
Peer-Assisted File Distribution:
The Minimum Distribution Time

Rakesh Kumar
Department of Electrical and

Computer Engineering,
Polytechnic University,

Brooklyn, NY
Email: rkumar04@utopia.poly.edu

Keith W. Ross
Department of Computer and

Information Science,
Polytechnic University,

Brooklyn, NY
Email: ross@poly.edu

Abstract— With the emergence of BitTorrent, Swarm-
cast, and CDNs, peer-assisted file distribution has become
a prominent Internet application, both in terms of user
popularity and traffic volumes. We consider the following
fundamental problem for peer-assisted file distribution.
There are seed nodes, each of which has a copy of the file,
and leecher nodes, each of which wants a copy the file.
The goal is to distribute the file to all the leechers – with
the assistance of the upload capacity of the leechers – in
order to minimize the time to get the file to all the leechers
(the distribution time). We obtain explicit expressions for
the minimum distribution time of a general heterogeneous
peer-assisted file distribution system. Derived with fluid-
flow arguments, the expressions are in terms of the file
size, the seeds’ upload rates and the leechers’ upload and
download rates. We demonstrate the utility of the result by
comparing the optimal distribution time with the measured
distribution time when BitTorrent is used to distribute a
file from a seed to ten leechers.

I. INTRODUCTION

In classic client/server file distribution, a set of servers
distributes a file to receiving nodes. This file could be a
software distribution, a patch, or content such as a movie,
album, or a TV show. If the file size and the number
of receiving nodes is large, the servers and the servers’
bandwidth can become bottlenecks in the distribution
process.

Peer-assisted file distribution leverages the uploading
capacity of the receiving nodes (peers) to aid in the
file distribution process. Specifically, once a node has
received any portion of the file, it can redistribute that
portion to any of the other receiving nodes. Today, there
are numerous examples of peer-assisted file distribution,
including:
• File Distribution to CDN Servers: CDNs typically

include a large number of servers. When a CDN
is charged with the distribution of new content, the

CDN must push the content from a small number of
source nodes to all (or many) of its servers. Once
a server has received a portion of the file, it can
replicate and send the portion to other CDN servers,
thereby diminishing the burden on the source nodes.
(After the file has been pushed to all the servers,
clients can then pull the file from the CDN servers.)

• BitTorrent: BitTorrent [9], [15], [18] is a popular
peer-assisted file distribution application, currently
accounting for a significant portion of Internet traf-
fic [6]. BitTorrent is used for Linux distributions as
well as for distribution of multimedia content. In
BitTorrent, the servers are referred to as seeds and
the receiving nodes are referred to as leechers. In
the same spirit, numerous other file distribution pro-
tocols have also been proposed, including Slurpie
[19], Swarmcast [20], and Avalanche [1], [11].

• SplitStream: Splitstream [7] stripes the file, and
distributes the stripes using separate application-
level multicast trees with disjoint interior nodes.

The inherent scalability of these protocols permits dis-
tribution of large size files to several thousand users
without demanding excessive bandwidth usage at the
distribution servers. This way an ordinary PC with
cable/DSL connection can be used to distribute large files
to an audience of size orders of magnitude higher than
what was possible with the classic client-server based
distribution techniques.

Clearly, peer-assisted file distribution has become an
important application paradigm in the Internet. But,
quantitatively, just how good is it at distributing a file?
Can it be significantly better than client/server distribu-
tion? How well can it scale as the number of receiving
nodes becomes very large? How does the interaction of
server upload bandwidth, receiving node upload band-

width, and receiving node download bandwidth impact
the overall distribution time?

In this paper, we address fundamental questions like
these lying at the core of peer-assisted file distribution.
Using fluid arguments, we first derive an expression for
the minimum achievable file distribution time in terms
of the basic parameters of a peer-assisted file distribution
system, namely, the file size, the number of servers, the
number of receiving nodes, and the upload and download
bandwidths of all the participating nodes. The expression
is general in the sense that it accounts for arbitrary and
heterogeneous upload and download rates. Moreover, the
expression is in closed form and is remarkably simple.
We then use this result to address many of the questions
posed above.

It is important to note that the optimal peer-assisted
distribution problem is not a variation of the max-flow
problem [10] from graph theory. In a classical graph-
theory flow problem, the rate at which fluid flows out
of a node cannot exceed the rate at which fluid flows
into the node. However, in file distribution, owing to the
possibility of replication, the rate of bits leaving a node
may exceed the rate at which the bits enter the node.
Thus, the network flow problems from graph theory have
little bearing on the problem at hand.

After deriving the optimal distribution time, we apply
the theory to a real P2P content-distribution scheme.
Specifically, we now examine how Azureus [2], a pop-
ular BitTorrent client stacks up against the optimal
distribution. To this end, we use Azureus to distribute
a file from 1 seed host to 10 leecher hosts in a closed
environment, measure the distribution time, and compare
the distribution time to the optimal distribution time. For
this modest-size network, it is shown that Azureus is
fairly efficient when either the minimal download rate
or the aggregate upload rates is the bottleneck; however,
Azureus is less efficient when the servers’ aggregate
upload rate is the bottleneck.

