
Blacklisting Polluters and Determining Polluted
Content in P2P File Sharing Systems

Submission Number 246

Abstract— Many P2P file sharing systems are subject to the
pollution attack, whereby corrupted copies of popular titles
are aggressively introduced into the system. In this paper we
explore defenses to the pollution attack. Specifically, we develop
efficient mechanisms to determine (i) the IP ranges responsible
for introducing polluted content (that is, the blacklist set); and
(ii) the pollution levels of titles (songs, movies, etc.) that have been
targeted for attack. The methodology is efficient in that it does
not involve downloading files from file-sharing nodes. Instead it
determines the blacklist set and the targeted content by crawling
the file-sharing system, harvesting metadata, and analyzing the
metadata. We illustrate the technique by harvesting metadata
from the FastTrack/Kazaa network. We apply our methodology
to the harvested metadata to determine a blacklist set and the
pollution levels of investigated titles. Analyzing the false positives
and false negatives we conclude that the methodology is efficient
and accurate.

I. I NTRODUCTION

By many measures, P2P file sharing is the most important
application in the Internet today. There are more than 8 million
concurrent users that are connected to either FastTrack/Kazaa,
eDonkey and eMule. These users share terabytes of content.
In the days of Napster (circa 2000), most of the shared files
were MP3 files. Today the content includes MP3 songs, entire
albums, television shows, entire movies, documents, images,
software, and games. P2P traffic accounts for more than 60%
of tier-1 ISP traffic in the USA and more than 80% of tier-1
traffic in Asia [1].

Because of the their decentralized and non-authenticated
nature, P2P file sharing systems are highly susceptible to
“pollution attacks”. In a pollution attack, the “polluter” first
tampers with targeted content, rendering the content unusable.
It then deposits the tampered content in large volumes in the
P2P file sharing system. Unable to distinguish polluted files
from unpolluted files, unsuspecting users download the files
into their own file-sharing folders, from which other users
may then later download the polluted files. In this manner,
the polluted copies of a title spread through the file-sharing
system, and the number copies of the polluted title may
eventually exceed the number of clean copies. The goal of the
polluter is to trick users into repeatedly downloading polluted
copies of the targeted title; users may then become frustrated
and abandon trying to obtain the title from the file-sharing
system. The polluter may work on the behalf of a copyright
holder, or simply may be a malicious user who wants to
prevent an artist from distributing its titles over the file-sharing
system. Pollution is currently highly prevalent in file-sharing
systems, with as many as 50% to 80% of the copies of popular
titles being polluted [2].

In this paper we study mechanisms to limit the effectiveness
of the pollution attack. We emphasize, however, that we do not
take a side in the P2P file-sharing debate, neither condoning
nor condemning the pollution attacks that are commissioned
by the music, television and film industries. But given that
P2P file sharing traffic is currently the dominant traffic type
in the Internet, and that the files being transferred are fre-
quently polluted, a significant fraction of Internet bandwidth
is clearly being wasted by transporting large, corrupted files.
Furthermore, artists who want to distribute their content via
P2P file sharing systems will always be susceptible to pollution
attacks. It is therefore important to gain a deep understanding
of the pollution attack and develop effective mechanisms to
counter it.

In this paper we explore two techniques for countering the
pollution attack:

• Blacklisting IP address ranges:The goal is to identify
IP address ranges that are broad and complete enough to
cover the polluters’ hosts yet narrow enough to exclude
the vast majority of ordinary users.

• Identifying the targeted titles: With knowledge of
which titles are under attack, ordinary users can more
intelligently make decisions about what to download.

In developing methodologies for these two counter-pollution
techniques, we have not only aimed for accuracy but also
for efficiency. For blacklisting, one approach would be to
download copies of titles from a vast number of IP addresses
and then manually check the copies for pollution; the IP
addresses that consistently supply polluted content could then
be blacklisted. Such an approach would be highly inefficient,
requiring enormous bandwidth, computing and human re-
sources, and would also introduce significant “probing” traffic
into the Internet.

Our methodologies do not involve the downloading of any
files. Instead, they identify polluting IP address ranges and
targeted titles by collecting and analyzing metadata from the
file sharing system. The metadata is harvested by crawling
the nodes in the P2P system and sending tailored queries to
each of the crawled nodes. The harvested metadata can then
be analyzed to obtain detailed information about the numbers
of versions and copies, and the IP subnets containing the
versions and copies, for a large number of investigated titles.
From this detailed information, our methodology constructs
the blacklisted IP ranges and the estimated pollution levels
for the targeted titles. The methodology is efficient in that it
collects metadata (text) rather than content (which is typically

3MB to several GB per file for music and video) and that a
large number of titles and virtually all the file-sharing nodes
can be investigated in one crawl.

Our contribution is as follows:

• We developed a methodology for creating a blacklist set.
The methodology is based on identifying high-density
prefixes, which are prefixes in which the nodes that have
a copy of a particular title have, on average, a large
number of copies. We provide a heuristic for separating
the low density prefixes from the high density prefixes,
and a mechanism to merge prefixes that are topologically
close. The set of resulting merged prefixes constitutes
the blacklist set. We then developed several metrics for
measuring the accuracy of the blacklist set. The two
principal metrics are probability of false positive and false
negative. We also examine secondary metrics, including
comparing the download times and last-hop RTTs at
blacklisted and non-blacklisted nodes.

• We developed a methodology for estimating the pollution
level of a title, which is defined as the ratio of polluted
copies in the network to the total number of copies in the
network. This estimate does not involve the downloading
of any files and is solely based on the harvested metadata.
We then evaluate our estimate by measuring the actual
pollution levels of selected titles.

• We crawled FastTrack for 170 titles, including songs and
movies. We then applied the methodologies to the Fast-
Track metadata harvested during the crawling procedure.
Our resulting blacklist set contains 112 prefixes. Our
evaluation metrics indicate that the blacklist set is ac-
curate, with low probabilities of false positives and false
negatives. We also find that the estimates for pollution
levels in examined titles is accurate.

This paper is organized as follows. In Section II we describe
the pollution attack in detail and introduce important termi-
nology. In Section III we describe in detail the methodologies
and the evaluation procedures for creating the blacklist set and
the pollution-level estimates. In Section IV we describe the
experimental setup, including the crawler and PlanetLab ex-
periments. Section V provides the results of our experiments,
including evaluation results for the methodologies. Section VI
describes previous work related to this paper. We conclude in
Section VII.

II. OVERVIEW OF POLLUTION

A. File Sharing Terminology

We first provide an overview of a generic P2P file-sharing
application. This will allow us to introduce some important
terminology that is used throughout the paper. In this paper we
are primarily concerned with the sharing of music and video.
We shall refer to a specific song or video as atitle . Examples
are titles include “studio recording of Beatles’ Something,”
“Seinfeld Episode 17,” and “Matrix”. When a title is shared
in a P2P file sharing system, it is typically compressed in
some compression format (such as mp3, rm, wma, mpg, avi,

mov) at some compression rate and then introduced as a file.
Importantly, a given title can have many differentversions
(in fact, tens of thousands). These versions primarily result
from a large number of rippers/compressors, each of which can
produce slightly different files when created by different users.
Modifications of metadata can also create different versions.
Users download different versions of titles from each other,
thereby creating multiplecopies of identical file versions in
the P2P file sharing system. At any given time, a P2P file-
sharing system may make available thousands of copies of
the same version of a particular title.

