.

In this paper, we deploy an experimental TCP splitting solubn a fraction of a
network of satellite DCs hosted by Microsoft’s global distition and cloud service
network. We conduct detailed measurements to quantify élive @xperienced by real-
world end-users. Using web search as an exemplary case steigiiow that, compared
to directly sending queries to the mega DCs, a vanilla TCittisigl solution can reduce
the 95" percentile latency by 43% Through careful dissection of the measurement
results, we characterize how individual components — glioly proxy stacks, network
protocols, packet losses and network load — can impact teadg. Finally, we shed
light on further optimizations that can fully realize thetgatial of the TCP splitting
solution.

2 A Web Search Case Study

Web search is one of the most important and popular cloudcgsr\Clearly, the rele-
vance of search result is critical to the success of the seri addition, the speed of
search response is essential. Delay of an extra half a seeoraffect user satisfaction
and cause a significant drop in traffic [7].

2.1 Search Response: Empirical Results

The amount of data in a search response is typically verylsifaimeasure its size
and time, we identified about 200,000 common search terms érmonymized reports
from real-world users using ‘MSN Toolbar’. For each seasrh, we issued a query to
obtain a uncompressed HTML result page, against a popukmniet search engine (the
search engine name is anonymized). We issued all the guissiesa single client lo-
cated on a university campus network. We measured the regpime and the response
time, that is, the time elapsed from TCP SYN is sent until #s packet of the HTML
result page is received. We also extracted the time — takdninathe search datacen-
ter to complete the actual search and construct the resslreparted on the resultant
HTML page.

Figure 1 plots the CDF response size of 200K search queriess&¥ that the
size of a typical uncompressed search response is 20-4@KBgbmetimes exceed-
ing 50KBytes. With a TCP Maximum Segment Size (MSS) of abd&it0lbytes, this
corresponds to 15 to 27 TCP data packets utilizing 4 TCP wiusdaf data transfer (as
suggested by RFC 3390 [8]). Figure 2 plots the CDF of resptimse=of 200K search
queries as observed by the client and the CDF of search tithéwtihe datacenter (de-
noted “Search Time”) as reported on the result page. Fronfigee, we see that a
typical response takes between 0.6 and 1.0 second. The RW&drethe client and the
datacenter during the measurement period was around 106ewdinds. We remark

* In this paper, we focus on optimizing split-TCP solutiongleingiven satellite DCs. We cover
an orthogonal and equally important issue — the choice eflgatDC locations — in separate
studies [5][6].



Search Response Size Search Time

100 100
80 80 /
w60 : w60
& a }'
O 40 ; O 40 / :
20 20 +- Search Time 4
0 o / H Total Time -
0 10 20 30 40 50 60 0 0.5 1 15 2
Search Response Size (KB) Time taken (seconds)
Fig.1. CDF of response sizes of 200K Fig.2. CDF of response time of 200K
search queries from a popular search en- search queries by popular search engine
gine for search reply
Client Proxy Data Center
TCp
Handshake
=xms Popular Webpage AdMeasure and
v+ \ containing AdMeasure  Redirection Server
Search Sgarch 11
Time / Time
4 Windows H Persistent
Packet Tx : TCP Connection la
=AXMSs | "] ﬂi IE
Total Tme = | RTT= 21
'(I';)iaLT;rrle = P -—->: 111-5-><-R-'|'-|'-=-Y-n-’1§- N Client [1130] Split-TCP Proxy[11] Data Center Servers

Search Time)

Fig. 4. TCP splitting platform - The [number]
Fig. 3. TCP packet exchange diagram betweebeside each component represents the num-
an HTTP client and a search server with aer(s) of that component in our measurement
proxy between them. system

that our measurement client was connected from a well-pimvéd network. As we
will see later, the response time can be a lot worse for dienthe wild. From the fig-
ure, we see that the search time within the datacenter ratgest uniformly between
50 and 400 msec. We also note that 5.24% of the search queolke®he second or
more to finish. The 95th percentile of the response time waghly one second.

