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Abstract—This paper explores how to remotely monitor
network-wide quality in mesh-pull P2P live streaming systems.
Peers in such systems advertise to each other buffer maps which
summarize the chunks of data that they currently have cached
and make available for sharing. We show how buffer maps can
be exploited to monitor network-wide quality. We show that
information provided in a peer’s advertised buffer map correlates
to that peer’s viewing-continuity and startup latency. Given this
correlation, we can remotely harvest buffer maps from many
peers and then process the harvested buffer maps to estimate
ongoing quality. After having developed this methodology, we
apply it to a popular P2P live streaming system, namely, PPLive.
To harvest buffer maps, we build a buffer-map crawler and
also deploy passive sniffing nodes. We process the harvested
buffer maps and present results for network-wide playback
continuity, startup latency, playback lags among peers, and chunk
propagation. The results show that this methodology can provide
reasonable estimates of ongoing quality throughout the network.

Index Terms—

I. INTRODUCTION

P2P live streaming systems, using mesh-pull (also known
as data-driven and BitTorrent-like) architectures, have enjoyed
many successful deployments to date. These deployments
include CoolStreaming, PPLive, PPStream, UUSee, SopCast,
Boiling-Point-TV, VVSky, TVAnt, QQLive, TVkoo and many
more [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. These systems
have mostly originated from China; however, they have a
significant user base in Europe and North America [11], [12],
[13]. We will likely see continued growth in P2P live streaming
over the Internet. In the upcoming years, we can expect these
systems to distribute more international television channels,
reaching larger and more diverse audiences. Moreover, thanks
to the low distribution cost of P2P streaming, we also expect
user-generated live video content (emanating from web cams
and wireless devices) to be distributed using P2P mesh-pull
architectures. A video channel in a P2P live streaming system
may be simultaneously watched by thousands or even millions
of users from all corners of the world.

In this paper, we explore how to monitor the network-wide
quality in a mesh-pull P2P live streaming system. Quality
metrics include video playback continuity, initial startup la-
tency, and display lags among users. Numerous parties have
an interest in monitoring quality:

• The users’ viewing experience is crucial for successful
service deployment. If users experience frequent freezes
in the video playback, significant delays for startup after
switching channels, or significant time lags among users
for the same video frame, then the users may abandon the
service. Service providers would like to detect when ser-
vice quality degrades, so that they can add, retroactively
and dynamically, additional uploading capacity, either
using servers that they operate or CDN servers. When
service quality is satisfactory, the infrastructure capacity
can be released for other purposes.

• In order to compare the service quality of different
channels across different P2P streaming providers, third-
party companies will want to independently monitor the
channels. This information could then be provided to
users as an aid in selecting P2P video providers. It could
also be provided to advertisers who wish to advertise in
the systems.

• Given the knowledge of the actual performance of the
streaming systems, ISPs and CDNs can dimension their
networks and expand capacity more efficiently, attracting
more residential and corporate customers.

• Finally, from a research perspective, monitoring P2P live
streaming systems allows researchers to gain an in-depth
understanding of various system design choices, includ-
ing algorithms for creating peering partners, scheduling
algorithms (for both uploading and downloading), video
encoding algorithms, and so on. Such insights will guide
the design of future P2P live streaming systems.

The most direct approach to monitoring network-wide
quality is to include quality monitors in each of the peers
(for example, within the P2P software). Each monitor would
determine when media objects arrive at the peer and report this
information to a central processing. Based on the sequence
of arrival times, the central processing node could estimate
quality metrics such as freezing and start up latencies at
each of the nodes (see Section IV), and finally combine
this information across nodes to obtain network-wide quality
measures. But this requires the installation (or integration)
of monitors in the peers, which is only possible with direct
control of the P2P live streaming system. Without this control,
it is a challenging problem to monitor the quality of thousands
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of peers scattered around the world.
In this paper, we examine the problem of remotely monitor-

ing network-wide quality P2P mesh-pull live streaming sys-
tems. Similar to BitTorrent, peers in P2P mesh-pull streaming
systems advertise to each other the availability of the chunks
of data that they currently have cached. These advertisements
are called buffer maps. We show how these buffer maps can
be exploited to monitor network-wide quality. In particular,
we show that the information provided in a peer’s advertised
buffer map correlates with that peer’s viewing-continuity qual-
ity and startup latency. Given this correlation, we can remotely
harvest buffer maps from many peers and then process these
buffer maps to estimate ongoing quality metrics.

After having developed the methodology, we apply it to a
popular P2P live streaming system, namely, PPLive. Harvest-
ing buffer maps from PPLive is in itself a challenging problem,
since PPLive is a proprietary protocol. To harvest buffer maps,
we develop a buffer-map crawler and also deploy passive
sniffing nodes. We process the harvested buffer maps and
present results for network-wide playback continuity, startup
latency, playback lags among peers, and chunk propagation.
The results show that this methodology can provide reasonable
estimates of ongoing quality throughout the network. Although
our experiments are with PPLive, the methodology can in
principle be used for any mesh-pull P2P live streaming system.

This paper is organized as follows. We end this section
with a summary of related work. In Section II, we provide
an overview of mesh-pull systems. In Section III, we present
our methodologies for harvesting buffer maps from a mesh-
pull P2P streaming system. In Section IV, we demonstrate a
strong correlation between the chunk availability reported in
buffer maps and the streaming service quality. When apply
this buffer methodology to PPLive. In Section V, we use
the methodology to estimate network-wide video quality in
PPLive, including playback continuity, startup latency, and
playback lags. In Section VI, we present results on network-
wide chunk propagation. Finally we conclude in Section VII.