A file in a P2P file sharing system typically hasmetadata
associated with it. There are two types of metadata: metadata
that is actually included in in file itself and is often created
during the ripping process (e.g. ID3 Tags in mp3 files); and
metadata that is stored in the file-sharing system but not within
the shared files themselves. This “outside-file” metadata may
initially be derived from the “inside-file” metadata, but is often
modified by the users of the file-sharing systems. It is the
outside-file metadata that is employed during P2P searches. In
this paper, when using the term metadata, we are referring to
the outside-file metadata. Because different copies of a version
of a title may be stored on different user nodes, the different
copies can actually have different metadata.

When a user wants to obtain a copy of a specific title, the
user performs a keyword search, using keywords that relate
to the title (for example, artist name and song title). The
keywords are sent within a query into the file-sharing network.
The query will visit one or more nodes in the file sharing
network, and these nodes will respond if they know of files
with metadata that match the keywords. The response will
include the metadata for the file, the IP address of the node
that is sharing the file, and the username at that node. For
many file sharing systems, the response will also include a
hash, which is taken over the entire version. To download a
copy of a version, one sends a request message (often within
an HTTP request message) to the sharing user. In this request
message, the version is identified by its hash. Many file sharing
systems employ parallel downloading, in which case requests
for different portions of the version are sent to different users
sharing that file.

Many nodes in P2P file sharing systems are behind Network
Address Translators (NATs). If a node is behind a NAT, it can
download files; it can also upload files to non-NATed nodes
using a technique known as a “reverse connection”. Non-
NATed nodes havepublic IP addresses, and NATed nodes
private IP addresses; the NAT itself has a public IP address.
When crawling a P2P file sharing network, for a NATed node
sharing relevant files, the crawler may return a node’s private
IP address and private port number rather than its public IP
address and public port number. Since the range of private
IP address is relatively narrow, different NATed users may
have the same private IP address. Thus, from the crawling
data, we cannot distinguish between different users solely by
their IP addresses. In order to distinguish between different
users, including NATed users, we define auser as the triple

2

(IP address, port number, username).

B. The Pollution Attack

The pollution attack is initiated by apolluter . The polluter
may work on the behalf of a copyright holder; or the polluter
may be a malicious user who wants to prevent an artist from
distributing its titles over the file-sharing system. The polluter
typically takes the following steps when attacking a specific
title:

1) The polluter creates one or more polluted versions of
the title. This is done by tampering with it in one or
more ways, including replacing all or part of the content
with white noise, cutting the duration, shuffling blocks
of bytes within the digital recording, inserting warnings
of the illegality of file sharing, and inserting advertise-
ments. We have observed that today a popular pollution
technique is to insert tens of seconds of undecodable
white noise into the middle of the song.

2) The polluter connects one or more nodes to the P2P file-
sharing system and places the tampered versions into its
shared folders on these nodes.

3) Users query for the title and learn about the locations of
versions of the title, including the polluted versions. The
query results provide no indication of which versions are
clean and which are polluted.

4) Some users download polluted versions. After a user
downloads a polluted version, it may remain in the user’s
shared folder for an extended period of time. This is
because the user may not immediately watch or listen
to the file and detect that it is polluted; or the user may
simply neglect to remove the file even after observing
that it is polluted.

5) The polluted version spreads through the file-sharing
system. Unsuspecting users continue to download the
polluted version either from a polluter or from an
ordinary user.

Pollution is prevalent in modern P2P file sharing systems such
as FastTrack/Kazaa [2]

Most of the pollution today emanates from “professional”
polluters that work on the behalf of copyright owners, includ-
ing the record labels and the motion-picture companies. From
this economic context and from our own testing and usage
experience, we conclude that the professional polluters have
the following characteristics.
• Polluters tend to pollute popular content, such as recently-

released hit-songs and films. Indeed, the popular content
is the most lucrative content for the copyright owners.
The copyright owners commission companies to spread
polluted versions of their popular content throughout the
P2P networks, thereby curtailing the free distribution of
the content. In [2] a random sample of recent, popular
songs were shown to be heavily polluted whereas a
random sample of songs for the 70s were shown to be
mostly clean.

• Polluters have high-bandwidth Internet connections. The
polluters can thus upload content at least as fast as or-

dinary users, which typically have residential broadband
or campus connections. The polluters essentially create
honeypots by offering content at attractive bandwidths.

• Polluters have high availability, that is, the polluters’
nodes provide stable and continuous upload service for
long periods of time.

• Polluters are not behind firewalls or NATed routers. If a
polluter is behind a NAT, then it would be more difficult
for a user to download content from it, particularly if the
user is also behind a NAT. Because polluters want users to
download content from them, they naturally locate their
nodes in front of firewalls and NATs.

In our methodology for detecting polluted content and
blacklisting polluters, we will make the following additional
assumptions about polluters. Many of these assumptions will
be corroborated in Section V, where our measurement results
are presented.
• Because polluters share popular titles at attractive file-

transfer rates, there is a high demand for their content
from unsuspecting users. To meet the demand, the pol-
luter often uses a server farm at one or more polluter
sites. The nodes in a server farm are concentrated in a
narrow IP address range.

• Whereas regular P2P users run one client instance per
host, polluters often run many clients in each of their
nodes, with each instance having a different username and
sharing its own set of copies and versions for the targeted
titles. This is done to improve placement of search results
in the users’ GUIs.

• A polluter distributes multiple polluted versions of the
same title. This also improves the placement of search
result in the users’ GUIs. As we will show in Section V,
an ordinary user typically has a small number of versions
of any title. To compete with all the clean versions in the
display of the search results, a polluter needs to provide
many different versions (each with a different hash) to
increase the chances that its versions are selected from
the users’ GUIs.

C. Pollution Evolution

Our observations of pollution in P2P networks has led us to
define the following three stages that a title can be in during
the pollution attack.

Introductory Stage: When a title is released and is targeted
by the pollution attack, the polluter will introduce many
versions with many copies per version of the title into the
file sharing system. (The polluter may actually do this before
the official release date.) At this stage, the number of polluting
users is more than the number of ordinary users, and almost
all versions of the title are polluted.

Growth Stage: In the weeks following the release of the
title, ordinary users introduce clean versions of the title into
the file sharing system. The number of versions and copies
grows, as ordinary users download clean and polluted versions
and introduce new clean versions. In this stage, the number of
ordinary users is larger than the number of polluting users.

3

Post-Pollution Stage: At some point, the polluters stop
targeting the title (and move on to newer titles). The fraction of
copies that are polluted declines, and the ratio of ordinary users
to polluting users increases. No single user provides significant
number of copies or versions of the title.

We use these stages in Section V to classify content with
different pollution characteristics.

III. M ETHODOLOGY

In this paper we develop methodologies for two tasks. The
first task, which we refer to asblacklisting, is to find the IP
address ranges that include the large majority of the polluters.
The second task, referred to aspollution level estimation, is
to determine the extent of pollution for specified titles. For
both of these tasks, the first step is to crawl the file sharing
system, as we now discuss.