2.2 SimpleModel for Response L atency

The total time for a query and response is composed of the tinsend the query,
the time to construct the result page and the time to trank&epage (Other factors
that influence the user perceived time includes page remglsgeed, speed of scripts
execution on browser, etc. While these are important factee only study the network
part of latency in this paper). The client first establishéBC# connection with the
datacenter server through a three-way TCP handshake. iEm¢ttlen sends an HTTP
request to the server, which includes the search query. &ver performs the search,
incurringsearch_time, and then ships the result page to the client. We assumesiinat f
TCP windows (as discussed earlier) are required to trattséaesult page to the client
when there is no packet loss. The total time taken in thisisd§& 1T+ search_time).



Now, consider the potential improvement of TCP splittindiene a proxy is in-
serted, close to the client, between the client and the eateg as shown in Figure 3.
In such a design, the proxy maintains a persistent TCP cdionegith the data center
server, where the TCP window size is large, compared to tlmiatof data in individ-
ual search result pages. A client establishes a TCP coonextid sends a search query
to the proxy. The proxy forwards the query to the datacergrares over the persistent
connection with a large TCP window (We ignore the CPU prdogssverhead incurred
at proxies throughout this paper as this overhead was dstint@ be as low as 3.2ms
in userspace split TCP implementation and 0.1ms in kernel Eplit TCP implemen-
tation [2]). The datacenter server processes the seardaly, queurring search_time,
and transmits the resulting page back to the proxy withinroned trip (given the large
TCP window). The proxy then transfers the data to the cliehich goes through a
TCP slow-start phase and takes several round trips.

The total time taken in this case 8z + y + search_time), wherex is the RTT
between the client and the proxy amts the RTT between the proxy and the datacenter.
Comparing this with the no-proxy case, we see that TCP sgittan potentially reduce
the response time b RT'T — (5z + y)). Whenz + y =~ RTT (i.e., the proxy detour
overhead is negligible), this reduction becord€BTT— x); when furtherr << RT'T,
i.e., the client-proxy distance is small when compared ¢gtoxy-datacenter distance,
this reduction becomes approximatél 77", which can be quite substantial for inter-
active applications.

3 Experimental TCP Splitting System

To understand the gain of TCP splitting on search queriekenwtild, as well as to
characterize individual components in a TCP splitting glesive’'ve implemented an
experimental TCP splitting system, deployed itin a glolstrtbution and cloud service
network, and characterized the system with search traffio freal-world users. Our
experimental system has two major components: a clientune®nt platform and a
TCP splitting platform.

3.1 Measurement System

Client Measurement Platform: Our goal is to measure query latencies for real clients
in the wild - with and without split-TCP proxies. To this entde exploit AdMeasure,
a measurement platform we recently developed [6]. In a mllishdMeasure deploys
a Flash object (implemented in 300 LOC in ActionScript) onltiple popular web
pages. When a client visits any one of these web pages (asmshokigure 4), the
AdMeasure Flash object is loaded into the client at the enth@fweb page (so as
not to affect user-perceived page load time). The Flashcob@trieves a workload list
from a central AdMeasure server, performs pre-configurestiet measurements such
as issuing search queries to the IPs contained in the watkistaand submits results
back to the AdMeasure server.

In our TCP splitting experiments, the AdMeasure server tieeslient’s geographic
location (from its IP address) and instructs the client$oiéssearch queries to the clos-
est proxy (This step incurs overhead for each query. It isrgldied implementation



and should be replaced by a DNS server in a production systéere the DNS res-
olution overhead is amortized over many queries and thugmalip The proxy with
minimum geographic distance is a reasonable approximé&tidine proxy with mini-
mum RTT, as shown in [9]. For simplicity, we use a fixed seanglry term “Barack
Obama” with/without proxies. We verify that the repetitiohthe same query term ex-
periences similar “search time” in the mega datacentess. -there is no caching of
search results at the datacenter when same queries are ispeatedly. We deploy the
AdMeasure Flash object on multiple popular partner websiteluding the front page
for Microsoft Research, the front page for Polytechnic.loétNYU, the front pages of
three small online gaming websites, as well as a few persmmakpages.

