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Content Distribution

r Review of HTTP, DNS, TCP

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)
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HTTP overview

HTTP: hypertext 
transfer protocol

r Web’s application layer 
protocol

r client/server model
m client: browser that 

requests, receives, 
“displays” Web objects

m server: Web server 
sends objects in 
response to requests

r HTTP 1.0: RFC 1945
r HTTP 1.1: RFC 2068

PC running
Explorer

Server 
running

Apache Web
server

HTTP request

HTTP request

HTTP response

HTTP response

Mac running
Navigator
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HTTP request message

r two types of HTTP messages: request, response
r HTTP request message:

m ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu 
User-agent: Mozilla/4.0
Connection: close 
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST, 

HEAD commands)

header
lines

Carriage return, 
line feed 

indicates end 
of message
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HTTP response message

HTTP/1.1 200 OK 
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT 
Server: Apache/1.3.0 (Unix) 
Last-Modified: Mon, 22 Jun 1998 …... 
Content-Length: 6821 
Content-Type: text/html

data data data data data ... 

status line
(protocol

status code
status phrase)

header
lines

data, e.g., 
requested
HTML file
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DNS: Domain Name System

People: many identifiers:
m SSN, name, passport #

Internet hosts, routers:
m IP address (32 bit) -

used for addressing 
datagrams

m “name”, e.g., 
gaia.cs.umass.edu - used 
by humans

Q: map between IP 
addresses and name ?

Domain Name System:
r distributed database

implemented in hierarchy of 
many name servers
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Simple DNS example root name server
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host surf.eurecom.fr
wants IP address of 
gaia.cs.umass.edu

1. contacts its local DNS 
server, dns.eurecom.fr

2. dns.eurecom.fr contacts 
root name server

3. root name server contacts 
authoritative name server, 
dns.umass.edu

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

authorititive name server
dns.umass.edu

local name server
dns.eurecom.fr

2
3

4
5
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DNS example root name server
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Root name server:
r may not know 

authoritative name 
server

r may know 
intermediate name 
server: who to 
contact to find 
authoritative name 
server

requesting host
surf.eurecom.fr

gaia.cs.umass.edu

local name server
dns.eurecom.fr

2
3

4 5

6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

1 8



DNS: iterated queries
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requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

2
3

4

5 6

authoritative name server
dns.cs.umass.edu

intermediate name server
dns.umass.edu

recursive query:
r puts burden of name 

resolution on 
contacted name 
server

r heavy load?

iterated query:
r contacted server 

replies with name of 
server to contact

r “I don’t know this 
name, but ask this 
server”

iterated query

7
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DNS: Root name servers
r contacted by local name server that can not resolve name
r root name server:

m contacts authoritative name server if name mapping not known
m gets mapping
m returns mapping to local name server
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b USC-ISI Marina del Rey, CA
l  ICANN Marina del Rey, CA

e NASA Mt View, CA
f  Internet Software C. Palo Alto, 
CA

i NORDUnet Stockholm
k RIPE London

m WIDE Tokyo

a NSI Herndon, VA
c PSInet Herndon, VA
d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD
j  NSI (TBD) Herndon, VA

13 root name 
servers worldwide



DNS: caching and updating records

r once (any) name server learns mapping, it caches
mapping
m cache entries timeout (disappear) after some 

time
r update/notify mechanisms under design by IETF

m RFC 2136
m http://www.ietf.org/html.charters/dnsind-charter.html
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TCP connection establishment

TCP 3-way handshake:
r client sends to server TCP segment with 

SYN bit is set.
r server responds with segment that has 

both SYN and ACK bits set.
r client responds with another segment with 

ACK bit set.
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Content Distribution

r Review of HTTP, DNS, TCP

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)
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Architectures for server farms  

Internet

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com

www.foo3.com

www.foo.com

Issue: In a Web 
application, multiple 
server machines may 
be needed to handle 
traffic.

