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Abstract—In current multi-channel live P2P video systems,
there are several fundamental performance problems including
exceedingly-large channel switching delays, long playback lags,
and poor performance for less popular channels. These perfor-
mance problems primarily stem from two intrinsic characteristics
of multi-channel P2P video systems: channel churn and channel-
resource imbalance. In this paper, we propose a radically differ-
ent cross-channel P2P streaming framework, called View-Upload
Decoupling (VUD). VUD strictly decouples peer downloading
from uploading, bringing stability to multichannel systems and
enabling cross-channel resource sharing. We propose a set of
peer assignment and bandwidth allocation algorithms to properly
provision bandwidth among channels, and introduce substream
swarming to reduce the bandwidth overhead. We evaluate the
performance of VUD via extensive simulations as well with a
PlanetLab implementation. Our simulation and PlanetLab results
show that VUD is resilient to channel churn, and achieves lower
switching delay and better streaming quality. In particular, the
streaming quality of small channels is greatly improved.

I. INTRODUCTION

In recent years there have been several large-scale industrial
deployments of P2P live video systems, including Coolstream-
ing [1], PPLive[2], and Sopcast [3], etc. Almost all live
P2P video systems offer multiple channels. PPLive and its
competitors each have over 100 channels; future user-generate
systems will likely have thousands if not millions of live
channels.

A. Isolated-Channel P2P Video Systems

A common practice in P2P video today is to organize peers
viewing the same channel into a swarm, with peers in the
same swarm redistributing video chunks exclusively to each
other. We refer to such a design as “isolated-channel” P2P
video systems. Recent studies of PPLive have identified sev-
eral fundamental performance problems for isolated-channel
systems:
Channel switching delay and playback lag. Measurement
studies of PPLive and other live P2P streaming systems [4], [5]
indicate that current channel-switching delays are typically on
the order of 10-60 seconds. This is clearly undesirable, as users
are accustomed to delays of under 3 seconds in current cable
and satellite television systems and sub-second delays when
switching pages on the Web. Furthermore, these measurement
studies have shown that the playback lag, from when a live
video frame is emitted from the source until it is played at
the peer, wildly varies from one peer to another, with delays

ranging from 5 to 60 seconds. Unfortunately, the BitTorrent-
like mesh-pull architectures – currently used by most of the
P2P video deployments – are inherently delay and lag prone.
Poor small-channel performance. In the upcoming years, we
expect to see the emergence of user-generated live channels,
for which any user can create its own temporary live video
channel from a webcam or a hand-held wireless device. In
the future, there will be, at any one time, thousands of such
small channels, each emanating from a relatively low-speed
connection (for example, wireless PDA) and each with 10-
1000 viewing peers. Measurement work [4], [5] has revealed,
however, that current P2P live streaming systems generally
provide inconsistent and poor performance to channels with a
small number of peers.

These performance problems primarily stem from two in-
trinsic characteristics of multi-channel P2P video systems:
channel churn and channel-resource imbalance. In multi-
channel P2P video systems, churn occurs on two different
time scales: peers enter and leave the video application on
long time scales; and peers change channels on short time
scales. A recent study of a cable television system showed
that users switch channels frequently [6]. Unfortunately, this
channel churn brings enormous instability to the system. For
example, when a peer switches from channel A to channel B, it
stops uploading to its neighbors in swarm A. Those neighbors
have to find new data feed to maintain steady video inflow.
And in swarm B, the newly joining peer has to find new
neighbors with enough bandwidth and content to download
from, leading to excessive channel switching delays.

To understand channel-resource imbalance, recall that a
channel’s instantaneous resource index [7], [8] is defined as

ρ :=
us +

∑n
i=1 ui

nr
(1)

where r is the bit rate of the channel, n is the number of peers
viewing the channel, us is the server upload capacity, and ui is
the fraction of peer i’s upload capacity devoted to the channel.
A channel’s instantaneous resource index indicates to what de-
gree the upload supply matches the download demand for the
channel. In particular, the streaming rate r is not sustainable
if ρ < 1 for extended periods. In an isolated-channel design,
many channels may have poor performance simply because
they are resource-index poor. Moreover, channel switching and
resource-index imbalance can conspire, leading to extremely



poor performance for small channels.

B. View-Upload Decoupling

In this paper, we propose a radically different cross-channel
P2P streaming framework, which we refer to as View-Upload
Decoupling (VUD). VUD strictly decouples what a peer up-
loads from what it views, bringing stability to multi-channel
systems and enabling cross-channel resource sharing.