TCP Splitting Platform: Our TCP splitting platform consists of two parts: split-
TCP proxies and mega datacenters. We deploy split-TCP ged»qut 2K LOC in C++)
in a fraction of the satellite DCs of Microsoft's global disution and cloud service
network (11 locations worldwide - 6 in US, 3 in Europe and 2 isiad. We choose 2
Live Search mega DCs (both in US). Each proxy forwards seguehies to the closer
(in terms of RTT) Live Search datacenter. The proxy does ache the results of any
search query. The proxy relays the queries on behalf oftsliever a persistent HTTP
connection to the datacenter. It stores statistics likeaese time, content length, query
id, etc. In addition, packet traces in form of tcpdumps aceréed.

Through AdMeasure, each clientis instructed to issue 6+adiack queries to the
closest of the 11 proxies, which forwards to the closer ottwdatacenters; and each
query starts a new TCP connection to the proxy. We ignore thietfio queries, which
are meant to warm up the TCP transmission window betweendtexenter and the
proxy. This is to emulate production environments, whereyrgueries and responses
are multiplexed over the same datacenter-proxy connecimunderstand the degree
to which TCP splitting helps, as a baseline, each clientiaBaes six queries directly
to the datacenter.

3.2 Measurement Results

Through AdMeasure, we collected one week’s worth of dataisting of 5,584 search
queries through proxies from 1,130 unique clients out ofclwt52 were located in
North America (covering 193 cities). The bias in clientstdtion originates from the
fact that the websites, where AdMeasure was deployed, wapelar mostly in North
America. Using one week’s worth of data, we now report ouregixpental results in
this subsection. Since the current deployment of AdMeaattracts significantly more
users from North America than other continents, we repdstdients originating from
North America.

Latency Model Validation: We first validate whether the simple model described
in Figure 3 indeed holds true with the real clients. We sejparat the traces with packet
loss in either proxy to client or datacenter to proxy comroation (traces with loss will
be re-visited later). We identify packet loss from the prakge tcpdump outputs. For
simplicity, we assume that retransmission implies dat&gidoss. ACK loss is not easy
to identify, but turns ouhot to be rare. Here, we apply a simple heuristic to infer ACK
loss — the sequence number gap between any two consecutiK®isCalculated; if the



[y
o
o
1

'3 100 ’.,--T'.'_ ................
=0.75 80 f/ ----
> O 2
O N
S w 60
T a
© é 0.50 O 20 £
-8 [t
~ 1 + Measured 20 via Proxy
0.25 - Estimated N _ Direct o DC oo
0 500 1000 0 02 04 06 08 1
Index Query Latency (normalized)
Fig. 5. Latency Model Validation Fig. 6. Gain of TCP Splitting
100 99.26

-

00

80

[ Private Network

60 ]
40 /

20

B Public Network |

10 -

CDF

Percentage (%)

Loss

0.1

0 0.5 1 1.5 2
Query Latency (normalized) 0 Nlumberof RT1Z's 3
Fig.8. Time (*RTT) between first and last re-
Fig. 7. Impact of Packet Loss sponse packet at proxy from datacenter

gap is bigger than two MSS (taking into account delayed askedgment[10]), we as-
sume there is an ACK loss (this simple heuristic might o\stirgate, but is nevertheless
conservative for weeding out connections with loss).

