
Content Distribution

Professor Keith W. Ross
Institut Eurécom

Sophia Antipolis, France

http://www.eurecom.fr/~ross

1

Content Distribution

r Review of HTTP, DNS, TCP

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)

2

HTTP overview

HTTP: hypertext
transfer protocol

r Web’s application layer
protocol

r client/server model
m client: browser that

requests, receives,
“displays” Web objects

m server: Web server
sends objects in
response to requests

r HTTP 1.0: RFC 1945
r HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

HTTP request

HTTP request

HTTP response

HTTP response

Mac running
Navigator

3

HTTP request message

r two types of HTTP messages: request, response
r HTTP request message:

m ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

4

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

5

DNS: Domain Name System

People: many identifiers:
m SSN, name, passport #

Internet hosts, routers:
m IP address (32 bit) -

used for addressing
datagrams

m “name”, e.g.,
gaia.cs.umass.edu - used
by humans

Q: map between IP
addresses and name ?

Domain Name System:
r distributed database

implemented in hierarchy of
many name servers

6

Simple DNS example root name server

7

host surf.eurecom.fr
wants IP address of
gaia.cs.umass.edu

1. contacts its local DNS
server, dns.eurecom.fr

2. dns.eurecom.fr contacts
root name server

3. root name server contacts
authoritative name server,
dns.umass.edu

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

authorititive name server
dns.umass.edu

local name server
dns.eurecom.fr

2
3

4
5

1 6

DNS example root name server

8

Root name server:
r may not know

authoritative name
server

r may know
intermediate name
server: who to
contact to find
authoritative name
server

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

local name server
dns.eurecom.fr

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

1 8

DNS: iterated queries

9

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

recursive query:
r puts burden of name

resolution on
contacted name
server

r heavy load?

iterated query:
r contacted server

replies with name of
server to contact

r “I don’t know this
name, but ask this
server”

iterated query

7

1 8

DNS: Root name servers
r contacted by local name server that can not resolve name
r root name server:

m contacts authoritative name server if name mapping not known
m gets mapping
m returns mapping to local name server

10

b USC-ISI Marina del Rey, CA
l ICANN Marina del Rey, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA

i NORDUnet Stockholm
k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j NSI (TBD) Herndon, VA

13 root name
servers worldwide

DNS: caching and updating records

r once (any) name server learns mapping, it caches
mapping
m cache entries timeout (disappear) after some

time
r update/notify mechanisms under design by IETF

m RFC 2136
m http://www.ietf.org/html.charters/dnsind-charter.html

11

TCP connection establishment

TCP 3-way handshake:
r client sends to server TCP segment with

SYN bit is set.
r server responds with segment that has

both SYN and ACK bits set.
r client responds with another segment with

ACK bit set.

12

Content Distribution

r Review of HTTP, DNS, TCP

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)

13

Architectures for server farms

Internet

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com

www.foo3.com

www.foo.com

Issue: In a Web
application, multiple
server machines may
be needed to handle
traffic.

Goal: Architect server
farm so that it
appears to be running
on a single machine to
the client.

client

Server farm

14

Architectures for server farms

3 architectures
r DNS rotation
r Surrogate server
r NAT

Running example:
Site:
r http://www.foo.com
Three machines:
r foo1, foo2, foo3
Company address space:
r 124.x.x.x
For simplicity:
r assume static Web

pages

15

DNS rotation

r DNS translates
host.names to IP
addresses

r eg, www.foo.com to
124.0.0.7

r Authoritative DNS
server can provide
multiple IP addresses:
124.0.0.1, 124.0.0.2,

124.0.0.3
r Rotates addresses

Issues
r DNS caching in name

servers
r Name server directs

its clients to the same
Web server

r Hard to control how
much traffic is
directed at each of
the servers

16

Surrogate server (1)

Internet LAN
124.0.0.7

www.foo.com

124.0.0.0

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com

www.foo3.com

• DNS provides client with IP address 124.0.0.7 .
• Client establishes TCP connection with load balancer.
• Client sends HTTP request message to load balancer.
• Surrogate (load balancer) chooses one of the

three Web servers.
• Surrogate establishes TCP connection with chosen server

and forwards request.
• Surrogate forwards data it receives from server to client.

surrogate server

TCP connection TCP connection

17

Surrogate server (2)

Flexibility in determining
how to direct requests
to servers:

r load on servers
r requested content
r cookie in request
r application-layer

switch: L7 switch
Inefficient:
r surrogate has to serve

at the combined rate
of servers

Implementation
r Develop on top of Linux,

Solaris, Windows 2000.
r Performance

bottleneck: lots of TCP
processing, application-
layer systems calls

r Can develop customized
operating system for
surrogate server,
resulting in efficient
load balancer