We mention here that there has been recent related
work addressing the distribution time in peer-assisted file
distribution [5], [8], [17]. However, the contribution of
these works has been limited to specific homogeneous
models and, in some papers, to specific overlay topolo-
gies. Furthermore, none of these related works address
peer-assisted distribution with differentiated services. To
our knowledge, this paper is the first to determine
the minimum attainable distribution time for a general
heterogenous system. We discuss the related work at the
end of this paper in Section VI.

The rest of the paper is organized as follows. In

Section II we formally describe the problem and explain
the possible limitations in applicability of the results
derived in the paper. In Section III we present our main
result for the single-class case and in Section IV we
discuss the related insights. In Section V we use our
results to benchmark the Azureus implementation of
BitTorrent in a measurement study. Section VI describes
the related work and we conclude in Section VII.

II. PROBLEM DESCRIPTION

We consider the following fundamental problem in
file distribution. There are two sets of nodes: the seeds
denoted by S; and the leechers denoted by L. Each seed
has a copy of a file of size F , and each leecher in L
desires a copy of the file. Initially none of the leechers
has any portion of the file, but over time the leechers
obtain portions. A leecher can obtain portions of the file
from any of the seeds and from other leechers that have
portions. A leecher is permitted to leave after obtaining
the entire file. Let I = S ∪ L be the set of all nodes.

Each node (seed or leecher) i has an upload bandwidth
ui; and each leecher has a download bandwidth di. A
node i can transmit bits at a maximum rate of ui and
can download bits at a maximum rate of di. Today in
the Internet, typically ui ≤ di; however, we allow for
arbitrary upload and download rates.

Consider the problem of distributing the file, from
seeds to leechers and among leechers, to minimize the
distribution time, that is, the time it takes to get the entire
file to all of the leechers. To be more precise, denote the
rate at which leecher i ∈ L downloads ‘fresh’ content
from seeds and other leechers combined at time t by
ri(t). We refer to {ri(t), t ≥ 0, i ∈ L} as a rate
profile. For each rate profile {ri(t), t ≥ 0, i ∈ L},
there is a distribution time. Denote by Tmin as the
minimum distribution time achievable over all possible
rate profiles.

The first goal of this paper is to determine the mini-
mum distribution time Tmin and the corresponding rate
profile {ri(t), t ≥ 0, i ∈ L} which achieves this Tmin

for arbitrary values of F , ui, i ∈ I, and di, i ∈ L.
In many cases there are many different rate profiles
that achieve Tmin; we are not so much interested in
characterizing the set of optimal rate profiles as we are
in determining Tmin. However, as mentioned before as a
by-product of our analysis, we will determine an optimal
rate profile for each of the considered cases.

Our model is essentially a fluid model with fluid
replication at leecher nodes. In particular, we assume that
a leecher node can replicate and forward a bit as soon

as it receives the bit. This key assumption allows us to
derive remarkably explicit expressions for the minimum
distribution time for general, heterogeneous models. In
a real peer-assisted file distribution system such as Bit-
Torrent, the file is distributed with small chunks, and
a node can only forward a chunk once it has fully
received the chunk. However, previous work suggests
that it is difficult, if not impossible, to obtain closed-
form expressions for the minimum distribution time for
heterogeneous systems using a chunk-based model. So
far, for the chunk-based model, closed form expressions
for Tmin are only available for very simple cases of nodes
having homogeneous bandwidths and infinite download
bandwidths [17]. Needless to say, the explicit expressions
we derive for Tmin with the fluid-based model are lower
bounds for more realistic chunk-based models. However,
we will show that for homogeneous systems, the percent
error in our fluid expressions compared with a chunk-
based model is roughly (log2 L)/M , where M is the
number of chunks in the file and L is the number of
leechers. We show that this percent error is negligible
for situations of practical interest with even medium
file sizes. In summary, although our fluid model is
somewhat less realistic than the chunk model, it leads to
an explicit expression for the minimum distribution time
for heterogeneous systems, which closely approximates
the minimum distribution time of the chunk-based model
for homogeneous systems. We conjecture that it is also a
close approximation for heterogeneous systems as well.

As in [5], [21], [17] we make the following as-
sumptions in our model. We assume that the bandwidth
bottlenecks are in the access (upload and download rates)
and not in the Internet core. This assumption largely
holds in today’s Internet. Further, we abstract away the
effects of network congestion and of TCP congestion
control. Thus, our expressions for Tmin are actually
approximations for real-world file distribution times. The
expressions nevertheless provide relevant, back-of-the-
envelope calculations that can be used to benchmark a
file-distribution protocol for arbitrary upload and down-
load rates.

Again as in [5], [21], [17], [8] we also assume that
each node in the system participates in the file distri-
bution up until it has obtained the complete file. This
allows us to focus on the key issue of understanding how
various system parameters influence the peer-assisted
distribution process. We expect that the insights garnered
from the static system will contribute to understanding
dynamic problems as well.