A. Related Measurement Work on Mesh-pull Streaming Sys-
tems

Video quality is conventionally characterized by video dis-
tortion; the quality measurement normally involves the video
rate measurement from which video distortion is estimated
utilizing empirical rate-distortion curves or various proposed
rate-distortion models [14]. However, this approach usually
varies among the video sequences, and is not suitable for video
quality measurement over the Internet [15], [16], [17], [18],
[19], [20].

Video quality measurements over the Internet typically
involve extensive video traffic measurements [15], [16], [17],
[18], [19], [20]. In contrast, our approach does not process
video directly, but instead employs buffer maps, which sum-
marize the availability of video data at the various peers. This
approach generates significantly less measurement traffic in
the network.

There have been a few measurement studies in quantifying
large scale P2P streaming systems. The measurement tech-
niques fall into two categories: passive sniffing and active

crawling. For passive sniffing, our previous work [11] is the
first measurement study of a large-scale P2P streaming system.
It considered traffic patterns and peer dynamics of the PPLive
IPTV system. Our work was followed by two other passive
measurement studies [13] and [21]. Ali et al. [13] focus on the
traffic characteristics of controlled PPLive peers on PPLive and
SopCast. Passive sniffing was also utilized to study the traffic
pattern of PPLive, PPStream, TVAnts and SopCast in [21].

Passive sniffing techniques are often constrained to measure
a small set of controlled peers. To understand network-wide
peer churn dynamics, we developed active crawling apparatus
to measure the global view of the PPLive network [12].
Subsequently, another crawler-based measurement study was
conducted in [22]. Vu et al. [22] examine the peer dynamics
for a small number of PPLive channels.

II. OVERVIEW OF MESH-PULL P2P LIVE STREAMING
SYSTEMS

Mesh-pull streaming systems (including PPLive [2], PP-
Stream [3] and CoolStreaming [1]) have a common generic
architecture, which we describe in this section. As shown
in Figure 1, mesh-pull P2P architectures have the following
characteristics:

1) A live video is divided into media chunks (e.g., each
chunk consisting of one second of media data) and is
made available from an origin server.

2) A host, interested in viewing the video, requests from
the system a list of hosts currently watching the video
(Step 1 in Figure 1). The host then establishes partner
relationships (TCP connections) with a subset of hosts
on the list (Step 2 in Figure 1). The host may also
establish a partner relationship with the origin server.

3) Each host viewing the video caches and shares chunks
with other hosts viewing the same video. In particular,
each host receives buffer maps from its current partners.
A buffer map indicates the chunks the partner has avail-
able. Using a scheduling algorithm, each host requests
from its partners the chunks that it will need in the near
future.

4) As in BitTorrent, each host continually seeks new part-
ners from which it can download chunks.

An important characteristic of mesh-pull P2P algorithms is
the lack of an (application-level) multicast tree - a character-
istic particularly desirable for the highly dynamic, high-churn
P2P environment [1]. Although these mesh-pull algorithms
have similarities with BitTorrent [23], [24], BitTorrent in itself
is not a feasible delivery architecture, since it does not account
for the real-time needs of live streaming applications.

Figure 2 shows the software architecture of a peer in a
mesh-pull system. The peer includes a P2P streaming engine
and a media player. The streaming engine has the job of (i)
retrieving chunks from partner peers and (possibly) from the
origin server; (ii) storing the retrieved chunks in a cache; (iii)
sharing media chunks stored in its cache with its partners; (iv)
sending a copy (of the data) of each chunk it receives to the
media player. As shown at the bottom of Figure 2, the peer
sends a buffer map to each of its partner peers. The partner
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Fig. 1. Mesh-pull P2P live streaming architecture

peer, having learned from the buffer map what chunks the peer
has, issues requests for specific chunks. The peer then sends
the requested chunks to the partner.
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Fig. 2. A peer includes P2P streaming engine and media player. The
streaming engine trades chunks with partner peers.

A. Buffer Map and P2P Streaming Engine

The buffer maps (BMs) play a central role in our approach
to infer system-wide quality. In this subsection, we describe
the buffer map and P2P streaming engine in more detail.
At any given instant, the P2P streaming engine caches up
to a few minutes worth of chunks within a sliding window.
Some of these chunks may be chunks that have been recently
played; the remaining chunks are chunks scheduled to be
played in the next few minutes. Peers download chunks from
each other. To this end, peers send to each other buffer map
messages; a buffer map message indicates which chunks a peer
currently has buffered and can share. Specifically, the buffer
map message includes the offset (the ID of the first chunk),
the width of the buffer map, and a string of zeroes and ones
indicating which chunks are available (starting with the chunk
designated by the offset). Figure 3 illustrates the structure of
a buffer map.

A peer can request a buffer map from any of its current
partner peers. After peer A receives a buffer map from peer
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Fig. 3. A peer’s buffer map, which indicates the chunks it currently has
cached

B, peer A can request one or more chunks that peer B
has advertised in the buffer map. A peer may download
chunks from tens of other peers simultaneously. The streaming
engine continually searches for new partners from which it
can download chunks. Different mesh-pull systems may differ
significantly with their peer selection and chunk scheduling
algorithms. The selection and scheduling algorithm used by
CoolStreaming is documented in [1]. Peers can also download
chunks from the origin server. The chunks are typically sent
over TCP connections, although in some mesh-pull systems,
video chunks are also transferred using UDP.

B. Media Player

When the client application is started, the media player is
launched and the URL of the video stream is provided to
the media player. From the client’s perspective, the server
of the media content is the P2P streaming engine (which
is in the same host as the media player). Once the media
player is initialized, it sends (typically) an HTTP request to
the P2P streaming engine. After having received the request,
the P2P streaming engine assembles its chunks and header
information into a media file and delivers of the file to the
media player. Because new chunks continually arrive to the
streaming engine, the streaming engine continually adds data
to the file. Because some chunks may not arrive before the
playout deadline, there may be “gaps” in the file. When the
media player begins to receive the video from the streaming
engine, it buffers the video before playback. When it has
buffered a sufficient amount of continuous video content, it
begins to render the video.