18

NAT (1)

www.foo3.com

• NAT detects new connection by observing SYN bit set.
• NAT makes load balancing decision.
• Forwards IP datagram to chosen server :

• Needs to modify destination IP address
• Needs to forward subsequent packets in same connection

to the same server; modify destination IP addresses
• Needs to modify datagrams arriving from servers

• TCP connection is established end-to-end.
• But client thinks it has TCP connection with 124.0.0.7

Internet LAN
124.0.0.207

www.foo.com

124.0.0.0

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com
NAT

TCP co
nnecti

on

19

NAT (2): Table
r Suppose client has IP address 227.68.68.19

and source port number 9876
r NAT table might have for this connection:

Internet to LAN
SA: 227.68.68.19 SA: 227.68.68.19
DA: 124.0.0.7 DA: 124.0.0.1
SP: 9876 SP: 9876
DP: 80 DP: 80
LAN to Internet
SA: 124.0.0.1 SA: 124.0.0.7
DA: 227.68.68.19 DA: 227.68.68.19
SP: 9876 SP: 9876
DP: 80 DP: 80

20

NAT (3): Benefits

r No TCP processing by NAT
m no TCP stack handling TCP buffers, congestion

windows, connection establishment, etc.
r All the packet manipulation takes place by

special purpose device

21

Stickiness in load balancing

r Cookies are often used
to maintain session
state, e.g., shopping
cart

m Cookie header line
identifies user to
server

m Server maintains a file
about user

r Desirable to send
same user to same
server in server farm

NAT problem:
r Load balancing taken

when SYN segment
arrives

r SYN segment does not
include HTTP header;
thus no cookie header

Surrogate solution:
r Surrogate terminates

TCP connection and
receives HTTP request
before choosing server

22

Content Distribution

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)

23

Web caches (proxy server)

r user sets browser: Web
accesses via cache

r browser sends all HTTP
requests to cache

m object in cache: cache
returns object

m else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

24

Configuring a Web Browser

In Netscape, go to Edit, Preferences, Advanced, Proxies:

25

More about Web caching

r Cache acts as both client
and server

r Cache can do up-to-date
check using If-modified-
since HTTP header

m Issue: should cache take
risk and deliver cached
object without checking?

m Heuristics are used.
r Typically cache is installed

by ISP (university,
company, residential ISP)

Why Web caching?
r Reduce response time for

client request.
r Reduce traffic on an

institution’s access link.
r Internet dense with caches

enables “poor” content
providers to effectively
deliver content

26

Caching example (1)

27

origin
serversAssumptions

r average object size = 100,000
bits

r avg. request rate from
institution’s browser to origin
serves = 15/sec

r delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
r utilization on LAN = 15%
r utilization on access link = 100%
r total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + milliseconds

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

Caching example (2)

28

origin
serversPossible solution

r increase bandwidth of access
link to, say, 10 Mbps

Consequences
r utilization on LAN = 15%
r utilization on access link = 15%
r Total delay = Internet delay +

access delay + LAN delay
= 2 sec + msecs + msecs

r often a costly upgrade

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

10 Mbps
access link

Caching example (3)

29

origin
serversInstall cache

r suppose hit rate is .4
Consequence
r 40% requests will be satisfied

almost immediately
r 60% requests satisfied by

origin server
r utilization of access link

reduced to 60%, resulting in
negligible delays (say 10 msec)

r total delay = Internet delay +
access delay + LAN delay

= .6*2 sec + .6*.01 secs +
milliseconds < 1.3 secs

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps
access link

Caching Challenges

r Cache consistency:
m Caches often must guess

whether a stored object is
stale or fresh.

r Dynamic content:
m Caches shouldn’t cache

outputs of CGI scripts.
r Hit counts and

personalization:
m Caches can cause hit count

calculations and cookie
transactions to fail.

r Less-savvy users and
privacy-concerned users:

m How do you get a user to
point his browser to a
cache?

r Enormous multimedia files:
m Fortunately, disk storage

is increasing at a rate of
60% a year!

30

Cache Storage Management

r LRU (Least Recently Used): Remove objects that
have not been accessed for a long time. Example:

m valueLRU = (50 - days_since_accessed)/50
m purge objects which have small valueLRU when disk space

starts to fill.
r Weighted by retrieval time:

m record transfer time of object: retrieval_time
m value = valueLRU * log (retrieval_time +1)

r Weighted by object size:
m value = valueLRU * log (size +1)

r Purge documents that have expired:
m But only if space is tight, as an up-to-date check can

make an expired document fresh.

31

Transparent Caching

Non-transparent caching
r Each browser in an ISP is

manually configured to
point to the correct cache.

m All AOL browsers
m System admin can

configure campus
browsers

r But not when system
administrator has no
control over configuration
parameters of browsers.