A. Notation

We introduce the following notation:
• Number of seed nodes S = |S|.
• Number of leecher nodes L = |L|.
• For any subset A ⊆ I, denote u(A) =

∑
i∈A ui.

• For any subset A ⊆ L, denote dmin(A)=
mini∈A di. Let dmin = dmin(L).

• For any subset L′ ⊆ L, denote Tmin(L′) as the
minimum distribution time for leechers in L′.

III. MINIMUM DISTRIBUTION TIME

In this section we consider finding Tmin for the single-
class problem. Before stating the main result, we make
some observations. First, because the node with the
lowest download rate cannot obtain the file faster than
F/dmin, we have Tmin ≥ F/dmin. Second, because the
set of seeds cannot distribute fresh bits at a rate faster
than u(S), a leecher cannot receive the file at a rate faster
than u(S), implying Tmin ≥ F/u(S). Third, because the
aggregate upload bandwidth of the system is u(I) and
because a total of LF bits needs to be distributed to the
leechers, we have Tmin ≥ LF/u(I). Thus, we have the
following lower bound for peer-assisted file distribution:

Tmin ≥ max{F/dmin, LF/u(I), F/u(S)} (1)

Although the lower bound in (1) is clear, what is
not clear at this point is whether this lower bound is
tight or loose, and whether there may be other factors
– besides the three factors in (1) – that could tighten
the lower bound. The following theorem shows that the
right-hand side of (1) is not only a lower bound but
also the exact value of the minimum distribution time
Tmin. In other words, the following theorem shows that
for any upload and download parameters, there is some
distribution scheme that actually achieves the right-hand
side of (1).

Theorem 1: The minimum distribution time for the
general heterogenous peer-assisted file distribution sys-
tem is

Tmin =
F

min{dmin,
u(I)
L

, u(S)}
Observe that this expression is remarkably simple and
explicit. It can be used to benchmark the distribution
time for any peer assisted file distribution protocol. As
an example, consider distributing a 1.25 Gbyte file with
2 seeds each with an upload bandwidth of 10 Mbps.
Suppose there is a homogeneous set of leechers with
download bandwidth d = 1 Mbps and upload rate of u.

u L = 10 L = 100 L = 1000
200Kbps 2.78 hrs 6.94 hrs 12.63 hrs
400Kbps 2.78 hrs 4.63 hrs 6.61 hrs
600Kbps 2.78 hrs 3.47 hrs 4.48 hrs
800Kbps 2.78 hrs 2.78 hrs 3.39 hrs
1000Kbps 2.78 hrs 2.78 hrs 2.78 hrs

TABLE I
MINIMUM DISTRIBUTION TIME: 1.25GBYTE FILE WITH 2
SEEDS EACH WITH AN UPLOAD BANDWIDTH OF 10 MBPS.
L LEECHERS WITH DOWNLOAD BANDWIDTH d = 1 MBPS

AND UPLOAD BANDWIDTH u.

Using Theorem 1 and making simply calculations by
hand, we obtain Table 1, which shows the minimum
distribution time for three cases (i) L = 10, (ii) L = 100
and (iii) L = 1000 for several values of u. In Section V
we will use Theorem 1 to benchmark the performance
for a popular client for BitTorrent.

Proof of Theorem 1: We organize the proof into the
following four cases:
• Case A: dmin ≤ min{u(I)/L, u(S)} and dmin ≤

u(L)/(L− 1)
• Case B: dmin ≤ min{u(I)/L, u(S)} and dmin ≥

u(L)/(L− 1)
• Case C: u(I)/L ≤ min{dmin, u(S)}
• Case D: u(S) ≤ min{dmin, u(I)/L}

Clearly, these 4 cases are exhaustive.
Denote si(t) for the rate at which the seeds send

bits to leecher i at time t. For each case, we construct
a rate profile with the following general structure. As
soon as each leecher i begins to receive its bits from the
seeds, it replicates the received bits to each of the other
L − 1 leechers at some rate ≤ si(t) (to be specified
for each case) as shown in Figure 1. Thus, for each
case, the distribution scheme consists of L appliication-
level multicast trees, with each tree rooted in the seeds,
passing through one of the leechers, and terminating at
each of the L−1 other leechers. For each case, we need
to show:

1) The seed rate si(t) is non-negative and the aggre-
gate seed rate does not exceed the aggregate seed
upload bandwidth, that is,

∑
i∈Lsi(t) ≤ u(S).

2) The total rate at which a leecher i uploads bits
does not exceed its upload bandwidth ui.

3) The total rate at which a leecher i receives bits
does not exceed its download bandwidth di.

Seeds

L2 L3

s 1
(t)

s
3 (t)

s
2
(t

)

L1 L2

Fig. 1. General structure of distributing schemes: Leecher
i ∈ {1, 2, 3} downloads fresh data at the rate si(t) from the
seeds. It then replicates this fresh data at a rate ≤ si(t) to
other 2 leechers.

4) Finally, that the resulting rate profile achieves the
lower bound in (1).

In the proofs of the special cases, we will often make
use of the following fact: u(L)/(L − 1) ≤ u(S) if and
only if u(I)/L ≤ u(S).