A. Crawling

Crawling a P2P file sharing system is the process of visiting
a large number of nodes to gather information about the copies
of files being shared in the system. The crawler might gather,
for example, the IP addresses and hashes of all copies of files
being shared in the network for a set of specific titles over a
given period of time. Several independent research groups have
developed crawlers for P2P file sharing systems. A crawler
for the original single-tier Gnutella system is described in
[3]. A crawler for the current two-tier Gnutella system (with
“ultrapeers”) is described in [4]. A crawler for eDonkey is
described in [15]. A crawler for the FastTrack P2P file sharing
is described in [2]. Since P2P networks are dynamic, with
nodes frequently joining and leaving, a good crawler needs to
rapidly crawl the entire network to obtain an accurate snapshot.

The first step in our methodologies is to crawl the P2P file
sharing system and obtain the following information for each
title of interest: the number of versions in the file sharing
system for the title; the hash values for each of the versions;
the number of copies of each version available in the file
sharing system; for each copy, the IP address of the node
that is sharing it; the port number of the application instance
at that node (many modern P2P systems vary the port number
across nodes to bypass firewalls); the username at that node;
and, for each copy, some copy details (e.g., playtime, file size,
description, etc). For each title of interest, the crawler deposits
this information in acrawling database, which can then be
analyzed off-line. We will describe a crawler for the FastTrack
network in Section IV.

B. Blacklisting

Polluters typically control blocks of IP addresses and can
easily move their nodes from one IP address to another
within the block. Thus, rather than blacklisting individual IP
addresses, we should blacklist ranges or IP addresses that are
likely to include the polluters in the near future as well as the
present. We use approach similar to the one used in [25]. Our
methodology for blacklisting has the following steps:

1) Crawl the P2P file sharing system as described above.

2) From the data in the crawling database, identify the /24
prefixes that are likely operated by polluters.

3) Merge groups of /24 prefixes that are topologically close
and don’t cross BGP prefixes. The set of merged prefixes
becomes our blacklist set.

We now describe the second and third steps in more detail.
The second step is to identify /24 prefixes that are likely

operated by polluters. A polluter typically leases from a data
center a set of server nodes in a narrow IP address range. Data
centers do not normally include ordinary P2P users, which
typically access the Internet from residences and universities.
A /24 prefix is small enough so that both polluters and ordinary
users do not operate from within the same prefix; and it is large
enough to cover multiple polluting servers in most subnets. In
the third step, we search for larger subnets.

Let N denote the number of titles investigated and
Tn denote thenth title. For each titleTn, we determine
from the crawling database the /24 prefixes that contain at
least one copy of titleTn. Suppose there areI(n) such
/24 prefixes; denote the set of these prefixes byP(n) =
{p(n)

1 , p
(n)
2 , . . . , p

(n)

I(n)}.
We now introduce the important concept of the “density of

a prefix,” which will be used repeatedly in this paper. For each
such prefixp(n)

i , definex
(n)
i to be the number of IP addresses

in the prefix with at least one copy of the title andy
(n)
i to be

the number of copies (included repeated copies across nodes)
of the title stored in the prefix. Finally, define thedensity of
prefix p

(n)
i asd

(n)
i = y

(n)
i /x

(n)
i .

From our assumptions about how polluters operate (see
Section II), we expect the prefixes with high density values
to be operated by polluters and prefixes with low densities
to contain only “innocent” users. We consider prefixes with
a density higher than a thresholdd(n)

thresh to be operated by
polluters. There are many possible heuristics that can be used
to determine this threshold. We now describe a simple heuristic
that gives good performance. It is based on the median value of
the distinct density values in{d(n)

1 , d
(n)
2 , . . . , dI(n)} denoted by

d
(n)
median. Of course, different prefixes have different numbers

of users and different densities, so in order to allow for a
variance in user behavior we set a threshold to a multiple of
the median. Specifically, our heuristic sets the threshold to

d
(n)
thresh = kd

(n)
median (1)

wherek is an appropriately chosen scaling factor (see Section
V). We say that a prefixp(n)

i is a polluting prefix if d
(n)
i ≥

d
(n)
thresh. Let Q be the union of all the polluting /24 prefixes

over all N titles.
A polluter may actually operate within a network that is

larger than a /24 prefix. The third step of our methodology
is to create larger prefixes which encompass neighboring /24
prefixes inQ. For this, we merge adjacent prefixes in the IP
space. We also merge some non-adjacent prefixes. To this end,
we perform a traceroute from each of 20 PlanetLab nodes to
one IP address in each of the prefixes inQ. Prefixes which
have the same last router become candidates for merging. In

4

doing this we need to account for the possibility that some
of the traceroutes passing through the same last router may
actually pass through the router via different interfaces (and
thus IP addresses) [9]. Suppose there areJ groups of prefixes,
with each prefix in a group sharing the same last router. (Some
groups may contain a single prefix.) LetGj , j = 1, . . . , J ,
denote the groups. For each group of prefixesGj , denotepj

as the longest prefix that covers all the prefixes inGj . For
each suchpj we verify that it does not cross prefixes found
in a BGP table. If it does, we decomposepj back into its
original /24 prefixes. LetP be the resulting set of prefixes.P
is our final blacklist set, and consists of all thepj ’s that pass
the BGP test and all of the decomposed /24 prefixes as just
described.

Note that this methodology for creating a blacklist set does
not involve the downloading of content. Indeed, any download-
based methodology would require the downloading of an
excessively large number of files as well as an automated
procedure to determine whether a downloaded file is polluted.
Our approach is instead based on the metadata that is gathered
by the crawler. This approach is efficient in that crawling a
large-scale P2P file-sharing system can be quickly done with
modest resources.

C. Evaluation Procedure for Blacklisting

The blacklist setP may not be completely accurate in
that it may not contain all polluting nodes (false negatives)
and it may contain some active nodes that are innocent users
(false positives). We evaluate a blacklisting methodology by
estimating the probability of false positives and false negatives.

To this end, we need a procedure to determine whether a
downloaded version of any given title is polluted. This can
be done by downloading the version and manually watching
or listening to it. Such a manual procedure would require
an excessive amount of human resources. Instead we use a
simple automated procedure which has been shown to give
accurate results [2]. Specifically, we download the version into
RAM and declare the version to be clean (unpolluted) if the
following three criteria are met:

1) Rehashing the file results in the same hash value as the
one that was used to request the file;

2) The title is decodable according to the media format
specifications; for example, an mp3 file fully decodes
as a valid mp3 file [24].

3) The title’s playback duration is within 10% of the one
specified in release information for that title.

In any one of the three criteria is violated, we consider the
version to be polluted. We refer to this procedure as the
automated version-checking procedure.

Having described our procedure to determine whether a
downloaded version is polluted, we can now state our false-
negative and false-positive evaluation procedure. To evaluate
the false-negative probability, we randomly select 1,000 users
having IPs outside ofP and having a copy of at least one of
the investigated titles. For each randomly selected node, we
randomly download 5 versions stored at that node. We declare

a node to be afalse negativeif all of the following conditions
are satisfied:(i) it has at least 5 versions of any one of the
investigated titles;(ii) its upload throughput is greater than a
given threshold. (In Section IV we describe how we estimate
a node’s upload throughput);(iii) its Last Hop RTT is less
than a threshold (we define Last Hop RTT in Section IV) ;
and (iv) all of the randomly selected versions are polluted.
Thus a randomly selected node is declared a false negative
if that node has the main characteristics of a polluting node.
(See Section II.) The false-negative probability is simply the
the number of randomly selected nodes declared to be false
negatives divided by the total number of randomly selected
nodes.