Transparent caching
r ISP redirects all

datagrams with port
number 80 (HTTP) to
cache: “layer-4 switching”.

r Cache either retreives
object from its cache or
fetches document from
Internet.

r In the IP datagrams that
carry the HTTP response
message, cache must insert
origin server’s IP address!

32

Hash Routing

r Load balancing issue

r Overview of hash routing

r Robust hashing

r Heterogeneous caches

r CARP

r Proxy Automatic Configuration

33

Load balancing to multiple
caches

institutional
network

10 Mbps LAN

three caches
sharing load

34

Hash Routing Overview

r Choose a hash function h() which maps URLs to a hash space.
m Example:

• hash space is {1,…,60}.
• h() is the sum of the ASCII representation of the characters

in the URL, modulo 60.
r Partition hash space: one set for each cache.

1) Client hashes URL, determines set to which hashed URL belongs,
and sends request to corresponding cache.

• Example: N=2 caches, set for cache 1 = {1,..,30}, set for cache
2 = {31,..,60}. If h(URLa) = 35, then client sends HTTP request
to cache 2.

2) If cache does not have object, it obtains object from origin
server, stores a copy, and forwards a copy to the client.

r Each object resides in at most one cache!
r Client is immediately directed to the correct cache.
r Do not pass through surrogate or NAT

35

Hash Routing: Robustness Problem
When a cache is added or removed, a cached object can reside in the wrong cache.

Example: hash space = {1,2,..,60}
h(URLa) = 10, h(URLb) = 25, h(URLc) = 35, h(URLd) = 50

When there are N=2, URL space partitioned into {1,…,30}, {31,…,60}.

N=2

N=3

documents belonging to these
sets are in wrong caches

add cache
URLa URLb URLc URLd

URL space:

- When we add a third cache, URL space is partitioned into {1,..,20}, {21,..,40}, {41,..,60}.
- Request for URLb is directed to cache 2; but URLb is in cache 1 so there is a MISS.
- Cache 2 will get URLb from origin server, so both caches 1 and 2 will contain URLb.

36

Disruption Coefficient
D= Disruption Coefficient = fraction of objects in incorrect cache after adding

or deleting a cache.

Without loss of generality, suppose hash space is set continuous interval [0,1] . Suppose
there are N caches. The set [0,1] is partitioned:

]1,1[],...,2,1[],1,0[
N

N
NNN

−

Now suppose we add sibling N+1. The new partition is:

]1,
1

[],...,
1

2,
1

1[],
1

1,0[
++++ N

N
NNN

URLs in are in cache 1, which is correct. But URLs in are in cache 1
when they should be in cache 2. Good intervals:

]
1

1,0[
+N

]1,
1

1[
NN +

]
1

,1[],...,
1

3,2[],
1

2,1[],
1

1,0[
+

−
+++ N

N
N

N
NNNNN

Sum of intervals is D=.5. Same result for deleting a cache.

Thus hit rate is cut in half after a disruption: Not good! 37

Robust Hashing

r Assign name to each cache: Joseph, Richard, Mary, Jane.
r Choose hash function h(u,s) which is a function of both the

URL u and the cache name s.
m for example, use h(u+s), where h() is a standard hash

function and u+s is the string concatenation of u and s.
r When a client wants URL u, client calculates the “scores”

h(u,s1),…,h(u,sN) for each of the N caches.
r Client directs request for URL u to the cache s that has the

highest score.

If a cache fails, all remaining objects are still were they are supposed to be.
Disruption coefficient is 1/N, which is typically small.

If a cache is added, roughly the fraction D = 1/(N+1) objects are in the wrong place.

38

Heterogeneous Siblings

r Processing power and storage capacity can vary greatly
among siblings.

r Target probabilities:
r Introduce multipliers:

(1) Calculate hash
(2) Route URL u to sibling with highest weighted score

r How do we pick multipliers to achieve target
probabilities:

Nppp ,..., , 21

Nxxx ,..., , 21
),(nsuh

),(nnn suhxZ =

Nxxx ,..., , 21

Nppp ,..., , 21

39

Multipliers

NNpx /1
11)(=

1
1

1
11

1

1))(1(+−
+−

−−

=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−+−
=

∏

nN
nN

nn

i i

nn
n x

x
ppnNx

81
79 ,

81
1 ,3 321 ==== pppNExample:

9 ,
3
1

321 === xxx

40

CARP (Cache Array Routing Protocol)

r Uses robust hash routing with multipliers.
r All queries done over HTTP

m no new application-layer protocol such as ICP
m can take advantage of HTTP/1.1’s rich set of headers

r Internet draft (Valloppillil and Ross)
r Implemented in Microsoft and Netscape cache server

products

41

Proxy Automatic Configuration (PAC)
r Allows client browser to dynamically choose among a set of caches.

m Create an auto-configuration JavaScript file.
m Put file on nearby Web server (e.g., http://somewhere.com/script.pac).
m Have clients configure their browsers with the URL of the JavaScript.