A video stream is commonly formated in one of four
video formats: Window Media Video (WMV), Real Video
(RMVB), Quicktime video or Macromedia Flash. For the
sake of concreteness, let us consider mesh-pull P2P streaming
systems that use WMV (as is often the case today). WMV
videos use the Advanced Systems Format (ASF) [25]. An ASF
file starts with a header object and is followed by a series of
media data objects. The file header object includes various
meta information for the file (i.e., the file identifier, buffering
time and overall file bit-rate), number of available audio and
video streams carried in the file, and meta information for
each audio (i.e., sampling rate) and video stream (i.e., spatial
resolution, compression algorithm). Each data object starts
with an object header. The object header includes the sequence
number of the object, the number of streams carried in the
object, playback duration of the data object, and so on. In the
payload of data objects, multiple media objects from different
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streams (for example, a video and audio stream) may be
carried and interleaved.

Because of the real-time nature of live streaming, each
media chunk has a playback deadline (which can be different
from one peer to another by a few minutes). When a chunk
does not arrive before its playback deadline, the peer has two
options: it can freeze the playback with the most recently
displayed video frame and wait for the missing chunk to arrive;
or it can skip the playback of the frames in the chunk and
advance the deadlines for the subsequent chunks accordingly.
The freeze is a natural consequence of the media playback
when there are no video chunks in the buffer of the player. If
there are still chunks available in the buffer of the player, the
player continues playback even though those chunks might not
be continuous; in this case, video playback skipping occurs.
We have also observed that in many P2P live streaming
systems, when the playback freezes for an extended period
of time, the engine terminates the connection with the player
and reinializes the entire streaming process; we refer to this
impairment as rebooting.

III. HARVESTING BUFFER MAPS

As described in Section II, peers in mesh-pull streaming
systems exchange buffer maps among themselves. In this
paper, we show how buffer maps can be used to infer
many global-wide characteristics of of P2P live streaming
systems. These characteristics include playback quality, time
lags among users, and the video frame propagation pattern
throughout the entire network. Our methodology has two
major steps: (i) continually harvest buffer maps from peers
scattered throughout the network; (ii) process (either in real-
time or off-line) the buffer maps to infer characteristics about
global-wide system behavior. In this section we describe
two approaches for harvesting buffer maps: active buffer-map
crawling and buffer-map sniffing. We also describe how we
specifically harvested buffer maps from the PPLive streaming
system.

A. Buffer-Map Crawling

Buffer-map crawling is the process of remotely contacting a
large number peers, and continually requesting and receiving
buffer maps from these peers. To perform active buffer-map
crawling, we need to accomplish the following tasks:
• Track the IP addresses (and port numbers) for the peers

in the system, accounting for peer churn. Tracking the
peers is typically done by requesting lists of peers from
the tracker and/or from the peers themselves [11].

• Using knowledge of the specific protocol of the P2P live
streaming system, send buffer-map request messages to
the tracked peers.

• Receive buffer-map messages from the tracked peers and,
again using knowledge about the specific protocol, extract
the actual buffer maps from the buffer-map messages.

There are many challenges in building a buffer-map crawler.
Most of the P2P mesh-pull live streaming systems are propri-
etary. In order to establish partnerships with peers, generate

buffer map requests and interpret buffer map responses, it be-
comes necessary to do an analysis of the proprietary protocol.
If one is privy to the signaling protocol, then these tasks are
relatively straightforward. Otherwise, this is typically done
by collecting packets and analyzing them using one’s basic
knowledge of how a mesh-pull P2P live streaming system
operates. Second, a peer usually retrieves buffer maps by
establishing a TCP connection from a remote peer; however,
operating systems in general have constraints on the maximum
rate to accept new TCP connections. When the remote peer
has received a large number of TCP connection requests, there
may not be a response to a buffer map request by the operating
system. In addition, the peer application may not respond to
buffer map requests when the application has already been
overloaded with TCP connections. Utilizing TCP to probe the
remote peers for buffer maps also incurs unavoidable overhead
due to the establishment and termination of TCP connections.
A single crawler may not be able to harvest quickly an accurate
snapshot of buffer map distribution of peers in a popular
channel.

B. Buffer-Map Sniffing

Recall that each peer participating in the system sends and
receives buffer maps to and from other peers. We can therefore
harvest buffer maps as follows:
• Connect several peer clients to the P2P live streaming

system.
• At each connected client, run a sniffer which grabs all

traffic sent and received by the client.
• Using knowledge about the specific knowledge about the

protocol, extract the buffer maps, along with the origin
(IP addresses) of the buffer maps.

The sniffing nodes should be distributed globally throughout
the network, in order to capture a diverse set of buffer maps.
There is a tradeoff with respect to the number of sniffing nodes
deployed. On one hand, we would like to have a large number
of sniffers, which would increase the number of buffer maps
collected. On the other hand, each sniffer node perturbs the
system, as it downloads and redistributes chunks.

C. Harvesting Buffer-Maps in PPLive

PPLive is a typical mesh-pull P2P streaming system. PPLive
currently provides 300+ channels. The bit rates of video
programs mainly range from 300 kbps to 500 kbps. PPLive
does not own video content; the video content is mostly feeds
from TV channels, TV series and movies in Mandarin. The
channels are encoded in two video formats: Window Media
Video (WMV) or Real Video (RMVB). The encoded video
content is divided into chunks and distributed to users through
the PPLive P2P network. PPLive is described in some detail
in [12].