Case A: dmin ≤ min{u(I)/L, u(S)} , dmin ≤ u(L)/(L− 1)

For this case we must show Tmin = F/dmin. We now
construct a rate profile satisfying the four conditions
listed above. Have the set of seeds send each of the
leechers a different portion of the file with leecher i
receiving at rate

si(t) = (1− δ)
ui

L− 1
for all t ≥ 0

where

δ = { u(L)
L− 1

− dmin}/{ u(L)
L− 1

}

Clearly δ ∈ [0, 1] so that si(t) ∈ [0, ui/(L− 1)]. Further
the above rate profile can be supported by the seeds
because ∑

i∈L
si(t) = dmin ≤ u(S),

Now we have each leecher i ∈ L replicate si(t) to each
of the other L − 1 leechers. This can be done because
by doing this leecher i is utilizing only (1− δ)ui out of
its ui upload bandwidth available.

Thus, a leecher i ∈ L will be downloading fresh
content at a total rate of

ri(t) = si(t) +
∑

k 6=i

sk(t) = dmin

From Seeds

From Leecher 2

From Seeds

From Leecher 3

From Seeds

From Leecher 4

Block 1 Block 2 Block 3 Block 4

Fig. 2. Bits at leecher 1 at time t = W : The file is divided
into L = 4 non-equal-size blocks. Shaded area in each block
represents the bits already downloaded by leecher 1 at time
t = W . Fluid corresponding to the unshaded area arrives at
leecher 1 from seeds and other leechers {2, 3, 4} for t ≥ W .
Leechers send bits to leecher 1 from beginning of unshaded
area; seeds send bits to leecher 1 from end of unshaded area.
Both leechers and seeds continue to send bits until leecher 1
has all the bits.

In the above equation the first term is the contribution
from seeds and the second term is the contribution
from L − 1 leechers. This download rate can be
maintained at each leecher for all t ∈ [0, F/dmin]. The
corresponding distribution time for this rate profile is
F/dmin. However, according to in-equality in (1) this
will imply that the minimum distribution time in this
case is simply Tmin = F/dmin.

Case B: dmin ≤ min{u(I)/L, u(S)}, dmin ≥ u(L)/(L− 1)

For this case we again must show Tmin = F/dmin.
Have the set of seeds send each of the leechers a different
portion of the file with leecher i receiving at rate

si(t) =
ui

L− 1
+ δ for all t ≥ 0

where

δ = dmin − u(L)
L− 1

Clearly δ ≥ 0 so that si(t) ≥ ui/(L − 1). This rate
profile can be supported by the seeds because

∑

i∈L
si(t) = Ldmin − u(L) ≤ u(I)− u(L) = u(S)

We now have each leecher i transfer at rate ui/(L− 1)
to each of the other L− 1 leechers. Note that this repli-
cation strategy does not violate the upload bandwidth
constraints of the leechers. Also note, that the forwarding
rate ui/(L−1) at leecher i is less than the rate at which

leecher i receives bits from the seeds. Leecher i is thus
downloading the file at a total rate of

ri(t) = (
ui

L− 1
+ δ) +

∑

k 6=i

uk

L− 1

=
∑

k∈L

uk

L− 1
+ δ = dmin

With the rate profile shown above it is easy to ensure that
each leecher will be downloading distinct bits of the file
until

W :=
F∑

i∈L
si(t)

=
F

Ldmin − u(L)

Further at t = W the complete file has been sent by
the seeds to the set of the leechers, with each leecher
holding distinct portion of the file. Now we show that we
can maintain this rate profile while having each leecher
continue to download fresh content for t ≥ W as well.

Note that each leecher i is sending out fresh data
(corresponding to a block of the file) at a rate lower than
the rate at which it is receiving. This implies leecher i at
time t = W has received all of the corresponding block
i of the file but has not completely received the other
L− 1 blocks. This situation is depicted in Figure 2 with
L = 4 leechers where leecher i = 1 has received block
1 (shaded) completely directly from the seeds but has
only partially received the other 3 blocks (from leechers
{2,3,4}).

For all times t ≥ W we require the seeds to send bits
from the unshaded areas of the blocks at rate si(t) as
before. Simultaneously, the other L−1 leechers continue
to send bits from the unshaded areas of the blocks (which
they have already received by time W). For example
with the case depicted in Figure 2, the seeds send the
unshaded area from blocks 2, 3 and 4 to leecher 1. At
the same time the leecher j ∈ {2, 3, 4} sends bits from
the unshaded area of block j with uj/(L − 1) rates as
before.

In the manner shown above the download rate of
ri(t) = dmin can be maintained at each node for all
t ∈ [0, F/dmin] while having each leecher download
fresh data for all these times. The corresponding
distribution time for this rate profile is F/dmin.
However according to in-equality in (1) this will imply
the minimum distribution time in this case is simply
Tmin = F/dmin.

Case C: u(I)/L ≤ min{dmin, u(S)}

Let
si(t) =

ui

L− 1
+ δ for all t ≥ 0

where

δ = (u(S)− u(L)
L− 1

)/L

Clearly δ ≥ 0. This rate profile can be supported by the
seeds because

∑

i∈L
si(t) = u(S).