Considering all traces without data packet/ACK loss, we nalgulate an estimated
latency as: 6 times RTTbetween client and proxy= 6 * = - notation follows from
Figure 3) + 1 RTT between proxy and datacentery) + datacenter search time-(
search_time). Here, () + search_time) is obtained directly from tcpdump, as the time
from when the proxy forwards the query to the datacentet ilggets the first response
packet. We also obtain the true total latency from tcpduragha time from when the
proxy receives the SYN until the final ACK from the client.

Figure 5 (best viewed in color) plots the estimated and tnegnialized) latency
of minimum of the six search queries per client visit (a feverms visited multiple
times) sorted by measured latency. Using a linear scale, ammalized (and hence
anonymized) all the real latencies with a constant largenkat value throughout the
paper. It is clear that, without packet/ACK loss, the simpledel nearly approximates
the true latency. Note that towards right in the figure, whheetotal latency is large,

5 as for “Barack Obama” Query, response size is 55KB which i<C® Tindows of data, im-
plying, 1 RTT for TCP Handshake + 5 window packet transfeRb¥)



Table 1. TCP window comparison, for different OS’s

| Linux JWin2003Win2008

Window Size in Bytes
15t12,920] 2,520 | 2,920
2"7'4,380| 3,780 | 5,840
371 5,840] 4,980 | 11,680
4t"18,760| 7,560 | 23,360
5" 111,680 11,340
6" 116,060 16,380
# of Windows for 50KB+ data

7 7 [ 5

the RTTs between the clients and the proxies are also laayget RTTs show more
variations, which tend to have a larger impact on inaccuracy

Impact of Proxy OS: In the course of our experiment, we found that the operating
systems on the proxies have a large impact on the latendyepgxhibit very different
TCP window behavior. Table 3.2 compares the transmissioevy for Linux kernel
2.6.20, Windows Server 2003, and Windows Server 2008, uselglata collected from
our proxies. As we can see, both Windows Server 2003 and Lshaw a similar win-
dow growth rate of about 1.5, whereas Windows Server 200&/slogrowth rate of
2. We believe the difference is because Windows Server 200p&iments Appropriate
Byte Counting (ABC) [11], while Linux and Windows Server 2060 not. ABC in-
creases the TCP congestion window by the number of bytesoad&dged, compared
to by the number of acknowledgements conventionally. Udé&ryed ACK (most com-
mon), the difference is exactly 2 vs. 1.5. Using Windows 8e2008 can immediately
reduce the total latency by two round trips between the thed the proxy. Hence, all
results reported in the paper use proxies hosted on Windew®62008 machines.

How Much Does TCP Splitting Help? Recall that each client issues six queries
through the proxy and the first two responses are used to wathredl CP transmission
window between the datacenter and the proxy. The perforenahihie remaining four
queries should reflect latencies that end-users will erpes.

We now include all the cases - with and without data packet@K Aoss and present
the main finding of this section: a comparison of the endrtddatency with and with-
out TCP splitting. Figure 6 plots the CDF of search latencthveind without TCP
splitting. We see that &5'" percentile, TCP splitting reduces latency from 0.93 to 0.53
(both values are normalized) — a savings of 43%!

Impact of Packet Loss: Loss can occur either between the datacenters and the
proxies, or between the proxies and the clients. But, as Wesee next, the latter case
is much more common. Indeed, from the packet traces, we wbgeat 7% of the TCP
sessions between the proxies and the clients have at leagtamket retransmission.
To examine the impact of loss, Figure 7 plots the CDF of thparse time for these
7% queries. From the figure, we observe that (1) when comparaitithe queries (the
“via proxy” curve in Figure 6), loss significantly impactettatency — the (normalized)
response time of 76% queries is greater than 1.0; and (2) ebthe queries are heavily



affected - the (normalized) response time of 22% queridspatket loss is greater than
2.0. An implication of the finding is - if loss in the last mila be handled effectively,
the latency of the 7% queries can be drastically reduced.