It is challenging to conduct measurement studies over
PPLive because the PPLive protocol is proprietary. In partic-
ular, in order to build the buffer map harvesting tools that are
used in this paper, we had to analyze the PPLive protocol using
packet traces from passive sniffing. With these efforts, we
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were able to understand critical portions of PPLive’s signaling
protocols.

Our PPLive buffer-map crawler utilizes both UDP and TCP
transport for collecting peer lists, and TCP for collecting buffer
maps from many remote peers during the same period of
time. Figure 4 shows the architecture of our PPLive buffer-
map crawler. Recall from Section II that each peer watching a
particular channel maintains a peer list, which lists other peers
currently watching the same channel. In PPLive, any peer A
can send to any other peer B, within a UDP datagram or a TCP
segment, a request for peer B’s peer list. The crawler sweeps
across the peers watching the channel and obtains the peer list
from each visited peer. Given the IP addresses of the remote
peers on the peer list, we augmented the crawler with a TCP
component that retrieves the buffer map from these remote
peers. To this end, as we crawl each peer, the crawler sends
a request for the peer’s buffer map. We then parse the buffer
maps off-line, to glean information about buffer resources and
timing issues at the remote peers throughout the network.

In general, operating systems have a maximum TCP thread
constraint that one host is able to maintain. To trace a large set
of the peers, we deploy a master-slave crawling architecture to
harvest buffer maps through the network. As shown in Figure
4, in step 1, the peer list crawler tracks the peers of one channel
in the PPLive network. This peer list crawler serves as a buffer
map crawling master. At the same time, we initiated multiple
buffer map crawling slaves. The buffer map master assigns 30
peers to each slave. Each slave then probes these 30 peers to
harvest their buffer maps.

While running the crawler, we utilize WinDump [26] to
passively sniff from three PPLive control nodes: one in New
York City with residential cable-modem access; one in New
York City with university Ethernet access; and one in Hong
Kong with university Ethernet access. The buffer maps are
embedded in the application data in these captured traffic
traces. Given the knowledge of the PPLive signaling protocol,
we are able to extract the buffer maps from these traces for
our analysis. A summary of the buffer data collected (from
the crawler and sniffers combined) is given in Table I.

IV. INFERRING PLAYBACK QUALITY FROM BUFFER MAPS

In the previous section, we showed how buffer maps can be
harvested from a P2P live streaming system. In this section,
we show that the buffer maps can be used to infer important
characteristics of the performance of the P2P live streaming
system, including playback continuity and start-up latency.

A. Automatic Playback Continuity Evaluation

In order to study the relationship between buffer-map values
and playback continuity, it is desirable to have a mechanism
that can automatically evaluate the playback continuity of a
video stream received at a media player. To this end, we
developed a stream analyzer to capture the arrival process
of the media objects to the media player from the streaming
engine, and estimate the user perceived quality. Our analyzer
tracks the sequence numbers of the arriving media objects and
the presentation time of the latest media object, from which
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Fig. 4. Peer buffer map harvesting

we estimate the playback impairments including freezing and
rebooting. We now describe how we estimate when playback
freezing occurs

Typically, a media file consists of two streams, video and
audio stream. We use the video stream for illustration. A video
stream consists of a sequence of video objects. Each video
object is identified by an increasing sequence number i (i =
1, 2, . . .). Let ti be the relative presentation time of the i-th
object, which is obtained from the video object header. Let
ai be the arrival time, which is recorded when our analyzer
receives this object. Let τ be the initial playback pre-buffering
delay, which is specified in the streaming engine. Let bi and
fi be the actual playback starting time and finishing time,
respectively.

The presentation time stamped on the video objects can
be used to estimate when video freezing occurs. Figure 5
depicts how we estimate video freeze and resume when all
video objects arrive in order. After the video object p2 finishes
playback at time f2, there are no video objects in the buffer
(f2 < a3); hence, our analyzer declares that playback freezes
at time f2. During the playback freezing period, the analyzer
continues receiving video objects from the streaming engine.
The video object p3 arrives at time a3. The analyzer starts
to buffer video objects without playback. When it receives
sufficient video objects, the time duration of the buffered
objects (t4 − t3) is larger than the pre-buffering threshold τ
and the playback restarts. Hence, the analyzer estimates the
video freezing period is a4 − f2.

We have just described how our analyzer estimates when
freezing occurs and the duration of the freezing for the case
when all video objects arrive in order. Our analyzer also
handles the case when objects arrive out of order, and also
estimates when rebooting occurs. We have validated the ana-
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TABLE I
SUMMARY OF HARVESTED BUFFER MAPS

channel name popularity bit rate (bps) chunk size (byte) buffer maps total peers duration (minutes)
CCTVNews 5-star 381,960 4,774 1,952,837 8,120 635
CCTV1 4-star 381,960 4,774 1,440,117 6,668 636
CCTV3 4-star 381,960 4,774 1,789,331 12,392 650
CCTV8 3-star 381,960 4,774 1,359,236 6,985 751
CCTV9 1-star 516,802 6,350 1,263,097 2,125 1,031
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Fig. 5. Playback time diagram with video freezing

lyzer by physically watching PPLive channels and observing
the analyzer indicates that impairments actually occur.

B. Correlation between buffer maps and video continuity

In this section, we demonstrate there exists a correlation
between the buffer map values and the playback impairment
events as determined by our analyzer. Because of this cor-
relation, we will be able to quantify network-wide playback
quality from the harvested buffer maps in Section V and VI.