A false positive occurs when an “innocent” non-polluting
node is blacklisted as a polluter by our methodology. This
can happen when a /24 prefix is labelled a polluting prefix but
contains non-polluting users, or when innocent users are added
toP during the merging process. To evaluate the false-positive
probability, we randomly select 1,000 nodes inP containing
a copy of at least one of the titles. For each randomly selected
node, we randomly download five versions stored at that node.
We declare a randomly selected node to be afalse positiveif
any of the following criteria are satisfied:(i) its throughput is
smaller than the threshold;(ii) its last hop RTT is larger than
the threshold; and(iii) at least one of the randomly selected
versions is clean. The false-positive probability is simply the
the number of randomly selected nodes declared to be false
positives divided by the total number of randomly selected
nodes.

D. Estimating Content Pollution Levels

In this subsection we provide our methodology for es-
timating the pollution level of any arbitrary titleTn. The
methodology builds on the blacklisting methodology. We
define thepollution level of a title as the fraction of copies
of the title available in the P2P file sharing system that are
polluted. The pollution level of a title can be estimated by
randomly selecting a large number of copies of the title,
downloading each of the copies, and then testing the copies
for pollution (either by listening to them or through some
automated procedure). This requires an exorbitant amount of
resources, particularly if we wish to accurately determine
the pollution levels of many titles. We instead estimate the
pollution levels of titles directly from the metadata available
in the crawling database. To this end, we make the following
assumptions:

1) All copies of the title that are stored in a blacklisted
node (that is, in a node inP) are polluted.

2) For each node outside ofP with at least one copy of
Tn, all copies stored at that node are polluted except for
one copy.

With these assumptions, we now derive an expression forE(n),
the estimated pollution level of title Tn. For a title Recall
that y(n) is the total number of copies of the title available in
the crawling database. Also letz(n) be the number of nodes
outside of the blacklist setP that have at least one copy ofTn.

5

The above two assumptions imply that the number of copies
of Tn that are polluted isy(n)−z(n); thus, our estimate of the
pollution level for titleTn is

E(n) =
y(n) − z(n)

y(n)
(2)

E. Evaluation Procedure for Pollution-Level Estimation

E(n) is an estimate of the pollution level of titleTn, derived
solely from the metadata in the crawling database. To evaluate
the accuracy of this estimate, we compare it with a measured
value, which is obtained by actually downloading content.
Specifically, for a given titleTn we do the following:

1) We download the most popular versions of the title.
The number of versions downloaded is such that the
downloaded versions covers at least 80% of all copies
of the title in the file-sharing system. For titleTn, let Jn

be the number of versions that meet this 80% criterion.
2) For each of these versions, we determine if the version

is polluted or not using the automated version checking
procedure described in Section III-C. Letδ

(n)
i be equal

to 1 if version i is determined polluted and be equal to
0 otherwise.

3) The crawling database provides the number of copies
that each version contributes. Letc

(n)
i be the number

of copies of versioni in the database. We calculate the
fraction of polluted copiesL(n) as

L(n) =
∑Jn

i=1 c
(n)
i δ

(n)
i∑Jn

i=1 c
(n)
i

(3)

We then define the error in the pollution-level estimate as:

Error =
|E(n) − L(n)|

L(n)
(4)

We present the resulting error and its implications in Section
V.

IV. EXPERIMENTAL SETUP

We evaluated our methodologies from data collected in the
FastTrack file-sharing network. We first briefly describe the
FastTrack network and the FastTrack crawler.

A. Overview of FastTrack

With more than two million simultaneous active nodes (in
Nov 2004), FastTrack is one of the largest P2P file sharing
systems. It has at least an order of magnitude more users
than Gnutella. It is used by several FastTrack clients including
KaZaA, kazaa-lite, Grokster, and iMesh. It is also known to be
the target of the pollution attack. For these reasons, we chose
to test our blacklisting and pollution-level methodologies on
FastTrack.

Unlike Napster, FastTrack is decentralized and does not
maintain an always-on, centralized index for tracking the
location of files. FastTrack has two classes of nodes, Ordi-
nary Nodes (ONs) and SuperNodes (SNs). SNs have greater
responsibilities and are typically more powerful than the ONs
with respect to availability, Internet connection bandwidth

and processing power. When an ON launches the FastTrack
application, the ON establishes a TCP connection with a SN,
thereby becoming a “child” of that SN. The ON then uploads
to the SN the metadata and hashes for the files it is sharing.
This allows the SN to maintain a local index which includes
hashes and file descriptions for all the files its children are
sharing along with the corresponding IP addresses of the ONs
holding the particular files. Each SN also maintains long-lived
TCP connections with other SNs, creating an overlay network
among the SNs. When a user wants to find files, the user’s
ON sends a query with keywords over the TCP connection to
its SN. For each match in its local index, the SN returns the
metadata and IP addresses corresponding to the match. When
a SN receives a query, it may flood the query over the overlay
network to one or more of the SNs to which it is connected. A
given query will in general visit a small subset of the SNs, and
hence will obtain the metadata information of a small subset
of all the ONs.

Many FastTrack nodes are behind NATs. During a query,
when a SN responds with information about a NATed node
and a file that the NATed node is sharing, the SN responds
with the NATed nodes private IP address (as well as the node’s
username and dynamic port number). As indicated in Section
II, we differentiate among these NATed users by defining a
user to be the triple (IP address, port number, username).

B. The FastTrack Crawler Platform

The methodologies described in Section III require us to
crawl the FastTrack network. We developed the FastTrack
Crawling Platform, which crawls through virtually all of the
30,000+ FastTrack supernodes in 15-60 minutes. Furthermore,
it is scalable in that the crawling time is inversely proportional
to the number of Linux boxes in the platform. Developing a
crawling system for FastTrack is challenging for two reasons.
First, FastTrack is huge, with 10-100 times more nodes and
traffic than Gnutella. Second, and more importantly, whereas
the Gnutella protocol is in the public domain, the FastTrack
protocol is proprietary with little information available to the
research community about how it operates.

The FastTrack Crawling Platform is shown in Figure 1. It
consists of a process manager, a crawling database, andn
crawling nodes each implemented in its own Linux box. In
our current deployment,n = 4. Each crawling node runs 16
processes, with each process maintaining 40 threads. Thus
with n = 4, the FastTrack Crawling Platform has 2,560
parallel threads. Each thread partially emulates the client-side
of the FastTrack Network connect and query protocol. All of
these Linux boxes are located on a university campus in North
America. It is also possible to run crawler experiments from
multiple locations distributed throughout the world. However,
we found that a centralized design was sufficient, as it can
crawl all of the FastTrack SNs in a short period of time. In
each round, each crawling thread operates as follows:

1) The crawling thread is initialized with (i) the IP address
of some candidate SN in the FastTrack network, and (ii)

6

Fig. 1. FastTrack Crawler architecture

a set of query strings. For a targeted title, each query
string typically consists of the title name and artist name.

2) The crawling thread attempts to make a TCP connection
with the candidate SN. If it fails to establish a TCP
connection, then the thread waits until the next round
to get a new IP address. If it succeeds, it exchanges
handshake messages with the SN and continues as
follows.

3) The crawling thread receives from the SN a SN refresh
list, consisting of IP addresses of up to 200 SNs. This
SN refresh list is forwarded to the Process Manager.