We have each leecher i ∈ L replicate ui/(L− 1) to the
other L−1 leechers without violating upload bandwidth
constraints. Thus, a leecher i will be downloading fresh
content at a total rate of

ri(t) = (
ui

L− 1
+ δ) +

∑

k 6=i

uk

L− 1

=
∑

k∈L

uk

L− 1
+ δ =

u(I)
L

≤ dmin

Thus, this rate can be supported by the leecher’s down-
load bandwidth. Let W = F/u(S). Notice that as in
Case B, at t = W the complete file has been sent by
the seeds to the set of the leechers L with each leecher
holding a distinct portion of the file. With a scheduling
scheme similar to case B and also depicted in Figure
2, we can ensure that for all times t ≥ W all leechers
are downloading bits they have not downloaded before
while maintaining the rate profile constructed above.
Furthermore, since each node is downloading at an
equal rate of u(I)/L, we have

∑
i∈Lri(t) = u(I) for all

t ∈ [0, LF/u(I)]. The corresponding distribution time
is given by LF/u(I). However, according to in-equality
in (1) this implies that the minimum distribution time is
simply Tmin = LF/u(I).

Case D: u(S) ≤ min{dmin, u(I)/L}

Let

si(t) = (1− δ)
ui

L− 1
for all i ∈ L

where

δ = { u(L)
L− 1

− u(S)}/ u(L)
L− 1

Clearly δ ∈ [0, 1]. Because (L− 1)si(t) ≤ ui for all i ∈
L each leecher i can transfer si(t) to the other L − 1
leechers. Further this rate profile can be supported by
the seeds because

∑

i∈L
si(t) = u(S) (2)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2

File Size (GBytes)

E
rr

o
r

(%
)

L=10

L=1000

L=10000

Fig. 3. Single Class: Percentage error between fluid-based
and chunk-based model. For typical file sizes (≥ 350 MB) the
error is less than 1 percent

Given that, the download rate of fresh content for leecher
i is

ri(t) = si(t) +
∑

k 6=i

sk(t) = u(S) ≤ di

Since each leecher is downloading at an equal rate this
download rate can be maintained at each leecher for all
t ∈ [0, F/u(S)]. The corresponding distribution time is
given by F/u(S). However, according to in-equality in
(1) this implies that the minimum distribution time is
simply Tmin = F/u(S).2

It should be noted that, for each of the four cases, the
distribution scheme given in the proof of Theorem 1 is
such that all leechers complete their downloads at the
same time.

IV. INSIGHTS FOR THE SINGLE CLASS PROBLEM

In this section we examine the implications of Theo-
rem 1.

A. Comparison to Peer-Assisted File Distribution with
Chunks

In a real peer-assisted file distribution system such as
BitTorrent, the file is divided into chunks, and a node
can only forward a chunk once it has fully received the
chunk. A natural question then is whether the fluid model
(as studied in this paper) grossly underestimates the
minimum distribution time for when chunks are used?
We now present the percent error in Tmin due to lack of
store-and-forwarding of chunks in the fluid based model.
For comparison we choose a homogeneous system with
peers having infinite download capacity. The reason for

this choice is that closed form expressions for chunk
based models are available for this simplistic situation
[17]. (No such expression is available for heterogeneous
systems with chunks.)

Suppose the file consists of M equal size chunks.
Further suppose S = 1 and all the upload capacities
are homogeneous (ui = u for all i ∈ I) and all the
download capacities are infinite(di = ∞ for all i ∈ L).
For this homogeneous model, the minimum distribution
time taking chunks into account is given by [17], [3]:

Tmin{Chunk} =
F

u

(
1 +

log2 L

M

)
(3)

For our fluid model, for this special case Theorem 1
becomes

Tmin{Fluid} =
F

u
(4)

From equations (3) and (4), we obtain the fractional error
between chunk based and fluid based model:

Tmin{Chunk} − Tmin{Fluid}
Tmin{Fluid} =

log2 L

M
(5)

Let us now consider the fractional error for some
realistic scenarios. The typical chunk size in BitTorrent
is 256 KBytes [15]. Figure 3 shows the percent error
for different values of L and different file sizes. From
the figure we observe that for file size of 350 MBytes
or more, the percentage error between Tmin{Fluid} and
Tmin{Chunk} is less than 1%, even when there are
10,000 leechers.

From (5) it follows that, for homogeneous systems,
the error can be safely ignored if M >> log2 L. For
typical file sizes of the order of several Gbytes, this
condition is easily satisfied. We conjecture this is true
for heterogeneous systems as well. Hence, even though
the fluid model is not as realistic as the chunk model, it
is highly accurate and has the advantage of providing a
simple, explicit expression for the minimum distribution
time for general, heterogeneous systems. Further, if every
leecher has one distinct chunk available then it is easy to
see that the rest of the chunks can be distributed using
the distribution scheme from Theorem 1 as if it was a
fluid transfer.