In VUD, each peer is assigned to one or more channels,
with the assignments made independently of what the peer
is viewing. For each assigned channel, the peer distributes
(that is, uploads) the channel. This has the effect of creating
a semi-permanent distribution swarm for each channel, which
is formed by peers responsible for uploading that channel.
This novel approach has two major advantages over isolated-
channel designs:
• Channel Churn Immunity. VUD is immune to channel

churn. With these more stable distribution swarms, a
peer’s viewing experience and channel-switching delay
can be dramatically improved.

• Cross-Channel Multiplexing. VUD enables cross-
channel resource sharing. In particular, distribution
swarms can be properly provisioned and adapted in
response to the evolving channel popularity and achieve
a cross-channel “multiplexing gain”.

However, decoupling viewing from uploading requires more
upload bandwidth overhead. To minimize this overhead, we
also propose a substream-swarming enhancement. With sub-
stream swarming, a peer in a distribution swarm only down-
loads a small portion of the video stream, called a substream,
and uploads the substream to multiple viewers. This way, peers
in distribution swarms act as bandwidth amplifiers. We will
show that VUD combined with substream-swarming dramat-
ically improves viewing and channel-switching performance
without requiring significant upload-bandwidth overhead.

We make the following contributions in this paper:
• To the best of our knowledge, this is the first P2P live

streaming design that strictly decouples peer viewing
from uploading. It addresses two fundamental problems
that exist in current P2P streaming system designs: chan-
nel churn and channel-resource imbalance.

• We propose a set of peer assignment and bandwidth
allocation algorithms to realize the proper provision of
bandwidth among distribution groups. It eliminates the
problem of resource shortage in small channels. When
channel popularity changes, the algorithms can adjust
bandwidth allocation dynamically.

• We introduce a substream enhancement to reduce the
bandwidth overhead incurred by decoupling of viewing
and uploading. We provide an analytical study of band-
width overhead of VUD using substreams.

• We evaluate the performance of VUD via extensive
simulations. The simulation results show that VUD sig-
nificantly reduces switching delay, chunk miss ratio and
playback lags. Moreover, VUD greatly improves the

streaming quality of small channels. We also perform a
preliminary PlanetLab evaluation of VUD.

The remainder of this paper is structured as follows. Section
II summarizes related work. The detailed design of our cross-
channel streaming system is presented in Section III. In Sec-
tion III-A, we analyze the bandwidth overhead of our design.
In Section IV, we describe the simulation methodologies and
results related to the experiments conducted to verify the
performance. The paper is summarized in Section V.

II. RELATED WORK

P2P video streaming has attracted lots of research activities
in recent years. Existing P2P video systems fall into two cate-
gories: tree-based and mesh-based. Most of previous research
work focuses on the design and improvement of isolated-
channel P2P streaming systems, paying little attention to the
optimization of multi-channel P2P streaming systems. In the
multi-channel setting, there are few related published papers.
In [9], Wu et al. proposed a server bandwidth provisioning
algorithm to adjust the supply of server bandwidth to different
channels dynamically. Liao et al. [10] introduced inter-overlay
cooperation in their system called AnySee to balance the
resources among channels, and optimize streaming paths. In
[11], Gan et al. proposed a reputation-based incentive mecha-
nism to stimulate peers with spare bandwidth in resource-rich
channels to help peers in resource-poor channels. Although
the above works consider the balance of bandwidth resource
among channels, they cannot solve the fundamental perfor-
mance degradation incurred by channel churn. Our design dif-
fers in that, by strictly decoupling peer viewing and uploading,
we address both channel churn problem and channel-resource
imbalance problem simultaneously.

III. VIEW-UPLOAD DECOUPLING WITH SUBSTREAMS

We now describe more specifically VUD. Each video is di-
vided into substreams (for example, to create K substreams for
a video, the video source could assign every Kth constant-size
chunk to a substream). As illustrated in Figure 1, the server
divides the channel into K substreams. For each substream,
there is a subset of peers, called a substream distribution
group. Server only uploads each substream to one peer in
each distribution group. Peers in the same distribution group
upload and download the substream in P2P fashion. Finally,
each viewer downloads all substreams from all distribution
groups. Below we list some critical properties and observations
about VUD:

1) The groups are semi-permanent, that is, the groups
remain constant over medium time scales, and do not
change as peers channel surf. However, the groups do
evolve on a longer time scale to adapt to evolving
channel popularity and peer churn.