Goal: Architect server 
farm so that it 
appears to be running 
on a single machine to 
the client.

client

Server farm
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Architectures for server farms

3  architectures
r DNS rotation
r Surrogate server
r NAT

Running example:
Site:
r http://www.foo.com
Three  machines:
r foo1, foo2, foo3
Company address space:
r 124.x.x.x
For simplicity:
r assume static Web 

pages
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DNS  rotation

r DNS translates 
host.names to IP 
addresses

r eg, www.foo.com to 
124.0.0.7 

r Authoritative DNS 
server can provide 
multiple IP addresses:
124.0.0.1, 124.0.0.2, 

124.0.0.3
r Rotates addresses

Issues
r DNS caching in name 

servers
r Name server directs 

its clients to the same 
Web server

r Hard to control how 
much traffic is 
directed at each of 
the servers
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Surrogate server (1) 

Internet LAN
124.0.0.7

www.foo.com

124.0.0.0

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com

www.foo3.com

• DNS provides client with IP address 124.0.0.7 .
• Client establishes TCP connection with load balancer.
• Client sends HTTP request message to load balancer.
• Surrogate (load balancer) chooses one of the 

three Web servers.
• Surrogate establishes TCP connection with chosen server 

and forwards  request.
• Surrogate forwards data it receives from server to client.

surrogate server

TCP  connection TCP connection
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Surrogate server (2)

Flexibility in determining 
how to direct requests  
to servers:

r load on servers
r requested content
r cookie in request
r application-layer 

switch: L7 switch
Inefficient:
r surrogate has to serve 

at the combined rate 
of servers

Implementation
r Develop on top of Linux, 

Solaris, Windows 2000.
r Performance 

bottleneck: lots of TCP 
processing, application-
layer systems calls 

r Can develop customized 
operating system for 
surrogate server, 
resulting in efficient 
load balancer

18



NAT (1) 

www.foo3.com

• NAT detects new connection by observing SYN bit set.
• NAT makes load balancing decision.
• Forwards IP datagram to chosen server :

• Needs to modify destination IP address
• Needs to forward subsequent packets in same connection

to the same server; modify destination IP addresses
• Needs to modify datagrams arriving from servers

• TCP connection is established end-to-end.
• But client thinks it has TCP connection with 124.0.0.7

Internet LAN
124.0.0.207

www.foo.com

124.0.0.0

124.0.0.1

124.0.0.2

124.0.0.3

www.foo1.com

www.foo2.com
NAT

TCP  co
nnecti

on
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NAT (2): Table
r Suppose client has IP address 227.68.68.19 

and source port number 9876
r NAT table might have for this connection:

Internet to        LAN
SA: 227.68.68.19                 SA: 227.68.68.19         
DA: 124.0.0.7                       DA: 124.0.0.1
SP: 9876                              SP: 9876
DP: 80                                  DP: 80
LAN to         Internet
SA: 124.0.0.1                       SA: 124.0.0.7         
DA: 227.68.68.19                 DA: 227.68.68.19
SP: 9876                              SP: 9876
DP: 80                                  DP: 80
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NAT (3): Benefits

r No TCP processing by NAT
m no TCP stack handling TCP buffers, congestion 

windows, connection establishment, etc.
r All the packet manipulation takes place by 

special purpose device
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Stickiness in load balancing

r Cookies are often used 
to maintain session 
state, e.g., shopping 
cart

m Cookie header line 
identifies user to 
server

m Server maintains a file 
about user

r Desirable to send  
same user to same 
server in server farm

NAT problem:
r Load balancing taken 

when SYN segment 
arrives

r SYN segment does not 
include HTTP header; 
thus no cookie header

Surrogate solution:
r Surrogate terminates 

TCP connection and 
receives HTTP request 
before choosing server
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Content Distribution

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)
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Web caches (proxy server)

r user sets browser: Web 
accesses via  cache

r browser sends all HTTP 
requests to  cache

m object in cache: cache 
returns object 

m else cache requests 
object from origin 
server, then returns 
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin 
server

origin 
server
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Configuring a Web Browser

In Netscape, go to Edit, Preferences, Advanced, Proxies:
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More about Web caching

r Cache acts as both client 
and server

r Cache can do up-to-date 
check using If-modified-
since HTTP header

m Issue: should cache take 
risk and deliver cached 
object without checking?

m Heuristics are used.
r Typically cache is installed 

by ISP (university, 
company, residential ISP)

Why Web caching?
r Reduce response time for 

client request.
r Reduce traffic on an 

institution’s access link.
r Internet dense with caches 

enables “poor” content 
providers to effectively 
deliver content
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Caching example (1)