We performed a number of experiments, and in each of
these experiments such a correlation was exhibited. In this
section we provide an illustrative example experiment. In this
experiment, we connected a campus peer to a popular, four-star
PPLive channel (CCTV1) for a three-hour period. During this
three-hour period, the number of peers viewing the channel
increased from about 1000 to about 2800, as shown in Figure
6. (These values were obtained from our peer-list crawler.)
During this time, the output of the PPLive streaming engine
was fed into our streaming analyzer. Also during this time, we
captured the buffer maps that were sent from this monitored
campus peer to its partner peers.

In Figure 7(a), we plot the Buffer Map (BM) width and
the BM playable video, which are obtained from the captured
buffer maps. As shown in Figure 3, the BM width is the
difference between the newest and oldest chunk number ad-
vertised in a buffer map message. The BM playable video is
the number of contiguous chunks in the buffer map, beginning
from the offset. We also plot the analyzer playable video
(in seconds) as determined by our stream analyzer in Figure
7(b). It is important to note that the BM playable video, as
determined from the buffer maps, and the analyzer playable
video, as determined from the stream analyzer, will not be
equal because the actual playback point is somewhere in the
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middle of the BM playable video.
We observe that the shape of the BM playable video curve,

obtained from the buffer maps, is very similar to the analyzer
playable video, obtained from the analyzer. Note in particular
that both curves show a brief period of no buffered video in
the vicinity of t = 481 minutes.

In Figure 8 we zoom in on the buffer map evolution and
also plot the time instants of the playback impairment events
reported by the analyzer, including two streaming reboots and
four playback freezes. We observe that playback impairments
indeed occur only when the BM playable video, determined
from the buffer maps, becomes very small. Hence, we intro-
duce the following heuristic to detect freezing events: Given a
sequence of buffer maps for one peer, record the time instant t1
of the first buffer map when the BM playable video is less than
5 chunks. We then continue to track the BM playable video of
consecutive subsequent buffer maps. If the BM playable video
remains less than 5 chunks for 4 seconds, we say a freezing
event occurs at t1. A freeze event ends when the BM playable
video is larger than the pre-buffering time of the stream.

In addition to the playable video size, the offset value in
the buffer map can be used to infer playback continuity. Under
normal circumstances, the buffer map offset should increase at
a constant rate: if this rate varies significantly, PPLive reboot
occurs. Figure 9 shows the buffer map offset rate of this
campus peer. For this video trace CCTV1, the media playback
bit rate is 381 kbps; the buffer map offset normally increases
at r = 10 blocks/sec = 4774 · 8 · 10 kbps = 381 kbps. We
see that when there is a sudden increase in the offset rate, a
reboot occurs (which also explains the first reboot occurrence
in Figure 8). We use the following heuristic to detect reboot
events: compute the average rate at which the offset increases
over 40 seconds. If this average rate is 10% higher than the
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nominal playback rate or it is less than 90% of the nominal
playback rate, the potential reboot alarm is issued. If in 3
consecutive offset rate checking rounds, which lasts over 120
seconds, all three reboot alarms are issued, we say a playback
reboot occurs. Otherwise, the reboot alarm is cleared.

We conclude that the playback freezing is closely correlated
with the size of the BM playable video as determined from the
buffer maps. In Figure 8, when this playable video is smaller
than some threshold (e.g., 5 blocks) and stays in this state for
a few seconds, playback freezing occurs.

C. Correlation between buffer maps and start-up latency

Buffer maps can also be used to infer the start-up latency of
peers. As shown in Figure 10, in PPLive, when a peer joins the
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Fig. 9. The rate of the buffer map offset of a campus peer in trace CCTV1.

network and has no chunks in its engine buffer, it sends buffer
maps with playback offset equal to zero and a buffer size equal
to zero. After a peer obtains chunks from other peers, the offset
is set to a non-zero value. The streaming engine will start the
player when the size of the cached playable video size exceeds
a specified pre-buffering video threshold. This threshold is a
system parameter of the streaming engine, which an end user
may configure in the option settings of the application. The
consecutive buffer maps provide snapshots of the video chunks
in the buffer. Therefore, we can infer the start-up time of the
playback of a peer given the sequence of the buffer maps of
this peer with the first buffer map having a zero-valued offset.
In this example, the pre-buffering video size is 5 seconds in
time (roughly 50 chunks); hence, the startup time is roughly
17 seconds.
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Fig. 10. Buffer map evolution at start-up of a campus peer in trace CCTV1.

V. NETWORK-WIDE SERVICE QUALITY

Using the methodologies described in the previous section,
we can infer video playback quality on remote peers that we
cannot monitor directly. In this section, we report network-
wide service quality results for PPLive. We present results
for several important quality metrics: playback continuity,
including freezes and reboots, start-up latency and time lags
among peers.

A. Playback Continuity

The most important measure of service quality of a stream-
ing system is the continuity of video playback at the user
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hosts. Using the tools described in Section IV-B, we harvested
the five sets of buffer maps shown in Table I. We then
processed the buffer maps using the heuristic described in
Section IV. Table II reports playback continuity, freezes and
reboots, experienced by randomly sampled peers during 10
one-hour periods. For each one-hour period, we select peers
with at least 50 captured buffer maps. Among the sampled
peers, we count the number of the reboot/freeze peers that have
at least 1 playback reboot/freeze event in this one-hour period.
The reboot/freeze peer ratio is defined as the ratio between the
reboot/freeze peer and the total number of sampled peers in
this one-hour period.