2) If a peer is assigned to a distribution group for a sub-
stream, then it seeks to receive the complete substream.
It redistributes the substream chunks to other peers in
its distribution group and to peers outside the group that
are currently viewing the corresponding channel.
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Fig. 1. Substream distribution groups in one channel: the server distributes
one substream to each distribution group, which then distributes to the viewers.

3) A peer may belong to more than one distribution group,
in which case it distributes more than one substream. If
a peer is assigned to more than one subtream, it needs to
allocate its upload bandwidth to its assigned substreams.

4) Intuitively, the aggregate upload capacity of a substream
distribution group should reflect the demand for the
substream. The greater the average channel demand, the
larger the corresponding substream groups.

5) Intuitively, the peers in a distribution group should be
chosen in regions that match the geographical demand.
However, to expose the intrinsic advantages of VUD, we
postpone locality considerations to subsequent work.

6) Within a distribution group, we do not require the
deployment of a specific distribution mechanism. We
allow for trees [12], mesh-pull [1] and meshes with
push-pull [13].

A. Limiting VUD Overhead

One immediate concern for the VUD design is its bandwidth
overhead. The peers in a substream distribution group need
to first download video of their substream, either directly
from the server or from other distribution peers in the same
group, before they can upload the substream to viewers. Con-
sequently, the aggregate download demand for each substream
increases proportionally with the number of distribution peers
in that substream. We define the VUD overhead of a channel
as the ratio between the total bandwidth (from the server and
distribution peers) utilized to upload video to distribution peers
and the required upload bandwidth to serve the viewers of this
channel.

To study the VUD overhead, we focus on one VUD channel
with streaming rate r, m viewers and n distribution peers.
Distribution peer i has upload capacity of ui. Immediately we
have the following result:

Proposition 1: The VUD overhead of any channel with m
viewers has an achievable lower bound of 1

m .
Proof: Please refer to our technical report [14].

Essentially, to achieve the lowest VUD overhead, each
channel is divided into many very fine substreams, each of
which is distributed by a single distribution peer. However,
for channels with a large number of viewers, it is impractical
to have so many substreams. It is also unrealistic to have
each distribution peer upload to all viewers. In practice, a

channel is divided into a small number of substreams, each
of which is distributed by a distribution group. The VUD
overhead is determined by how substreams are divided and
how distribution groups are formed. Next, we study how to
design VUD to achieve a reasonably low overhead.

The VUD substream strategy will be characterized by the
following variables for each substream:
• rk: the substream rate for the kth substream group, with∑K

i=1 rk = r;
• Dk: the group of distribution peers for substream k;
• nk = |Dk|: the number of distribution peers in Dk, with∑K

i=1 nk = n;
Each distribution peer in Dk needs to download video at rate
rk. The total upload bandwidth consumed by all distribution
peers in Dk is nkrk. Since the server only uploads one copy
of substream k to one peer in Dk, distribution peers will
utilize (nk − 1)rk of their upload bandwidth to disseminate
the substream among themselves. To serve all viewers with
substream k, distribution peers in Dk should upload to all
viewers at an aggregate rate

mrk ≤
∑

i∈Dk

ui − (nk − 1)rk. (2)

The channel VUD overhead can be calculated as

ξ =
∑K

k=1 nkrk∑K
k=1 mrk

=
1

mr

K∑

k=1

nkrk

Proposition 2: When peers have homogeneous upload ca-
pacity, the substreams need to be divided equally to achieve
the minimum VUD overhead.

Proof: Please refer to our technical report [14].
The minimum VUD overhead ξ∗ decreases almost pro-

portionally to peer uploading bandwidth and the number of
substreams. For heterogeneous peers, the channel can also be
divided into K equal-rate substreams. Distribution peers can
be assigned to distribution groups to keep the average upload
bandwidth within each group balanced, i.e., ūk ≈ ū, ∀k, where
ūk is the average upload bandwidth in group k. Following
the similar procedure as in the homogeneous case, it can
be shown that the achieved VUD overhead is approximately
(m−1)r

m(ūK−r) . If the system resource index is ρ = 1.2, the average
distribution peer upload bandwidth is 1.2 times the streaming
rate. It is sufficient to divide the channel into ten sub-streams
to bring the VUD overhead down to 9%. VUD overhead will
be implicitly bounded when we assign peers to achieve high
resource index for all channels, we will discuss this in the
following section.