B. Advantages over Client-Server model

For a client-server based file distribution, the mini-
mum distribution time is

T cs
min =

F

min{dmin, u(S)/L}
For dmin large and ui = u, for all i ∈ L, we can
compare distribution times for both client-server and

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

L

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e

Peer-Assisted

Client-Server

Fig. 4. Single Class: Comparison of minimum distribution
time for client-server and peer-assisted file distribution.

peer-assisted based file distribution. In this case, Tmin

for peer-assisted distribution and client-server is respec-
tively,

T pa
min =

F

min{Lu + u(S)
L

, u(S)}

T cs
min =

F

u(S)/L

This plot is shown in Figure 4. For this plot we choose

F

u
= 10

F

u(S)
= 1

and plot the corresponding distribution times for for
varying value of L.

C. Departing Leechers

Consider a variation of the minimum distribution time
problem in which leechers depart some time after they
receive the entire file. Specifically, suppose leecher i
leaves τi seconds after receiving entire file, where τi

is a random variable with distribution Fi(τ). A natural
problem is to minimize the expected distribution time.
In the distribution scheme in the proof of Theorem 1,
all leechers finish at the same time. It follows that even
when leechers randomly depart after receiving the file,
our distribution scheme is optimal and the minimum
distribution time is still given by Theorem 1.

D. Fairness Issues

We wish to characterize the contribution of a leecher
i in terms of the rate at which it replicates fresh data
to all other leechers. One can observe that in all the
rate profiles (ri(t) for all i ∈ L) used in the proof of

6

7

8

9

10

11

12

13

14

15

160 200 240 280 320 360 400 440 480 520 560 600

Homogenous Download Bandwidth (Kbps)

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e
 (

h
rs

) A

B

C

Fig. 5. Single Class: Three different sets of leechers (A,B, C)
with common homogenous download bandwidth d are chosen.
The minimum distribution time is plotted while d is varied on
the x-axis. See Section IV-E

Theorem 1, this contribution either takes the form of
Ksi(t) or of ui where K ∈ (0, 1) is some constant
and is the same for every leecher. Roughly speaking, at
best the leechers are contributing up to what is allowed
by their upload capacity or at worst are contributing an
equal percentage of their respective receiving rates of
fresh data in order that the rate profile achieves minimum
distribution time. Thus one can conclude that the goals
of achieving minimum distribution time and ensuring
fairness of bandwidth contribution by the leechers are
not necessarily contradictory.

E. Influence of Download Bandwidth on Minimum Dis-
tribution time

If the minimum download bandwidth is small, then
it heavily influences the value of minimum distribution
time. To understand this issue better we present the
following numerical example. We select the following
values for the file size and aggregate seed bandwidth,
F = 1 Gbyte, u(S) = 320 Kbps. We choose three
different set of leechers A,B, and C. The leechers in
these sets have the following upload rates, (i) A =
{80, 160, 320} kbps, (ii) B= {80, 160, 480} kbps and
(iii) C= {80, 160, 600} kbps. In Figure 5 we vary the
homogenous download bandwidth d along the x-axis and
plot the minimum distribution time on the y-axis. Some
observations:
• Note that for set A of leechers, we have u(I)/L <

u(S). For lower values of d the value of Tmin

decreases as in F/d. Once d = u(I)/L = 36.667
is reached, Tmin = LF/u(I) = 27.27 remains
constant.

• Set B and C of leechers have exactly the same
minimum distribution time for all values of d. This
is to be expected since for both sets of leechers,
u(I)/L ≥ u(S) and from Theorem 1, in this case
the minimum distribution time is not a function
of ui, i ∈ L at all. As expected increasing d
beyond u(S) = 40 does not decrease the minimum
distribution time any further.

V. BENCHMARKING BITTORRENT CLIENTS

Having derived the the optimal distribution time for
peer-assisted content distribution, we now apply the the-
ory to a real P2P content-distribution scheme. Specially,
we now examine how the BitTorrent client Azureus in
practice stacks up against the optimal distribution time
given in Theorem 1. To this end, we use Azureus to
distribute a file from 1 seed host to 10 leecher hosts, mea-
sure the distribution time, and compare the distribution
time to the optimal distribution time. A comprehensive
measurement study of BitTorrent is beyond the scope of
this paper. Instead, the aim of this measurement study
is to show how Theorem 1 can be used to benchmark a
real distribution scheme.

A. Test-Bed Setup

Our test-bed consists of 11 PCs, each running the
BitTorrent client Azureus version 2.3.0.6 [2] on top of
Fedora Linux. One of the PCs is a seed, initially having
the entire file. The other PCs are leechers, initially not
having any portion of the file. The PCs are intercon-
nected by a multiport Ethernet switch, with 100Mbps
access per port. Thus the test environment is closed,
with no background traffic. We chose Azureus as the
BitTorrent client because (a) it allows rate throttling
capability for both uploading and downloading, (b) it
is an open source software which permitted us to make
some minor modifications, (c) it is very popular with
over 5 million downloads [12] and has been crowned the
most popular open-source software by SourceForge.net
[13]. We first show in the next subsection that Azureus’s
bandwidth throttling capability is sufficiently accurate for
our measurement purposes.