4) For each query string, the crawling thread sends a query
to the KaZaA network (via the connected SN). If there
arem titles to be queried, the crawling thread sends out
m queries back-to-back.

5) For each of these queries, the crawling thread receives
(via the connected SN) matching query results. Each
query result includes the metadata and hash for the file
associated with the match. We set the time-out of each
such query session to be 30 seconds.

6) The metadata, hash, IP address, username and port
number from each query result is forwarded to the
crawling database.

The Process Manager coordinates and controls the crawling
nodes. It maintains a list of all candidate SNs, which is
augmented whenever it receives a SN refresh list. In steady
state, the Process Manager dispatches 2,560 candidate IP
addresses to the processes every 30 seconds. Each candidate
SN is eventually checked by one of the threads; if the thread
succeeds at making a TCP connection with the candidate SN
and at querying the SNs local index, the candidate SN is
further labelled as confirmed.

C. PlanetLab Measurement

As part of our evaluation procedures, we also determine the
download throughput and the last-hop Round Trip Time (RTT)
at various nodes in the FastTrack network. We now describe

Fig. 2. Computing Estimated Last-Hop RTT: The estimated last-hop RTT
(grey) is the difference between the RTT times to the destination host and the
last-hop router.

how we measure those metrics. Download throughput and last-
hop RTT depend on the measurement host from which the
measurement is being initiated. To reduce the observer bias,
we distributed our measuring hosts on a number of PlanetLab
nodes.

1) Throughput: We used 20 well connected PlanetLab
hosts that downloaded data from each measured host. The
measurement was performed in the following way. The Plan-
etLab nodes sequentially establish TCP connections to each
measured FastTrack node. For each connection, the PlanetLab
host requests 500KB of data. Ift denotes the time from when
the PlanetLab host begins to receive the 500KB until when
it has received all of the 500 KB, then the throughput of the
connection is defined to be(500KB)/t. The throughput of
the node is then obtained by averaging the throughput over all
successful connections. A custom program was developed to
download and report those measurements from the different
nodes.

2) Estimated Last-Hop RTT:To verify our blacklisting
methodology, we also measured the Last-Hop Round Trip
Time (RTT). The last-hop RTT is the time it takes a small
packet to travel from this last router to the destination host
and back to the last router [22]. We can only estimate the last-
hop RTT with indirect measurement from our sources, since
we don’t have access to the routers. To estimate the last-hop
RTT, we measure the minimum out of 3 RTTs from the source
to the destination from which we subtract the minimum RTT
from the source to the last router, as shown in Figure 2. For
each PlanetLab source, we found the difference of those values
and took the minimum one as an estimate of the last-hop RTT
for that target IP address.

In both experiments we used 20 PlanetLab nodes and we
selected them from different parts of North America, Europe,
Asia and the Pacific. Two nodes from each of the domains
in Table I were used to produce the total of 20 nodes. We
believe that this carefully chosen set is representative for our
purposes.

V. RESULTS

In this section we present the results of our experiments.
We first describe the raw data. We then provide the results
pertaining to the blacklisting and pollution-level methodolo-
gies.

7

TABLE I

PLANETLAB NODES USED FOR DISTRIBUTED MEASUREMENTS

North America Europe Asia/Pacific

poly.edu uni-wuerzburg.de snu.ac.kr
ucsd.edu vu.nl ntu.edu.tw
berkeley.edu ethz.ch
cc.gt.atl.ga.us
utk.edu

A. Raw Data

The crawling platform captured 124GB of metadata on
the KaZaA network from Nov 21 to Nov 27. The crawler
queried supernodes around the world for 170 titles, consisting
of 133 songs and 37 movies. We choose these title as follows.
As discussed in Section 2, popular, newly released titles are
often targets for pollution. Even though this paper mostly
focuses on music, we include some movie titles to illustrate
that the technique is universal. Most of the chosen songs
are new popular songs, with their titles obtained from the
listing available at itunes.com [6]. Some of the chosen songs
are “oldies” obtained from about.com 70s charts [7]. The
remaining chosen content is newly released DVDs from the
list of top rentals at blockbuster.com [8]. This selection gave
us a varied list of popular titles without particular taste or style
preference bias in our results.

As we described earlier, we use the combination (IP address,
port, username) to identify a unique user. Because of the
difference in the popularity of the titles that we investigated,
the number of users that possessed copies of a title varied
greatly from title to title, with a minimum of 1,801 users for a
title and a maximum of 311,135 for a title. Because some users
(especially polluters) have more than one copy of a title, the
number of copies of a title is larger than the number of users
with the title. The number of copies of a title varied from 2,188
to 2,120,160 copies. Our crawling system captured around
1.3 million unique public IP addresses during the seven-day
period that we crawled FastTrack. The titles with less than
10,000 copies were not taken into account when creating the
blacklist setP since they do not provide with enough data
for meaningful conclusions. The resulting list contained 122
titles.

Table II includes some of the data that we gathered from the
crawler for a few of the representative titles. The titles in this
table are chosen to represent a diversity of data distributions.
The presented data includes the title numbers; the number of
versions (hashes) of that title that were observed; the number
of users who possess a copy of any version of title; the number
of copies of the title; the total number IP addresses that were
gathered (Because multiple FastTrack clients can be present
on one IP address, one IP address can represent more than
one user.); and the number of public IP addresses.

B. Blacklisting

We now present and analyze the results obtained from our
blacklisting methodology. We clustered all public IP addresses
from our database into /24 prefixes and calculated the density

TABLE II

RAW DATA FOR REPRESENTATIVETITLES

title versions users copies total IPs Public IPs
040 225341 135102 2120160 8627 7577
008 155642 112542 1575686 6188 5298
060 91447 172879 300865 57681 52252
052 48607 126226 301075 46129 40419
097 9648 28583 37173 17468 15289
009 3795 41405 56215 24689 22388
111 5503 14519 17562 9801 8437
005 5856 56351 67945 37051 32162

of each prefix. Figures 3(a) and 3(b) show the density distribu-
tion for the title“Pain” by “Jimmy Eat World” (040). Figures
4(a) and 4(b) show the same plots but for the title“Let’s Get
It Started” by “Black Eyed Peas”(005). For both titles, most
of the prefixes have a density of 1. For “Pain”, there are 5,012
prefixes with density 1 and for “Let’s Get It Started”, there
are 28,506 such prefixes. It is clear from these figures that for
some titles there are prefixes with extremely high densities
(there are prefixes with over density of over 10,000 in title
040), while for other titles, all prefixes have low densities(all
prefixes have density less than 15 in title 005). It is also clear
from these figures that title 005 has not been targeted by the
pollution attack whereas the title 040 has.

We now turn our attention to determining the blacklist set
using the blacklisting methodology developed in Section III.
As defined in Equation 1, we use a blacklisting threshold
of kd

(n)
median. In that formulak is an experimental constant;

through many trials we found thatk = 8 consistently achieves
good separation of ordinary users and polluters. Figures 3(b)
and 4(b) include the thresholds for the two titles. In the
case of the polluted title “Pain,” with median of 17 and
resulting threshold ofd(040)

thresh = 136, it successfully manages
to separate the majority users from the outstanding few with
high density, while in the case of the clean song “Let’s Get It
Started,” with median of 4 and threshold of 32, the threshold
is above all prefix densities and thus does not blacklist any
prefix.