27

origin
serversAssumptions

r average object size = 100,000 
bits

r avg. request rate from 
institution’s browser to origin 
serves = 15/sec

r delay from institutional router 
to any origin server and back 
to router  = 2 sec

Consequences
r utilization on LAN = 15%
r utilization on access link = 100%
r total delay   = Internet delay + 

access delay + LAN delay
=  2 sec + minutes + milliseconds

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps 
access link



Caching example (2)
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origin
serversPossible solution

r increase bandwidth of access 
link to, say, 10 Mbps

Consequences
r utilization on LAN = 15%
r utilization on access link = 15%
r Total delay   = Internet delay + 

access delay + LAN delay
=  2 sec + msecs + msecs

r often a costly upgrade

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

10 Mbps 
access link



Caching example (3)

29

origin
serversInstall cache

r suppose hit rate is .4
Consequence
r 40% requests will be satisfied 

almost immediately
r 60% requests satisfied by 

origin server
r utilization of access link 

reduced to 60%, resulting in 
negligible  delays (say 10 msec)

r total delay   = Internet delay + 
access delay + LAN delay

=  .6*2 sec + .6*.01 secs + 
milliseconds < 1.3 secs

public
Internet

institutional
network 10 Mbps LAN

institutional
cache

1.5 Mbps 
access link



Caching Challenges

r Cache consistency:
m Caches often must guess 

whether a stored object is 
stale or fresh.

r Dynamic content:
m Caches shouldn’t cache 

outputs of CGI scripts.
r Hit counts and 

personalization:
m Caches can cause hit count 

calculations and cookie 
transactions to fail.

r Less-savvy users and 
privacy-concerned users:

m How do you get a user to 
point his browser to a 
cache?

r Enormous multimedia files:
m Fortunately, disk storage 

is increasing at a rate of 
60% a year!
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Cache Storage Management

r LRU (Least Recently Used): Remove objects that 
have not been accessed for a long time. Example:

m valueLRU = (50 - days_since_accessed)/50
m purge objects which have small valueLRU when disk space 

starts to fill.
r Weighted by retrieval time:

m record transfer time of object: retrieval_time
m value = valueLRU * log ( retrieval_time +1)

r Weighted by object size:
m value = valueLRU * log (size +1)

r Purge documents that have expired:
m But only if space is tight, as an up-to-date check can 

make an expired document fresh.
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Transparent Caching

Non-transparent caching
r Each browser in an ISP is 

manually configured to 
point to the correct cache.

m All AOL browsers
m System admin can 

configure campus 
browsers

r But not when system 
administrator has no 
control over configuration 
parameters of browsers.

Transparent caching
r ISP redirects all

datagrams with port 
number 80 (HTTP) to 
cache: “layer-4 switching”.

r Cache either retreives
object from its cache or 
fetches document from 
Internet.

r In the IP datagrams that 
carry the HTTP response 
message, cache must insert 
origin server’s IP address!
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Hash Routing

r Load balancing issue

r Overview of hash routing

r Robust hashing

r Heterogeneous caches

r CARP 

r Proxy Automatic Configuration
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Load balancing to multiple 
caches

institutional
network

10 Mbps LAN

three caches 
sharing load
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Hash Routing Overview

r Choose a hash function h() which maps URLs to a hash space.
m Example:

• hash space is  {1,…,60}.
• h() is the sum of the ASCII representation of the characters 

in the URL, modulo 60.
r Partition hash space: one set for each cache.

1) Client hashes URL, determines set to which hashed URL belongs, 
and sends request to corresponding cache.

• Example: N=2 caches, set for cache 1 = {1,..,30}, set for cache 
2 = {31,..,60}. If h(URLa) = 35, then client sends HTTP request 
to cache 2.

2) If cache does not have object, it obtains object from origin 
server, stores a copy, and forwards a copy to the client.

r Each object resides in at most one cache!
r Client is immediately directed to the correct cache.
r Do not pass through surrogate or NAT 
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Hash Routing: Robustness Problem
When a cache is added or removed, a cached object can reside in the wrong cache.

Example: hash space = {1,2,..,60}
h(URLa) = 10, h(URLb) = 25, h(URLc) = 35, h(URLd) = 50

When there are N=2, URL space partitioned into {1,…,30}, {31,…,60}.