B. Accuracy of Throttling

Azureus does rate throttling at the application layer. It
does this by implementing a simple token bucket control
algorithm on top of receiving/sending TCP sockets.
When a token is not available for uploading, it delays
socket writes until a token becomes available. Similarly,
when a token is not available for downloading, it delays
socket reads until a token becomes available.

To measure the accuracy of Azureus’s throttling, we
did experiments on both download and upload rate
throttling. The experiments consisted of one seed and
one leecher only. To evaluate download rate throttling,
we constrained the download rate at the leecher without
constraining the seed’s upload rate. Similarly, to evaluate
upload rate throttling, we constrained upload rate at
the seed without constraining the download rate of the
leecher. For these experiments, we selected two different
rates, 25 KB/s and 45 KB/s,giving four different scenar-
ios. For each scenario, we used a file size of F = 62.765
MB, noted the time taken to complete the transfers, and
calculated the observed rate as

observed rate =
F

completion time
From this, we calculated the error in bandwidth throttling
as

throttle error =
observed rate - throttle rate

throttle rate
For each scenario, we ran the experiment 6 times.
In table II, we provide the 6 throttle errors for each
of the 4 scenarios. We see that the throttling errors
are small. Thus, we can safely approximate Azureus’s
specified throttling rates as the actual maximum upload
and download rates.

C. Benchmarking Experiments
Having verified Azureus’s throttling mechanism, we

now describe the results of the main benchmarking
experiments. We experimented with three different rate
profiles.
• Profile 1 : ui = di = 45 KB/s for all leechers,

u(S) = 80 KB/s. Here the minimun download rate,
dmin, is the bottleneck.

• Profile 2 : di = 45 KB/s, ui = 25 KB/s for all
leechers, u(S) = 80 KB/s. Here normalized total
upload rate, u(I)/L, is the bottleneck.

• Profile 3: ui = di = 45 KB/s for all leechers,
u(S) = 35 KB/s. Here the seeds’ upload rate, u(S),
is the bottleneck.

For each experiment, we again used a file size of
F = 62.765 MB. We measured the observed minimum
distribution time (T

(obs)
min) and also calculate the theoret-

ical minimum distribution time (Tmin) using Theorem
1. Since Tmin is optimal, it serves as a lower bound for
the observed value. We use percentage overshoot as a
metric to measure the deviation between the theoretical
and observed distribution times.

Overshoot (%) =
T

(obs)
min − Tmin

Tmin
× 100

Throttle Rate Download (%) Upload(%)
45KB/s 4.09, -0.73, -0.37 2.41 2.41 2.78

3.70, -1.08, -1.01 2.63, 2.33 2.18
25KB/s 2.06, 1.89, 1.19, 0.67, 0.71, 0.63,

-0.45, -2.54, 1.36, 0.71, 0.67, 0.71

TABLE II
Throttling Accuracy: Throttle Error Samples

For a given profile, the randomness in the BitTorrent
algorithm generates a different observed distribution time
for each repeated experiment. Thus, the overshoot can
be viewed as a random variable with some mean. To
estimate this mean, for each profile, we performed 12
measurements, generating 12 sample T

(obs)
min . From the

12 samples, we constructed confidence intervals for the
true mean overshoot.

Azureus allows the user to set the maximum number
of simultaneous unchoked upload connections from any
leecher. The default setting for this variable is 4. One
would expect that increasing this setting would decrease
the minimum distribution time. This indeed turns out
to be the case. We did measurements for each of the
bandwidth profiles with both 4 and 10 unchoked upload
connections (denoted as m).

The corresponding confidence intervals for the percent
overshoot are shown in Figure 6. We make the following
observations:
• For this modest-size network, BitTorrent is fairly

efficient when either dmin or u(I)/L is the bottle-
neck, with the actual distribution time typically not
more than 30% of the theoretical optimal distribu-
tion time. When u(S) is the bottleneck, however,
BitTorrent is less efficient, with distribution times
often exceeding 60% of the theoretical optimal.

• The overshoot generally decreases when we in-
crease the number of unchoked upload connections.

The overshoot is the highest when the seed bandwidth
is the bottleneck (profile 3). From our measurements
there seems to be evidence that BitTorrent is not very
efficient at distributing data when the source bandwidth
itself is in short supply. We observed that the throughput
for each leecher was good in the middle of the file
transfer and poor in the beginning and towards the end.
It seems that the leechers are not able to download from
each other either because the unchoked neighbors have
too many overlapping sets of chunks or they have choked

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Profile

1(m=4)

Profile

1(m=10)

Profile

2(m=4)

Profile

2(m=10)

Profile

3(m=4)

Profile

3(m=10)

O
v
e
rs

h
o
o
t

(%
)

Fig. 6. 10 Leechers: 95% Confidence Intervals corresponding
to percent Overshoot

leechers that may have interesting chunks to offer. Hence
in the beginning of the transfer, the peer-assisted file
distribution process more or less resembles the client-
server distribution. However, once the leechers collect
enough diversity of chunks they can collaborate more
effectively and the throughput at each leecher increases.
Towards the end of the transfer we see the familiar
situation where each leecher is missing the overlapping
small sets of chunks and again the distribution process
degrades to that in client-server model.