B. Adaptive Peer Assignment

In this section, we present an adaptive algorithm that (i)
assigns peers to substream groups; and (ii) for each peer,
determines the fraction of upload capacity the peer assigns to
each substream it is handling. Ideally, we would like such an
assignment to balance the resource index across substreams
and adapt to variations in channel demand. To this end, we
introduce the following notation:



• K: the total number of substreams among all the chan-
nels;

• n: the total number of peers;
• rk: the video rate of substream k;
• us: the upload capacity of servers;
• uk

s : the server bandwidth allocated to substream k;
• ui: the upload capacity of peer i;
• dk

i : dk
i = 1 iff peer i is in distribution group k;

• uk
i : the allocated upload bandwidth of peer i for distribut-

ing substream k;
• uk

min: the minimum upload bandwidth required to join
distribution group k. (If uk

i ≤ rk, peer i downloads more
than uploads in group k. We require uk

i ≥ 2rk);
• nk is the number of peers in substream distribution group

k, nk =
∑n

i=1 dk
i ;

• mk is the average number of peers viewing substream k
over a short time scale (say, 5 minutes).

In assigning peers to groups, and allocating upload bandwidth
to substreams, our primary goal is to balance the resource
index across substreams. For a substream demand profile
{mk, k = 1, . . . ,K}, one can search for an optimal peer as-
signment {dk

i } and peer bandwidth allocation {uk
i } to balance

the resource indexes {ρk} across all substreams:

max
({dk

i },{uk
i })

min
k

ρk =
uk

s +
∑

i uk
i

rk(mk + nk)
, (3)

subject to

dk
i uk

min ≤ uk
i ≤ dk

i ui,

K∑

k=1

uk
i ≤ ui, (4)

which reflects that a distribution peer’s upload bandwidth con-
straints. The problem is a NP-hard mixed fractional problem.
We will instead resort heuristic algorithm to solve it. As the
average demands {mk} evolve, and as peers churn (on a much
larger time scale than channel churn), we will need to adapt
the assignments and allocations accordingly. A secondary goal
is that, when adapting to peer churn and long-term channel
popularity evolution, we more often adapt by modifying the
allocations rather than re-assigning peers to groups.

To this end, order the substream groups in ascending order
according to their resource indexes ρk. Let G be the maximum
number of groups that a peer can initially be assigned to. (In
our simulations, we use G = 5.) When a new peer i with
upload capacity ui joins the system, we need to assign it
to substream distribution groups, and then allocate its upload
bandwidth to the assigned substreams. We consider assigning
i to the first G substreams in the ordered list (that is, to the G
most resource-poor substreams). To this end, we use a water-
filling policy and distribute ui among the G groups to balance
the resource indexes of the G groups. In doing the water
leveling, we always make sure that the allocated bandwidth
uk

i to any group is never less than uk
min.

Because peers can leave the system and the average demand
for viewing channels can change, we may also need to
adapt assignments and allocations inbetween peer arrivals. In

particular, if the resource index of a substream drops below
a threshold ρmin, we adjust the peer bandwidth allocations
without (if possible) modifying the peer assignments to dis-
tribution groups. With fixed peer assignment, the optimization
problem defined in (3) ∼ (4) is simplified into a linear max-
min programming problem. Using the Lagrangian relaxation
method [15], it can be solved by distributed algorithms im-
plemented on individual peers. In our current experiments,
all peering connections are TCP connections. The bandwidth
allocation among all neighbors of a peer is regulated by
the TCP congestion control scheme. We will investigate the
optimal distributed bandwidth allocation algorithm in future
work.

After bandwidth allocation adjustment, if some distribution
groups still have resource indexes below ρmin, we will have to
adjust peer assignments. The basic idea is to shift nodes from
resource rich groups to the groups whose resource indexes
are below the threshold. First, we select the distribution group
k with the highest resource index, and continuously move the
distribution peers with the lowest upload bandwidth utilization
from that group to a set P until the resource index of group
k falls below ρavg . Then, we sort all the peers in P into
a descending-ordered list based on their available upload
bandwidth. After sorting, for each peer v in P , from the first
to the last, we assign v to a distribution group j with the
minimum updated resource index ρ′j = uj

s+
∑

uj
i+uv

mjrj
. Let

H be the set of distribution groups with ρ ≤ ρmin. If the
updated resource index ρ′j > ρmin, remove distribution group
j from the set H . If there are still some resource-index poor
distribution groups in H after all the peers in P have been
assigned, we will choose the distribution group with the second
highest resource index and continue the same process as above.
The process will be executed until all the resource-index poor
distribution groups have been removed from H .