From Table II, we observe that the peers in the monitored
channels have smooth video playback most of the time. For
channel CCTV3 and CCTV8, more than 90% peers never
experienced any freezes or reboots within one hour time
periods. For channel CCTVNews and CCTV1, the freeze peer
ratio and reboot peer ratio varies over time. The general trend
is that the more peers in the system, the lower the freeze and
reboot ratio. Compared with the other four channels, channel
CCTV9 has relatively high freeze and reboot ratio over the
ten hours period. Looking at the number of peers, we found
the number of peers in this channel is much lower than in the
other four channels.

To get more details on playback impairments, we zoom in
to one time period, from 2.5 hours to 3.5 hours, when a high
ratio of peers in channel CCTVNews experience freezes and
reboots. Table III lists the freeze and reboot ratios among all
sample peers and the number of playback impairments on two
specific peers every 10 minutes. We see a high reboot ratio
among sample peers and two specific peers experienced lots
of reboots every 10 minutes.

To understand the causes of the frequently occurring play-
back impairments, we plot in Figure 11 the BM playable video
on three. Before t = 182 minutes, all three peers have a
small and highly variable amount of BM playable video in
their buffers. After t = 182 minutes, the playable video in
all three peers stays at a high level. We further look into the
rate at which buffer map offsets increase for the three peers
during that time period. Since the playback time for a chunk
is 0.1 seconds, to maintain steady playback, the buffer map
offset should increase at a rate of 10 chunks per second. From
Figure 12, we observe that before t = 182, the three peers
cannot advance their buffer map offset at the playback rate of
10 chunks/sec. They experience severe playback impairments.
After t = 182, the rate of increase of buffer map offset reaches
the playback rate for all three peers. Based on the strong
correlation of playback impairments on three peers, we infer
that this is a network-wide quality degradation. One important
factor affecting network-wide service quality is the number
of peers in the network. The more peers in the network, the
more stable the network-wide service quality. We suspect the
frequent playback impairments before t = 182 is because the
number of peers in that time range is not large enough. To
test this, we plot in Figure 13 the evolution of peer population
from time 0 to 210 minutes. The number of peers before
t = 180 minutes oscillates around 700. For some reason,
starting from t = 180 minutes, more and more peers join the
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channel and the peer number keeps increasing until the end of
the observation window. This verifies our conjecture that peer
population largely affects network-wide service quality.

B. Start-up Latency

The very first quality measure that a user perceives after
joining a channel is the start-up latency. We use the heuristic
described in Section IV-C to estimate a peer’s start-up delay
from its buffer maps. The total number of peers whose start-up
processes were captured in trace CCTV9 is 220. For each peer,
we estimated the upper bound and lower bound of its start-
up delay. We plot in Figure 14 the probability distribution
of the lower and upper bounds for peers in that channel.
Table IV presents the start-up delays for peers in five different
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Fig. 14. The Distribution of Start-up Latencies on Peers in trace CCTV9

channels. For each channel, we report the median values of the
lower bound and upper bounds of peers in that channel. The
variance of the startup delay is not significantly. For example,
for CCTV9, the standard deviation (STD) of the lower bound
of the startup delay is 41.7 seconds and the STD of the upper
bound is 51.3 seconds.

C. Playback Lags among Peers

In a mesh-pull P2P streaming system, the progress of video
playback on a peer is determined by how fast it collects video
chunks from the system. The variations in chunk retrieval
times from peer to peer introduce time lags among the peers.
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TABLE II
PLAYBACK IMPAIRMENTS ON PEERS OF FIVE CHANNELS WITHIN TEN HOURS

time(hour) [0,1] [1,2] [2,3] [3,4] [4,5] [5,6] [6,7] [7,8] [8,9] [9,10]
channel CCTVNews
# of sampled peers 1206 950 868 973 1230 1414 1253 1054 974 827
reboot peer ratio 18.8% 38.5% 41.9% 14.1% 3.4% 2.2% 2.6% 3% 4.4% 4.1%
freeze peer ratio 1.8% 3.1% 2.9% 2.0% 1% 0.6% 0.7% 0.9% 2.7% 3.1%
channel CCTV1
# of sampled peers 301 382 605 1107 1104 926 714 1038 1438 1141
reboot peer ratio 20% 15% 4.8% 2.1% 1.4% 3.6% 1.7% 2.2% 2.4% 1.3%
freeze peer ratio 9.0% 9.0% 2.5% 0.6% 0.8% 2.1% 0.6% 0.8% 1.3% 1%
channel CCTV3
# of sampled peers 899 920 996 956 1413 2141 2835 2307 1848 1215
reboot peer ratio 7.6% 6.6% 7.3% 5% 2.8% 7.9% 10.7% 9.5% 8.6% 14.4%
freeze peer ratio 1.1% 1.7% 2.2% 1.4% 0.9% 2% 4.3% 4.2% 2.3% 3.1%
channel CCTV8
# of sampled peers 435 393 564 667 860 1188 1313 1426 1085 974
reboot peer ratio 3% 5.1% 3.7% 4.2% 2.7% 2% 0.7% 0.5% 1.2% 1%
freeze peer ratio 1.4% 1% 1.2% 1.4% 0.9% 1.2% 0.7% 0.4% 0.2% 0.3%
channel CCTV9
# of sampled peers 207 173 160 184 199 247 340 397 353 311
reboot peer ratio 26.6% 44.5% 38.1% 35.3% 32.2% 40.1% 29.7% 26.2% 15.9% 16.7%
freeze peer ratio 4.4% 20.2% 23.1% 20.7% 12.1% 14.6% 12.7% 6.8% 9.6% 5.5%

TABLE III
PLAYBACK IMPAIRMENTS ON PEERS OF ONE CHANNEL WITHIN ONE HOUR

time(minute) [150,160] [160,170] [170,180] [180,190] [190,200] [200,210]
playback performance over sample peers