For the prefixes with densities larger than the threshold
for each title, there are 114 /24 prefixes, containing 1,218 IP
address (with one of the titles), 70,224,279 title copies, and
10,518,683 versions of 154 of the 170 titles that we had in
our crawling database. Note that a very small fraction of the
/24 prefixes in FastTrack are responsible for pollution.

The next step of our methodology is the merging of the
prefixes that are topologically close. Merging the consecutive
/24 prefixes and those that have the same last hop router
resulted in decreasing the number of clusters to 101 prefixes,
with the masks ranging from /24 to /16. We then performed
the BGP prefix verification. The BGP prefixes are from [10]
obtained on 12/06/04. We had information about 17,037,611
prefixes. Some of the prefixes that resulted from merging
were part of different BGP prefixes. Those merges had to be
abandoned. After the BGP verification we had a final list of
identified polluter IP ranges, details for which we present in

8

1

10

100

1000

10000

1 2 4 6 8 13 17 24 33 18
2

55
75

10
03

4

27
72

9

density

n
u
m

b
e
r

o
f
2
4
 p

re
fi
x
e
s
 i
n
 l
o
g
 s

c
a
le

(a) Number of /24 subnets per density value

1

10

100

1000

10000

100000

/24 prefix network address

d
e

n
s
it
y

(b) Density distributions of the /24 subnets of the entire IPv4 range
and blacklist threshold

Fig. 3. Density plots for title 040 (“Pain”)

1

10

100

1000

10000

100000

1 1.4 1.8 2.75 4 6.5 11

density

n
u

m
b

e
r

o
f
/2

4
 p

re
fi
x
e

s
 i
n

 l
o

g
 s

c
a

le

(a) Number of /24 subnets per density value

1

10

100

/24 prefix network address

d
e
n
s
it
y

(b) Density distributions of the /24 subnets of the entire IPv4 range
and blacklist threshold

Fig. 4. Density plots for title 005 (“Let’s Get It Started”)

TABLE III

BLACKLISTING RESULTS

Number of Number of Number of Number of
Nodes IPs prefixes BGP prefixes BGP ASs

Blacklisted 1218 112 79 59
Non-Blacklisted 1,303,954 325,075 15,747 4,296

Table III. We see from the table that the resulting blacklist set
P has 112 prefixes. These prefixes contain 1,218 IP addresses
that contain at least one copy of one of the investigated titles.
The table also shows that the methodology does not blacklist
the remaining 325,075 prefixes, which contain over 1.3 million
IP addresses with the investigated content. To understand
better the distribution of those prefixes we also determined
the number of BGP prefixes and ASs that the were supersets
of the the blacklisted ranges. We present those numbers also
in Table III. The 112 prefixes that we found are parts of 79
BGP prefixes, or 59 BGP ASs - a very limited set of prefixes
compared to the total number of prefixes and ASs found in
the BGP tables.

Table IV provides important insights into the characteristics
of the nodes blacklisted by the methodology. A non-blacklisted
node, when it has at least one copy of a particular title, has
on average 1.56 copies of that title. On the other hand, a
blacklisted node, when it has at least one copy of a particular
title, has on average more than 11 copies of the title (each of

TABLE IV

NODE STATISTICS

Avg. copies Variance of Avg. users
Nodes per title # of copies per IP

Blacklisted 11.67 20.0 269
Non-blacklisted 1.56 1.88 1.01

a different version)! The variance of the number of copies per
title is also reported in Table IV. Finally, the number of users
(client instances) per node is also reported. It is interesting
to note that a blacklisted node has on average a remarkable
269 user instances per IP address. In contrast, non-blacklisted
nodes have essentially just one instance per IP. The exact
value of 1.01 can be explained by the use of SOCKS proxies
that allow different users to connect to the P2P network with
the same public IP address but different username and port
number.

C. Evaluating the Accuracy of the Blacklist

The last-hop RTT experiment was described in Section IV.
Fig 5 shows the results of the experiment. We compare the last-
hop RTTs of 3,120 randomly chosen non-blacklisted nodes
with all 1,218 blacklisted nodes. Since not all of these nodes
were up and not all routers replied to the traceroutes, we were
able to successfully measure 401 non-blacklisted nodes and
523 blacklisted nodes. Fig 5 shows that the vast majority of

9

the non-blacklisted nodes have a last hop RTT in the 5-15 ms
range with average value of 15.27 ms and median of 5.32ms.
Over 45% of non-blacklisted nodes have a last-hop RTT below
5ms, while for less then 10% it is over 45 ms. This diversity
is quite reasonable and in agreement with previous research
[22]. The different values match the different Internet access
links that users typically have (< 1ms for LAN, >5m for
cable,>15ms for ADSL and>150ms for dial up modem). In
contrast, the average estimated last-hop RTT for the blacklisted
nodes is 0.67ms, and the median is 0.1ms (typical for LAN
connections). Thus, the last-hop RTTs provide evidence that
the nodes in our blacklist set are polluters whereas the nodes
outside the blacklist set are ordinary users. The average values
for both blacklisted and non-blacklisted nodes are listed in
Table V.

We now turn to our TCP throughput experiment as described
in Section IV. We used a distributed approach to avoid any
limits imposed on our campus connection and obtain an
average throughput from different geographic locations. We
again compare blacklisted nodes with non-blacklisted nodes.
Figure 6 shows the CDFs for these two classes of nodes. In
these CDFs, the nodes are re-ordered from lowest throughput
to highest throughput. We see that more than 95% of the
measured non-blacklisted nodes had a throughput less than 20
KBytes/sec. At the same time, more than 95% of the black-
listed nodes have a throughput of more than 20 KBytes/sec.
Thus, the TCP throughput provides further evidence that the
nodes in our blacklist set are polluters whereas the nodes
outside the blacklist set are ordinary users. This observation
made us chose the value of 20KBytes/s as a threshold in our
false positive and false negative evaluation. The average values
for both types of nodes are presented in Table V.

TABLE V

AVERAGE THROUGHPUT AND LAST-HOP RTT

Nodes TCP Throughput Last Hop RTT

Blacklisted 2,478 kbps 0.67ms
Non-Blacklisted 75.8 kbps 15.27ms

In order to evaluate the false negatives and the false pos-
itives, we use the methodology described in Section III. We
set the threshold for the estimated last hop RTT to 1ms and
the threshold for throughput to 20KBps.

We tested 1,000 users (with unique IP addresses) from
outside ofP for false negatives. 28 had more than 5 versions
of a title and passed the first test. We randomly downloaded 5
versions from each of those users and determined that for 4 of
the users all versions were corrupted. We finally applied the
TCP throughput and last hop RTT tests. Only 2 users failed
all 4 tests. Thus, the false negative ratio of the blacklisting
methodology can be estimated to 0.2%.