N=2

N=3

documents belonging to these
sets are in wrong caches

add cache
URLa URLb URLc URLd

URL space:

- When we add a third cache, URL space is partitioned into {1,..,20}, {21,..,40}, {41,..,60}.
- Request for URLb is directed to cache 2; but URLb is in cache 1 so there is a MISS.
- Cache 2 will get URLb from origin server, so both caches 1 and 2 will contain URLb.
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Disruption Coefficient
D= Disruption Coefficient = fraction of objects in incorrect cache after adding

or deleting a cache.

Without loss of generality, suppose hash space is set continuous interval [0,1] . Suppose
there are N caches. The set [0,1] is partitioned:

]1,1[],...,2,1[],1,0[
N

N
NNN

−

Now suppose we add sibling N+1. The new partition is:

]1,
1

[],...,
1

2,
1

1[],
1

1,0[
++++ N

N
NNN

URLs in                  are in cache 1, which is correct. But URLs in                are in cache 1
when they should be in cache 2. Good intervals:

]
1

1,0[
+N

]1,
1

1[
NN +

]
1

,1[],...,
1

3,2[],
1

2,1[],
1

1,0[
+

−
+++ N

N
N

N
NNNNN

Sum of intervals is D=.5. Same result for deleting a cache. 

Thus hit rate is cut in half after a disruption: Not good! 37



Robust Hashing

r Assign name to each cache: Joseph, Richard, Mary, Jane.
r Choose hash function h(u,s) which is a function of both the 

URL u and the cache name s.
m for example, use h(u+s), where h() is a standard hash 

function and u+s is the string concatenation of u and s.
r When a client wants URL u, client calculates the “scores” 

h(u,s1),…,h(u,sN) for each of the N caches.
r Client directs request for URL u to the cache s that has the 

highest score.

If a cache fails, all remaining objects are still were they are supposed to be.
Disruption coefficient is 1/N, which is typically small.

If a cache is added, roughly the fraction D = 1/(N+1) objects are in the wrong place.
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Heterogeneous Siblings

r Processing power and storage capacity can vary greatly 
among siblings.

r Target probabilities: 
r Introduce multipliers: 

(1) Calculate hash
(2) Route URL u to sibling with highest weighted score

r How do we pick multipliers                        to achieve target 
probabilities:

Nppp ,..., , 21

Nxxx ,..., , 21
),( nsuh

),( nnn suhxZ =

Nxxx ,..., , 21

Nppp ,..., , 21
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Multipliers

NNpx /1
11 )(=

1
1

1
11

1

1))(1( +−
+−

−−

=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−+−
=

∏

nN
nN

nn

i i

nn
n x

x
ppnNx

81
79  ,

81
1  ,3 321 ==== pppNExample:

9   ,
3
1

321 === xxx
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CARP (Cache Array Routing Protocol)

r Uses robust hash routing with multipliers.
r All queries done over HTTP 

m no new application-layer protocol such as ICP
m can take advantage of HTTP/1.1’s rich set of headers

r Internet draft (Valloppillil and Ross)
r Implemented in Microsoft and Netscape cache server 

products
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Proxy Automatic Configuration (PAC)
r Allows client browser to dynamically choose among a set of caches.

m Create an auto-configuration JavaScript file.
m Put file on nearby Web server (e.g., http://somewhere.com/script.pac).
m Have clients configure their browsers with the URL of the JavaScript.

42

Each time browser is initiated, browser obtains script.pac from nearby server. Script is run
for each URL request.



Satellite Technology

r Each local ISP has a cache 
with:

m Internet connection
m Huge storage capacity
m Satellite dish for receiving

r Master site has:
m Internet connection
m Satellite transmitter

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection
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Satellite Technology

r How it works: When there 
is a miss at some local 
cache:

m that local cache obtains 
document from origin 
server using HTTP.

m local cache sends URL to 
master site.

m master site obtains 
document from origin 
server using HTTP.

m master site transmits 
document into satellite 
channel.

m all local caches receive 
document and cache it.