IV. SIMULATION EXPERIMENTS

To evaluate the performance of VUD-based P2P stream-
ing system, we implemented an event-driven P2P streaming
simulator based on the source code provided by [16]. The
simulator can simulate packet-level transmission, end-to-end
latency among end nodes, node heterogeneity, peer churn and
channel churn.

In the default simulation settings, there are totally 50 stream-
ing channels and 2, 000 peers in the system. For each channel,
there is only one server whose upload capacity is configured as
1 Mbps. All the channels have the same streaming rate of 400
Kbps. The video stream is further divided into 5 substreams
for substream swarming. Within each distribution group, the
distribution peers are organized into a mesh and use Push-
Pull method for chunk scheduling. Viewers of a channel also
use Push-Pull method to fetch chunks from all substream
distribution groups of the channel.

For comparison, we also implemented a Push-Pull isolated-
channel P2P streaming system similar to GridMedia [13]. It
serves as a baseline to evaluate the performance of VUD-
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Fig. 2. Performance comparison between ISO and VUD design through
simulations: a) the switching delays to both popular and unpopular channels
under VUD design are much smaller than those under ISO design. b) VUD
design achieves much lower chunk miss ratio than ISO design for both popular
and unpopular channels. c) VUD design has smaller playback delay compared
with ISO design. d) the bandwidth overhead of VUD design decreases as the
number of substreams increases.

based system. In the following, the baseline system is referred
as ISO, and our VUD-based system is referred as VUD.

The following metrics are used for the comparison: (1)
Switching delay, the interval from one channel is selected until
the initial buffer has been filled. (2) Chunk miss ratio, the
number of chunks that miss the playback deadline over the
total number of chunks that peer should receive. (3) Playback
delay, the interval from a chunk is generated at the source node
to the moment it is played at the peer. (4) VUD bandwidth
overhead, the ratio between the total upload bandwidth utilized
to upload video to distribution peers and the total upload
bandwidth used to upload video to viewing peers.

In Figure 2(a), we plot the distribution of switching delay
under VUD and ISO design. We use “popular” (or “unpop-
ular”) to indicate the delay when switching to a popular (or
an unpopular) channel 1. From the figure, we observe that,
for both popular and unpopular cases, VUD design spends
much less time in accumulating enough continuous chunks
and have much shorter channel switching delay (mostly less
than 10 seconds) than ISO design. Figure 2(b) compares the
CDF of chunk miss ratio under two designs. Chunk miss
ratio directly determines the playback continuity on peers. It
is observed that, channel churn causes very high chunk miss
ratio under ISO design. The situation becomes even worse for
unpopular channels. In Figure 2(c), we present the CDF of
playback delay for both VUD and ISO designs. Under VUD
design, the playback delays of about 30% viewers are less

1in the following, we use popular (or unpopular) similarly to indicate the
performance in a popular (or unpopular) channel.

than 5 seconds, and that of 70% viewers are less than 15
seconds. Under ISO design, the playback delays are much
longer for both popular and unpopular channels. In Figure
2(d), we measure the bandwidth overhead of VUD design. It
is important for the feasibility and efficiency of VUD design
in real systems. By varying the number of substreams, we can
reduce the bandwidth overhead to a rather low level.

We also developed a prototype of VUD P2P streaming
system and conducted an experiments on PlanetLab. The
results are presented in our technical report [14].

V. CONCLUSION AND FUTURE WORK

In this paper, we presented VUD, a novel streaming frame-
work for multi-channel P2P video systems. By radically de-
coupling peer video uploading from viewing, VUD solves
two fundamental performance problems of the traditional
isolated channel P2P streaming, namely, excessively long
channel switching delays and poor quality for small channels.
We demonstrated through simulations and experiments on
PlanetLab that VUD is immune to high channel churn and
can efficiently achieve the multiplexing gain between channels
with diverse popularity. In addition, we showed analytically
and experimentally that VUD overhead can be well managed
through balanced substreaming and peer assignment.
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