We also tested 1,000 users from inside ofP for false
positives. After randomly downloading 5 versions for content
testing, we found that 46 users provide at least one non-
polluted version of a title. The next test determined that 38
and 25 users failed the throughput and last hop RTT tests

TABLE VI

BLACKLIST EVALUATION TESTS

Versions Polluted Throughput RTT Total
False neg 2.8% 0.40% 7.5% 12% 0.20%
False pos N/A 4.60% 3.8% 2.5% 7.10%

0

10
15 14

2 1
6 4

12

58

0

10

20

30

40

50

60

70

0-
9%

10
%

-1
9%

20
%

-2
9%

30
%

-3
9%

40
%

-4
9%

50
%

-5
9%

60
%

-6
9%

70
%

-7
9%

80
%

-8
9%

90
%

-1
00

%

Estimated pollution level

N
u

m
b

e
r

o
f

ti
tl
e

s

Fig. 8. Estimated Pollution Level of all 122 analyzed titles

respectively. Overall, 71 users failed at least one of the 3 tests
causing a false positive ratio of 7.1%. We suspect those to
be regular KaZaA clients that the polluters use to study the
network and their targets. Details on the false positive and
negative results are shown in Table VI

We also evaluate the effect of the blacklisting methodology
by comparing the average number of copies per user in
FastTrack without blacklisting and with blacklisting. Figure
7(a) shows a plot of the average number of copies and the
variance for the 122 titles that we analyzed when blacklisting
is employed. Fig 7(b) shows the same graph without the black-
listing. Note that the scale of the graph changes by a factor of
20 and becomes much more uniform. After blacklisting, the
average number of copies of a title dropped down to less than
3 for all titles with a maximum variance of about 3.

D. Estimating Pollution Levels

We used our methodology described in Section III to
determine the pollution levels of the 122 investigated titles.

We present the pollution levels, obtained by Formula 2 in
Section III, for all 122 titles. Since this would take up too
much space, in Figure 8 we present a bar graph showing the
number of titles with their pollution level in different intervals.
The picture shows that 58 of the titles have estimated pollution
level of 90% or more, while 51 titles have pollution level of
less than 50%. There are no titles with pollution level of 0%
because every title has some number of polluted versions out
there.

To give further insight into pollution levels, we plotted the
CDFs of the fraction of copies versus the fraction of users
for the titles under investigation. Due to space constraints, in
Fig 9(a) we only show the plots for 8 representative titles. For
some titles the large percentage of all copies is concentrated
within a small number of users; those titles have a very skewed
CDF. Other titles have a more uniform distribution for the
number of versions per user. The CDF of a title gives a visual

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20 25 30 35 40 45

Last hop RTT in ms

F
ra

c
ti
o
n

(a) Last-hop RTTs for non-blacklisted nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Last hop RTT in ms

F
ra

c
ti
o

n

(b) Last-hop RTTs for blacklisted nodes

Fig. 5. Last-Hop RTTs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Average TCP Throughput (KBytes)

C
u
m
u
l
a
t
i
v
e

F
r
a
c
t
i
o
n

o
f

U
s
e
r
s

(a) Average throughput of non-blacklisted nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Average TCP Throughput (KBytes)

C
u
m
u
l
a
t
i
v
e

F
r
a
c
t
i
o
n

o
f

U
s
e
r
s

(b) Average throughput of blacklisted nodes

Fig. 6. Average TCP Throughput

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36

Average copies

V
a
ri
a
n
c
e
 o

f
c
o
p
ie

s

(a) Before Blacklisting

0

1

2

3

4

1 1.5 2 2.5

Average copies

V
a
ri
a
n
c
e
 o

f
c
o
p
ie

s

(b) After Blacklisting

Fig. 7. Average number of copies per user and variance for all 122 titles

representation of its pollution level. A very skewed CDF shows
that just a few users have copies of most of the versions of
a title. A regular user does not normally have hundreds or
thousands of versions of the same song; so those users must
be polluters and the title must be polluted.

Another interesting result that we present here is the distri-
bution of the number of copies of a title and the number of
versions. The CDFs for the 8 representative titles are shown
in Figure 9(b). The figure shows that for some titles the top
100 versions account for 80% or more of the copies that
are available on the network. This result is indeed expected

since clean songs usually have few popular versions. Other
titles, however, are highly scattered, having as many as the
top 500 of their versions accounting for a less than 30% of
the total number of copies for that title. This also matches
our expectations and explains why it is very difficult to find
a clean version of a highly-polluted title. Thus, the highest
polluted title on the plot is 008, while the cleanest one is 005.

Fig 10 reflects the pollution level contributed only by the
P2P users with public vs. users with private IP addresses. We
concentrate on the public users because we expect to find the
dedicated polluters in the non-NATed ranges of IP addresses.

11

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

users fraction

c
u
m

u
la

ti
v
e
 c

o
p
ie

s
 f
ra

c
ti
o
n s005

s008

s009

s040

s052

s060

s097

s111

(a) Copies per user

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

versions

c
u

m
u

la
ti
v
e

 c
o

p
ie

s
 f
ra

c
ti
o

n

s005

s008

s009

s040

s052

s060

s097

s111

(b) Copies per version

Fig. 9. CDFs for 8 Titles

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

user fraction

c
u
m

u
la

ti
v
e
 c

o
p
ie

s
 f
ra

c
ti
o
n

s008 public IP

s060 public IP

s008 private IP

s060 private IP

Fig. 10. CDF of copies per user for only public IP addresses and only private
IP addresses for 2 polluted titles

If, however, we look at private IP addresses and their CDF, we
can see a distribution that is guaranteed to have no dedicated
polluters. That, however, does not mean that there are no
polluted copies of content in private IP users. Because the
number of copies provided by public IPs is much bigger than
the number provided by private IPs the influence of NATed
users to the pollution level of a title is insignificant. This can
be easily shown by observing that the skewness of the CDF
for public users on Fig. 10 is essentially the same as that in
Fig. 9(a) which includes both public and private users.

Our results indicate that polluted songs can be separated
in 3 different groups. We define the 3 stages of Pollution
Evolution and give their specific characteristics in Section II-
C. Table VII displays detailed information about the titles
from all three evolution stages. It also provides information
for two representative clean titles. In this figure PU and OU
signifies “polluting user” and “ordinary user,” respectively.
Each consecutive stage is characterized by lower polluter
contribution in the number of users per IP address, average
number users, and average number of copies. The variance in
the number of copies also decreases significantly.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Estimated pollution level

m
e

a
s
u

re
d

 p
o

llu
ti
o

n
 l
e

v
e

l

Fig. 11. Measured vs. estimated pollution levels for 24 titles

E. Pollution Level Evaluation

We now evaluate our pollution level estimates, using the
procedure described in Section 3. Recall that this procedure
compares our estimated pollution levelE(n) with the measured
pollution levelL(n). We selected 24 songs for which the top
200 versions represented 80% or more of the total number
of copies. We then downloaded the top 200 versions and
used our automatic testing procedure to determine if they
are polluted or not. Figure 11 shows the correlation of the
measured and estimated pollution level for those titles. The
plot is consistently linear and indicates that our procedure for
estimating the pollution levels of titles is quite accurate. The
10% difference in the correlation can be explained by the fact
that we don’t actually download all the versions but just the
top 80% or so (the top 200 versions sometimes correspond to
more than 80%). We then computed the value of the error for
the estimated pollution level as discussed in our Methodology
(Equation 4) and its value was 6.8%.

VI. RELATED WORK

Although a relatively new Internet application, there are
many measurement studies on P2P file-sharing systems. Band-
width, availability, and TCP connection duration for popular
filesharing systems such as Gnutella and Napster are examined
in [11] [12][14] [3]. P2P user behavior and content character-
istics are studied in [13] [15].