Latency in Hauling Data from Datacenter: In our experimental deployment, each
proxy maintains a persistent TCP connection with the datacelf packet loss occurs
between the proxy and the datacenter, additional rounsl &ip required to transmit a
response. Using the last four of the total six queries pérwesnow examine whether
the datacenter can always transmit the entire response paliies in one transmission
window. In particular, we examine the time gap between tloxyreceiving the first
and last packet from the datacenter. Ideally, this time khioe close to O, if all packets
arrive in a single window. Figure &Xivate-network bars) shows that this is typically
the case for the proxies within Microsoft’s global distriiaun network. For comparison
purposes, we have also deployed a split-TCP proxy insidéltilene network at Pur-
due University public-network bars in figure 8). For this proxy, in sharp contrast, about
20% of the cases take one RTT (round trip time between thisypand datacenter),
indicating that at least one packet loss has occurred. Atigatipn of this finding is
- when Cloud Service providers start to deploy satellite D€gond their private net-
works, they are more likely to encounter the so-called “rtaelile” problem [3]. In
that case, a customized FEC-based low latency reliablegube.g.,[12]) between the
proxy and the datacenter should be beneficial.

Stress Testing: During our measurements, we were able to attract over 108tsl
in one week’s time frame. This rate does not give us the oppdytto measure the
performance of our system under load. Specifically, we whitteneasure the response
time between the proxy and the datacenter under load. Abyeaeries go through
the same connection between the proxy and the datacerenvtiuld suffer the same
fate , i.e., if one query experiences a loss, the queriesesding it would also suffer
due to TCP semantics.

To stress-test our split-TCP platform, we conducted thiedohg experiment in all
the 11 proxy locations. Due to the lack of high client arriak, we made each proxy is-
sue back-to-back queries to itself destined to the datacdfdach query fetches a single
image of about 50KB size from a web server in the datacenter,@single persistent
HTTP connection. We choose to fetch a single static imageegins would incur neg-
ligible time at web server and we would have only the netwarétar the microscope.
The web server was configured with unlimited HTTP requests the persistent HTTP
connection. The query rate was varied from 1 request/se@Q0 fequest/sec. At each
rate, we dispatched 10000 queries and waited for all theoresss to be received. For
every query, we measured the response time. Since we wetenfgta static image
from the web server, the latency of the web server itself Ehbe negligible. Over the
persistent HTTP connection with a large TCP window, the @asp time should be a
single RTT.

Figure 9 plots the results of stress testing for 8 of the 1kytocations (the rest 3
similar). For every location, we plot one bar for each re¢jtege indicating the percent
of requests that took 2 or more RTT to complete. For examplethle proxy in Ams-
terdam, at 1 request/sec, 0.02% of the requests took 2 or RiofeWe issued a total
of 10,000 requests (1 per second). This means that 2 out dfa¥0 requests took



[ [A] Amsterdam
[S] Seattle

[ [D] Dublin

[J] Japan

[LA] Los Angeles
0.01 | [ [L] London
M [G] Singapore

B [N] San Antonio

Percentage of requests

1 10 100 1000

Requests/second

Fig. 9. Stress Test: Percentage of requests that took more 2 or mdretB complete

more than 2 RTT. Those were in fact the first two requests tlzmed up the TCP

connection. Even at a high request rate, less than 0.1% gfutkiées incur more than 2
RTTs. This experiment shows that, in the private networkatéliite datacenters, even
high load can be readily handled by persistent HTTP conoesti

4 Related Work

Proposals for using persistent-connection HTTP and 3 proxy to improve web
transfer performance can be dated back at least to the mid Batly important work
includes that of Padmanaban [13] and Mogul [14]. Proxiespramide additional ben-
efit through clever techniques, such as using static cotdergen up TCP window [4].
Furthermore, proxies can provide benefit through adaptstdpiggyback mechanisms
[15]. Authors in [1][2] evaluate performance of split-TCRogies using a very limited
set of clients. Through emulation, [1] evaluated socke¢ll@ CP splice using a single
client and various latency/loss rate. The focus was to eséirthe number of CPU cy-
cles that a proxy spends processing requests. [2] estirttegdatency penalties incurred
by split-TCP proxies. Authors estimated that a kernel |epdit-TCP implementation
incurs only 0.1ms. However, none of the studies were deplay& evaluated using a
production environment and through a large number of realdhend-users. Moreover,
none of studies dissects the splitting TCP solution from asyraspects as we do, nor
do they outline the directions for further optimizations.