# of sampled peers 320 305 332 310 315 339
reboot peer ratio 41.8% 41.3% 39.1% 36.8% 5.7% 3.5%
freeze peer ratio 1.9% 2.0% 0.3% 1.3% 3.8% 0.6%

HK campus peer
# of reboot events 9 11 14 4 0 4
# of freeze events 0 0 0 0 0 0

NY campus peer
# of reboot events 11 10 17 7 0 0
# of freeze events 0 0 0 0 0 0

TABLE IV
MEDIAN OF STARTUP LATENCIES

Trace Captured Peers Lower bound Upper bound
(sec) (sec)

CCTVNews 38 11.8 17.5
CCTV1 74 13.3 19.8
CCTV3 1405 50.3 94.9
CCTV8 92 5.98 12.8
CCTV9 220 14.2 19.7

1) Maximum Time Lags: One measure of peer playback
synchronization is the time lags between the “fastest” and
the “slowest” peer. To obtain maximum time lags, we merge
buffer map traces collected by three monitors and group buffer
maps into time bins of 5 seconds. For each bin, we calculate
the difference between the maximum and the minimum offset
of the buffer maps in that bin. The difference indicates the
maximum playback lag among the peers monitored in that time
slot. Figure 15 shows that the maximum time lags among peers
monitored by the three peers fluctuate around 150 seconds
within a one hour time period.

2) Tiering Effect: Other than the maximum time lags, we
also want to explore the structure embedded in the delay
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Fig. 15. Maximum time lags among peers in trace CCTVNews

performance of peers in a mesh-pull P2P streaming system. In
a tree-based video streaming system, a user’s playback delay
is determined by its distance to the server. When grouped
into tiers according to their distances, users in a tier close
to the source will consistently have smaller playback time
delays than users in a tier farther away. In a mesh-pull P2P
streaming system, to deal with peer churn, there is no fixed tree
structure. Peering links are established/removed dynamically.
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Fig. 11. Correlation on BM playable video of three peers in trace CCTVNews
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Fig. 12. Correlation on buffer map offset increase rates of three peers in Trace CCTVNews

Consequently, unlike in a tree-based system, the regularity
in the relative delay performance among peers cannot be
assumed. On the other hand, in a mesh-pull based system, the
peering links are not purely random. They are driven by peer
visibility and chunk availability, which are largely determined
by the peers’ network connections and their locations in the
streaming system. With this in mind, one can expect some
structure in peering topology, and peer delay performance in
turn. In this section, by examining buffer map traces collected
from peers with different geographical locations and different
network access, we present results demonstrating a tiering
effect in the playback time lags.

To expose the ordering of the playback delays on different
peers, we infer the playback progress of a remote peer by
checking the offsets of buffer maps collected from that peer.
We define the relative playback difference between two peers
as the offset difference of these two peers. More specifically,
suppose that we obtained one buffer map of peer 1 at t1 with
the buffer map offset ∆1, and one buffer map of peer 2 at t2
with the offset ∆2. The playback difference is computed as

δ =
(∆2 −∆1) ∗ L

r
− (t2 − t1),

where L denotes the chunk size and r denotes the playback
bit rate.

We use three different traces taken at the same time to
explore the tiering effect. For each trace, using the local
playback time on the monitor as the reference point, we
calculate the relative playback differences for the 6 peers from
which we collected the most buffer maps. We plot in Figure

16 the evolution of the relative playback differences over a one
hour time period. We observe that there exists a clear ordering
among peers’ playback lags in all three traces. In addition, the
relative playback differences are quite stable over the one-hour
time period. From the playback lags between two peers, one
can also infer the direction of video data flow between them.
It is very unlikely for a peer to download video from a peer
whose playback time is tens of seconds behind.

For the trace collected from the Hong Kong campus peer,
Figure 16(a) shows that only one peer out of the six peers is
ahead of the local peer. We conjecture that the Hong Kong
campus is close to the video source server. It can download
video chunks quickly from the server and redistribute them to
other peers in Hong Kong or places farther away exploiting its
high upload capacity. In Figure 16(b), for the trace collected
from the campus peer in New York, about half of its peers
are ahead of it and the other half are behind it. We conjecture
that this peer downloads video chunks from peers in Asia and
acts as a proxy to upload video chunks to peers in the US.
Although in the same city as the New York campus peer, the
cable peer in New York has very different delay performance
relative to its peers. Figure 16(c) shows that most of its peers
are ahead. We conjecture that this residential peer uploads little
traffic to its peers. We also calculate the relative playback delay
among the three monitors. The Hong Kong campus peer’s local
playback time is around 80 seconds ahead of the New York
campus peer; the New York residential peer’s local playback
time is 20 seconds behind the New York campus peer. This
suggests that both the location and network access of a peer
largely affect its playback delay.
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Fig. 16. Tiering effect in trace CCTVNews: peers have a stable relative order on their playback lags.

VI. VIDEO OBJECT PROPAGATION

Buffer maps collected from peers in the same P2P streaming
network not only reflect network-wide video playback quality
but also provide valuable information for inferring how video
chunks propagate among peers inside the network.

Chunk propagation in a P2P streaming system is governed
by peering strategies and chunk scheduling schemes on all
peers. Without sniffing traffic on all peers, we cannot trace
the detailed propagation of a chunk among all peers. However,
we can utilize harvested buffer maps to infer when a chunk is
downloaded by a monitored peer. Based on that, we obtain a
sampled view of the availability of a chunk among all peers
in the system. After a chunk is generated by the server, it will
be downloaded by peers. After a peer successfully downloads
the chunk, the peer will make it available for other peers for
download until that chunk falls outside its buffer map window.
How long a chunk is available in the system and how many
peers can upload that chunk at a given time can be inferred
from the buffer maps.