12

TABLE VII

CONTENT METRICS

Pollution Title Number of users Avg. copies Variance of Polluter
status per IP copies copies

PU OU PU OU PU OU

Introductory
040 121975 13127 8276 1.99 53.7 2.99 0.987
008 103583 8959 2808 2.16 45.45 2.96 0.988

Growth
060 84885 87994 422 1.43 9.95 1.35 0.59
052 41442 84784 420 1.38 1.33 1.16 0.45

Decline
097 194 28389 17.6 1.32 0 1.07 0.005
009 448 40957 9.1 1.34 0.23 1.13 0.009

Post-Pollution
111 2 14517 1 1.24 0 0.81 0.0003
005 7 56344 1 1.21 0 0.79 0.0001

Several independent research groups have developed
crawlers for P2P file sharing systems. A crawler for the orig-
inal single-tier Gnutella system is described in [3]. A crawler
for the current two-tier Gnutella system (with “ultrapeers”) is
described in [4]. A crawler for eDonkey is described in [15].
A crawler for the FastTrack P2P file sharing is described in
[2].

There is related work on attacks and shortcomings of P2P
systems. The freerider problem, potential attacks to and from
P2P systems, and the DRM are considered in [16], [17] and
[18]. DoS attacks in P2P systems are investigated in [16] [19].
Viruses are addressed in [16] and [20].

There are also relevant related studies of CDNs and peer
selection. RTT bandwidth, and TCP throughput are examined
in [21] for server selection purpose and RTT, throughput
probing and bandwidth measurement are considered in [22] for
heterogenous P2P environments. In particular, our throughput
and last-hop RTT techniques were derived from [22].

In [2] it was established that pollution is widespread for
popular titles. The methodology used in [2] to determine
pollution levels is inefficient in that it requires downloading
and binary content analysis of hundreds of versions for every
investigated title. Although the current paper makes use of the
FastTrack crawler in [2], the contribution is very different. It is
the first paper to develop a blacklisting methodology for file-
sharing systems. Furthermore, all the methodologies in this
paper do not require any downloading and are solely based on
metadata gathered from the crawler. A user-supported antip2p
banlist is available in [23].

VII. C ONCLUSION

In this paper we considered two related problems: creating
blacklists for polluting IP address ranges, and estimating the
pollution level of targeted titles. Adequate solutions to both
of these problems require accuracy and efficiency. Extensive
tests with data collected from the FastTrack P2P file-sharing
system have shown that our methodologies meet both of these
goals.

Our methodologies do not involve the downloading of any
files. Instead, they identify polluting IP address ranges and
targeted titles by collecting and analyzing metadata from the
file sharing system. The metadata is harvested by crawling the
nodes in the file sharing system. From this harvested metadata,

our methodology constructs the blacklisted IP address ranges
and the estimated pollution levels for the targeted titles. The
methodology is efficient in that it collects metadata (text)
rather than binary content and that a large number of titles,
and virtually all the file-sharing nodes can be investigated in
one crawl.

To address accuracy, we developed several criteria to eval-
uate the methodologies. We then applied these criteria to a
comprehensive test case for the FastTrack file-sharing system.
For blacklisting, we found the probability of false negative
and false positive to both be low, namely, 0.2% and 7.1%,
respectively. After applying the blacklist, the average number
of versions per user for polluted titles decreases dramatically.
These results testify to the overall accuracy of our blacklisting
methodology. For estimating pollution-levels, we compared
our estimated pollution-levels with measured estimates, which
involved the downloading and binary analysis of titles. For
our comprehensive test case, we found the percentage error to
quite low, less than 7%.

In a real deployment, it is important that the blacklist set and
the pollution-level estimates adapt as polluters change hosts
and target new content. Our methodology is naturally suited
for such a dynamic environment. The crawler can operate con-
tinuously, collecting metadata for fresh titles as they become
released. The fresh titles can be obtained directly from on-line
billboard charts. Similarly, our methodology can continuously
be applied to the data in the crawling database, thereby
dynamically adjusting the blacklist set and the pollution-level
estimates.

REFERENCES

[1] CacheLogic Research: The True Picture of P2P File Sharing,
http://www.cachelogic.com/research/

[2] J. Liang, R. Kumar, Y. Xi, K. Ross. Pollution in P2P File Sharing Systems,
Infocom 2005

[3] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design.IEEE Internet Computing Journal, vol. 6, no. 1, 2002.

[4] D. Stutzbach, R. Rejaie. Characterizating Today’s Gnutella Topology,
submitted.

[5] R. Schemers, fping utility, http://www.fping.com/
[6] Apple iTunes Top 100, http://www.apple.com/itunes/
[7] Top 100 songs from 1970 to 1979, http://top40.about.com/cs/70shits/
[8] Blockbuster’s Top 100 Online Rentals, http://www.blockbuster.com/
[9] Z. M. Mao, J. Rexford, J. Wang, and R. Katz, Towards an Accurate

AS-Level Traceroute Tool,Proceedings of ACM SIGCOMM, Karlsruhe,
Germany, August 2003

13

[10] CIDR Report, http://www.cidr-report.org
[11] S. Sen, J. Wang. Analyzing Peer-to-Peer Traffic Across Large Networks,

ACM/IEEE Transactions on Networking, Vol. 12, No. 2, April 2004
[12] S. Saroiu, P. K. Gummadi, S. D. Gribble, A Measurement Study of Peer-

to-Peer File Sharing Systems,Multimedia Computing and Networking
(MMCN’02), San Jose, January 2002

[13] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
J. Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-Peer
File-Sharing Workload.Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP-19), October 2003

[14] V. Aggarwal, S. Bender, A. Feldmann, A. Wichmann. Methodology
for Estimating Network Distances of Gnutella Neighbors.Proceedings
of the Workshop on Algorithms and Protocols for Efficient Peer-to-Peer
Applications at Informatik, 2004

[15] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, L. Massouli. Clus-
tering in Peer-to-Peer File Sharing Workloads.IPTPS’04

[16] D. Katabi, B. Krishanmurthy. Unwanted Traffic: Attacks, Detection, and
Potential Solutions.ACM SIGCOMM’04 Tutorial

[17] P. Biddle, P. England, M. Peinado, and B. Willman. The Darknet and
the Future of Content Distribution.ACM DRM 2002

[18] M. Feldman, C. Papadimitriou, J. Chuang, I Stoica. Free-Riding and
Whitewashing in Peer-to-Peer Systems.ACM SIGCOMM’04 Workshop on
Practice and Theory of Incentives in Networked Systems (PINS), August
2004

[19] S. Dropsho. Denial of Service Resilience in Peer to Peer File Sharing
Systems.EPFL Tech Report

[20] http://www.bullguard.com
[21] S. G. Dykes, K. A. Robbins, C. L. Jeffery. An Empirical Evaluation of

Client-side Server Selection Algorithms.Infocom 00
[22] T.S.E Ng, Y. Chu, S.G. Rao, K. Sripanidkulchai, H. Zhang.

Measurement-Based Optimization Techniques for Bandwidth-Demanding
Peer-to-Peer Systems.IEEE Infocom’03

[23] Bluetack Internet Security Solutions, http://www.bluetack.co.uk/
[24] The FFmpeg project, http://ffmpeg.sourceforge.net/index.php
[25] B. Krishnamurthy, J. Wang. On network-aware clustering of Web clients.

ACM SIGCOMM 2000

14