42

Each time browser is initiated, browser obtains script.pac from nearby server. Script is run
for each URL request.

Satellite Technology

r Each local ISP has a cache
with:

m Internet connection
m Huge storage capacity
m Satellite dish for receiving

r Master site has:
m Internet connection
m Satellite transmitter

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection

43

Satellite Technology

r How it works: When there
is a miss at some local
cache:

m that local cache obtains
document from origin
server using HTTP.

m local cache sends URL to
master site.

m master site obtains
document from origin
server using HTTP.

m master site transmits
document into satellite
channel.

m all local caches receive
document and cache it.

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection

44

Satellite Technology: The Result

r The user populations at
each of the local ISPs are
aggregated together to
form one huge user
population.

m The greater the user
population, the greater
the likelihood of
repeated requests, the
greater the hit rate.

r Brings the Web to the
edge of the network.

45

A Product: SkyCache

SkyCacher

46

: founded in 1997.
r Performance enhancer for an ISP’s

primary cache.
r Leases all equipment: fixed monthly

payment to ISPs
r 4 Mbps one-way satellite link
r When there is a miss at primary

cache:
m primary cache queries SkyCache

using ICP.
m If SkyCache has the object,

primary cache obtains object from
SkyCache using HTTP.

m If SkyCache doesn’t have the
object, primary cache directly
obtains object from origin server.

m SkyCache remembers the URLs for
the misses and reports misses to
Master Site.

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection

Content Distribution

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)

47

Content distribution networks (CDNs)
origin server
in North America

CDN distribution node

r The content providers are
the CDN customers.

Content replication
r CDN company installs

hundreds of CDN servers
throughout Internet

m in lower-tier ISPs, close
to users

r CDN replicates its customers’
content in CDN servers.
When provider updates
content, CDN updates
servers

CDN server
in S. America CDN server

in AsiaCDN server
in Europe

48

49

CDN example

origin server
r www.foo.com
r distributes HTML
r Replaces:

http://www.foo.com/sports.ruth.gif

with
http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for
www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for
www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative
DNS server

Nearby
CDN server

CDN company
r cdn.com
r distributes gif files
r uses its authoritative

DNS server to route
redirect requests

More about CDNs
routing requests
r CDN creates a “map”,

indicating distances
from leaf ISPs and
CDN nodes

r when query arrives at
authoritative DNS
server:

m server determines ISP
from which query
originates

m uses “map” to determine
best CDN server

not just Web pages
r streaming stored

audio/video
r streaming real-time

audio/video
m CDN nodes create

application-layer
overlay network

50

Content Distribution

r Server farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)

51

P2P file sharing
r Alice chooses one of

the peers, Bob.
r File is copied from

Bob’s PC to Alice’s
notebook: HTTP

r While Alice downloads,
other users uploading
from Alice.

r Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

Example
r Alice runs P2P client

application on her
notebook computer

r Intermittently
connects to Internet;
gets new IP address
for each connection

r Asks for “Hey Jude”
r Application displays

other peers that have
copy of Hey Jude.

52

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
m IP address
m content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

53

P2P: problems with centralized directory

r Single point of failure
r Performance

bottleneck
r Copyright

infringement

file transfer is
decentralized, but
locating content is
highly decentralized

54

P2P: decentralized directory

ordinary peer

group-leader peer

neighoring relationships
in overlay network

r Each peer is either a
group leader or
assigned to a group
leader.

r Group leader tracks
the content in all its
children.

r Peer queries group
leader; group leader
may query other group
leaders.

55

More about decentralized directory

overlay network
r peers are nodes
r edges between peers

and their group leaders
r edges between some

pairs of group leaders
r virtual neighbors
bootstrap node
r connecting peer is

either assigned to a
group leader or
designated as leader

advantages of approach
r no centralized directory

server
m location service

distributed over peers
m more difficult to shut

down
disadvantages of approach
r bootstrap node needed
r group leaders can get

overloaded

56

P2P: Query flooding

r Gnutella
r no hierarchy
r use bootstrap node to

learn about others
r join message

r Send query to neighbors
r Neighbors forward query
r If queried peer has

object, it sends message
back to querying peer

join

57

P2P: more on query flooding

Cons
r excessive query

traffic
r query radius: may not

have content when
present

r bootstrap node
r maintenance of overlay

network

Pros
r peers have similar

responsibilities: no
group leaders

r highly decentralized
r no peer maintains

directory info

58