A. Chunk Life Time

We first look at chunk life time. The life time of a chunk is
defined as the duration from the first appearance of that chunk
in the collected buffer maps to the last time of its appearance.
Chunk life time tells us for how long a chunk is available for
download in the network. Since we only collect buffer maps
from a subset of peers, the reported chunk life time is an under-
estimate of the real chunk life time. In Figure 17(a), a chunk
stays in one peer’s buffer for about 210 seconds; however, this
chunk may still be available in some other peers’ buffer. We
observe that the chunk life time in the network is about 250
seconds. This peer life CDF curve is computed by tracing the
chunk life on the NY campus peer.

B. Evolution of Chunk Availability

We define the availability of a chunk at a given time as the
fraction of peers that make that chunk available for other peers
to download. The higher the chunk availability the higher the
upload supply and the lower the download demand for that
chunk. Figure 18 shows availability snapshots for a range of
chunks among randomly sampled peers in two channels. In
Figure 18(a), we tracked 4500 consecutive chunks among the

sampled 122 peers. The tracking results are reported every 90
seconds. We observe that the chunk availability percentage can
reach as high as 80%. For a given snapshot, a wide window
of chunks for 150 seconds have availability above 70%. Also
the position of the window shifts at a steady rate from one
snapshot to another snapshot. Shown in Figure 18(b), in the 1-
star channel CCTV9, the chunk availability percentage is much
smaller than the popular CCTVNews. For a given snapshot,
chunks falling in the window only have availability around
40%. Peers in CCTV9 have difficulty to locate chunks and the
playback is thus susceptible for various service impairments.

C. Evolution of Chunk Retrieval Ratio

The playback quality on a peer is largely determined
by whether the peer can retrieve video chunks before their
playback deadlines. Using buffer maps, for a specific chunk,
we can calculate the fraction of peers that have retrieved the
chunk at any time instant. The chunk retrieval ratio among
peers should grow over time until it reaches close to 1.
The speed of the growth is a good measure of P2P video
distribution efficiency. Figure 19 shows the retrieval ratios of
five chunks from 122 randomly sampled peers in two channels:
CCTVNews with a 5-star popularity and CCTV9 with a 1-star
popularity. The five chunks are chosen such that two adjacent
chunks have presentation time difference of 10 seconds. All
chunk retrieval ratios evolve in a similar pattern. They increase
quickly to about 65% within 20 seconds. The increase trend
slows down after the knee point until it converges to around
95%. However, as illustrated in Figure 19(b), in the less
popular channel CCTV9, the knee points come earlier, at
around 30%. The chunk retrieval ratios converge in a wider
range from 50% to 75%. This suggests that chunk propagation
in a small P2P streaming system is slower and more variable
than in a large system. One direct consequence is that less
popular channels have worse quality.

To see the impact of chunk retrieval ratio on individual
peer’s playback quality, we plot in Figure 20(a) the evolution
of buffer sizes on the Hong Kong campus sniffer. Figure 20(b)
shows the chunk retrieval ratio among its peers during the
same time period. Whenever the sniffer has low video buffer
level, the chunk retrieval ratio among its peers is below 50%.
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Fig. 17. Distribution of chunk lifetime in two channels
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Fig. 18. Chunk availabilities among peers at four time snapshots

VII. CONCLUSION

Based on remotely gathering buffer maps, we have devel-
oped a methodology to estimate network-wide quality in mesh-
based P2P live streaming systems. A peer’s buffer map pro-
vides a light-weight snapshot of chunk availability at that peer.
We have shown that quality can be inferred from buffer maps.
We illustrated this methodology by applying it to a specific
P2P live streaming system, namely, PPLive. The methodology
enabled us to estimate several important network-wide quality
measures, including network-wide viewing continuity, startup
latency, and peer lags. It also enabled us to track the propa-
gation on chunks throughout the P2P network. As discussed
in the Introduction, this methodology can be used by service
providers, by third parties who monitor performance on behalf
of customers and advertisers, and by researchers who seek a
deeper understanding of the behavior of mesh-pull P2P live
streaming systems.
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Fig. 19. Evolutions of chunk retrieval ratios for five sampled chunks

 1

 10

 100

 1000

 650  700  750  800  850

22:40 23:20 00:00 00:40 01:20

Si
ze

 (c
hu

nk
s)

Time (min)

Hour (GMT-8)

BM width
BM playable video

(a) Buffer map evolution

 20

 30

 40

 50

 60

 70

 80

 90

 100

 650  700  750  800  850

22:40 23:20 00:00 00:40 01:20

C
hu

nk
 re

tri
ev

al
 ra

tio
 (%

)

Time (min)

Hour (GMT-8)

(b) Chunk retrieval ratio

Fig. 20. Correlations between the playback quality of a monitored peer and the chunk retrieval ratio in the whole network

[20] S. Tao, J. Apostolopoulos, and R. Guerin, “Real-time monitoring of
video quality in IP networks,” NOSSDAV ’05, 2005.

[21] T. Silverston and O. Fourmaux, “P2P IPTV measurement: A comparison
study,” University Paris 6 LIP6/NPA Laboratory, Tech. Rep., Oct. 2006.

[22] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt, “Mapping the PPLive
network: Studying the impacts of media streaming on P2P overlays,”
Department of Computer Science, University of Illinois at Urbana-
Champaign, Tech. Rep. UIUCDCS-R-2006-275, Aug. 2006.

[23] B. Cohen, “Incentives Build Robustness in BitTorrent,” P2P-Econ, June
2003.

[24] “BitTorrent,” http://bittorrent.com/.
[25] “Advanced systems format (ASF) specification,” 2004.
[26] “Windump,” http://www.winpcap.org/windump/.