5 Conclusion and Future Work

In this paper, we investigate the benefits and optimizatadrigCP splitting for accel-

erating Cloud Services. Using web search as an exemplagystady and through an
experimental system deployed in a production environmemshow that TCP splitting
can indeed reduce the response time of Cloud Services siyniify. We also identify

a number of directions for further optimizations in ordemthieve the full benefit of
TCP splitting.



During our experimental deployment, we observe that paokstis rather common

between the end-users and the proxies, even though theeprand deployed in a well-
provisioned and well-connected production network. Thig ibit surprising, but yet
consistent with observations from other production neks¢4]. As an ongoing work,
such reality prompts us to pursue TCP stack modificationfiemptoxy so as to more
effectively handle packet loss and improve the latencyqrerénce.

Furthermore, along with optimizing each component in thé>&plitting system,

expanding the presence of the global distribution netwarid(thus proxies) will also
help. The holy grail question being — how many locations balsufficient and where
should these locations be? We are developing new methadslf&] and conducting
large scale studies in order to answer this question comelys

References

10.

11.
12.

13.
14.
15.

. Ibm, R.U., Rosu, D.: An Evaluation of TCP Splice BenefitaMeb Proxy Servers. In:

WWW, ACM Press (2002)

. Maltz, D.A., Bhagwat, P.: TCP Splicing for Applicationyer Proxy Performance. Technical

report, IBM Research Report 21139 (Computer Science/Nadiies) (1998)

. Akamai: Akamai's EdgePlatform for Application Accelgoa. Akamai, Inc., 2007.
. Tariq, M., Zeitoun, A., Valancius, V., Feamster, N., Anmmd.: Answering What-If De-

ployment and Configuration Questions with WISE. In: ACM SIGIZM. (August 2008)

. Huang, C., Wang, Y.A., Li, J., Ross, K.W.: Measuring anélBating Large-Scale CDNs.

In: MSR Technical Report MSR-TR-2008-106. (2008)

. Wang, Y.A., Huang, C., Li, J., Ross, K.W.: Measuring Neatkv®erformance for Cloud

Services with AdMeasure. (2009) Submitted.

. Mayer, M.: Web 2.0. http://glinden.blogspot.com/20d8marissa-mayer-at-web-20.html.
. Allman, M., Floyd, S., Partridge, C.: Increasing TCP'gi&d Window. RFC 3390 (October

2002)

. Krishnan, R., Madhyastha, H.V., Srinivasan, S., JainK8shnamurthy, A., Anderson, T.,

Gao, J.: Moving Beyond End-to-End Path Information to OmenCDN Performance. In:
ACM IMC. (2009)

Allman, M., Paxson, V., Stevens, W.: TCP Congestion f@dntRFC 2581 (April 1999)
Updated by RFC 3390.

Allman, M.: Tcp byte counting refinements. SIGCOMM Comi@ommun. Rev. (1999)
Huang, Y., Mehrotra, S., Li, J.: A Hybrid FEC-ARQ Protbéar Low-Delay Lossless Se-
guential Data Streaming. In: ICME. (2009)

Padmanabhan, V.N., Mogul, J.C.: Improving HTTP LatetieyWWW Conference. (1994)
Mogul, J.C.: The Case for Persistent-Connection HTTEMACCR (1995)

Cohen, E., Krishnamurthy, B., Rexford, J.: ImprovinglEa-End Performance of the Web
Using Server Volumes and Proxy Filters. ACM CCR (1998)