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection
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Satellite Technology: The Result

r The user populations at 
each of the local ISPs are 
aggregated together to 
form one huge user 
population.

m The greater the user 
population, the greater 
the likelihood of 
repeated requests, the 
greater the hit rate.

r Brings the Web to the 
edge of the network.
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A Product: SkyCache

SkyCacher

46

: founded in 1997.
r Performance enhancer for an ISP’s 

primary cache.
r Leases all equipment: fixed monthly 

payment to ISPs
r 4 Mbps one-way satellite link
r When there is a miss at primary 

cache:
m primary cache queries SkyCache 

using ICP.
m If SkyCache has the object, 

primary cache obtains object from 
SkyCache using HTTP.

m If SkyCache doesn’t have the 
object, primary cache directly 
obtains object from origin server.

m SkyCache remembers the URLs for 
the misses and reports misses to 
Master Site.

ISP's clients

primary
cache

ICP and HTTP

ISP

origin servers

HTTP

SkyCache

SkyCache
Master Site

Satellite

Internet
Connection



Content Distribution

r Server Farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)
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Content distribution networks (CDNs)
origin server 
in North America

CDN distribution node

r The content providers are 
the CDN customers.

Content replication
r CDN company installs 

hundreds of CDN servers 
throughout Internet

m in lower-tier ISPs, close 
to users

r CDN replicates its customers’ 
content in CDN servers. 
When provider updates 
content, CDN updates 
servers

CDN server
in S. America CDN server

in AsiaCDN server
in Europe
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CDN example

origin server
r www.foo.com
r distributes HTML
r Replaces:

http://www.foo.com/sports.ruth.gif

with
http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for 
www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for 
www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative 
DNS server

Nearby
CDN server

CDN company
r cdn.com
r distributes gif files
r uses its authoritative 

DNS server to route 
redirect requests



More about CDNs
routing requests
r CDN creates a “map”, 

indicating distances 
from leaf ISPs and 
CDN nodes

r when query arrives at 
authoritative DNS 
server:

m server determines ISP 
from which query 
originates

m uses “map” to determine 
best CDN server

not just Web pages
r streaming stored 

audio/video
r streaming real-time 

audio/video
m CDN nodes create 

application-layer 
overlay network
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Content Distribution

r Server farms

r Proxy Web Caches

r Content Distribution Networks (CDNs)

r Peer-to-peer file sharing (P2P)
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P2P file sharing
r Alice chooses one of 

the peers, Bob.
r File is copied from 

Bob’s PC to Alice’s 
notebook: HTTP

r While Alice downloads, 
other users uploading 
from Alice.

r Alice’s peer is both a 
Web client and a 
transient Web server.

All peers are servers = 
highly scalable!

Example
r Alice runs P2P client 

application on her 
notebook computer

r Intermittently 
connects to Internet; 
gets new IP address 
for each connection

r Asks for “Hey Jude”
r Application displays 

other peers that have 
copy of Hey Jude.

52



P2P: centralized directory

original “Napster” design
1) when peer connects, it 

informs central server:
m IP address
m content

2) Alice queries for “Hey 
Jude”

3) Alice requests file from 
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3
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P2P: problems with centralized directory

r Single point of failure
r Performance 

bottleneck
r Copyright 

infringement

file transfer is 
decentralized, but 
locating content is 
highly  decentralized
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P2P: decentralized directory

ordinary peer

group-leader peer

neighoring relationships
in overlay network

r Each peer is either a 
group leader or 
assigned to a group 
leader.

r Group leader tracks 
the content in  all its 
children.

r Peer queries group 
leader; group leader 
may query other group 
leaders.
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More about decentralized directory

overlay network
r peers are nodes
r edges between peers 

and their group leaders
r edges between some 

pairs of group leaders
r virtual neighbors
bootstrap node
r connecting peer is 

either assigned to a 
group leader or 
designated as leader

advantages of approach
r no centralized directory 

server
m location service 

distributed over peers
m more difficult to  shut 

down
disadvantages of approach
r bootstrap node  needed
r group leaders can get 

overloaded
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P2P: Query  flooding

r Gnutella 
r no hierarchy
r use bootstrap node to 

learn about others
r join message

r Send query to neighbors
r Neighbors forward query
r If queried peer has 

object, it sends message 
back to querying peer

join
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P2P: more on query flooding

Cons
r excessive query 

traffic
r query radius: may not  

have content when 
present

r bootstrap node
r maintenance of overlay 

network

Pros
r peers have similar 

responsibilities: no 
group leaders

r highly decentralized
r no peer maintains 

directory info
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