The seed bandwidth is not the bottleneck in the other
two profiles. Hence, when leechers have overlapping sets
of chunks, the seed bandwidth is sufficient to ensure that
the distribution process does not degrade significantly.

With the typical bandwidths available to end-user
systems, one would expect that average upload leecher
bandwidths (u(I)/L) to be the bottleneck factor. Thus,
we believe that profile 2 is the most common situation
encountered in real-world file-transfers. One can observe
that BitTorrent performs admirably well in this scenario
for the modest-size test network. We also show the
corresponding statistics for a test-bed of 5 leechers in
Figure 7

VI. RELATED WORK

We now review the related work for single-class peer-
assisted file distribution. In what follows, we discuss
modeling (rather than “systems”) papers relating to peer-
assisted file distribution.

Biersack, Rodriguez and Felber obtain the peer-
assisted distribution time for three overlay topologies
(linear, tree and forest) for the chunk-based model [5].
They make the simplifying assumption that all peers
(seeds and leechers) have homogeneous and equal upload
and download bandwidths. Cherkasova and Lee propose

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Profile

1(m=4)

Profile

1(m=10)

Profile

2(m=4)

Profile

2(m=10)

Profile

3(m=4)

Profile

3(m=10)

O
v
e

rs
h

o
o

t
(%

)

Fig. 7. 5 Leechers: 95% Confidence Intervals corresponding
to percent Overshoot

FastReplica, an algorithm for distributing a large file
from a source node to receiving nodes, using the assis-
tance of the upload capacity of the receiving nodes [8].
In this algorithm the file is divided into equal parts and
transferred to each node, after which the nodes share the
file among each other. The paper also does performance
analysis assuming specific bandwidth profiles among the
receiving nodes. Neither [5] nor [8] consider the problem
of finding the minimum distribution time.

To our knowledge, Mundinger and Weber are the only
others to attempt to obtain the minimum distribution
time for peer-assisted file distribution [17]. They use
both chunk-based and fluid-based model. For their fluid
model, they succeed at determining the minimum dis-
tribution time for the case in which all all download
bandwidths are infinite. They also give some insights
for the case with finite download bandwidths under the
assumption of homogeneous upload bandwidths.

There are also some additional modeling papers for
peer-assisted file distribution that do not address file dis-
tribution times. Yang and Veciana study service capacity
of a P2P network [21]. They model the propagation
of the file as a branching process. The paper evaluates
average delay experienced by peers in a transient and a
steady state regime. The paper shows that in the steady
state, the service capacity of a P2P system will scale with
and track the offered loads. Qui and Srikant develop an
entirely different type of fluid model for BitTorrent-like
systems [18]. In their model, the number of seeds and
leechers is dynamic, and the fluid is not bits but the
number seeds and leechers participating. They develop
a differential equation for the fluid model, from which
they determine the performance of the dynamic system.
Massoulié and Vojnović develop a probabilistic coupon
replication model for a BitTorrent-like system [16]. The

coupons can be thought of as chunks. Each user is char-
acterized by its current coupon collection, and the system
evolution is then specified by how users of distinct
types meet and, which coupons get replicated upon such
encounters. In asymptotic regimes, they consider peering
strategies for minimizing the mean file download time.
Bharambe et al. [4] simulate BitTorrent with thousands
of nodes and analyze its performance.

In [14], we have extended the current paper to cover
peer-assisted file distribution with differentiated services.
Specifically, we suppose there are two classes of receiv-
ing nodes, with the goal being to get the file as quickly
as possible to the first-class nodes. We again derive
explicit expressions for the distribution time, and argue
that differentiated service quality can be provisioned at
the application level.

VII. CONCLUSION

Peer-assisted file distribution is an important applica-
tion in the Internet today. A fundamental problem in
peer-assisted file distribution is to determine the mini-
mum achievable time to distribute a file to all receiving
nodes. For a model in which discrete chunks are stored
and forwarded at the nodes, this fundamental problem
becomes a complex optimal scheduling problem.

In this paper we first consider a fluid-based version
for the problem of determining the minimum achievable
distribution time. With this fluid model, we obtain an
explicit expression for this fundamental problem. Being
simple and insightful, the result could be taught in an in-
troductory course on computer networking or distributed
systems. We argue that little accuracy is lost in using a
fluid-based model instead of the more realistic chunk-
based model.

These results open a number of avenues for future
research. One directions is compare the fluid minimum
distribution time with the chunk-based distribution time
for heterogenous systems. Another direction is to deter-
mine the minimum distribution time for systems which
limit the number of simultaneous connections between
participating nodes.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the National
Science Foundation under Grant No. 0325777. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] Avalanche: File Swarming with Network Coding, “
http://research.microsoft.com/ pablo/avalanche.htm”

[2] http://www.azureus.com
[3] A. Bar-Noy, S. Kipnis, and B. Schieber, “Optimal multiple

message broadcasting in telephone-like communication systems,”
Discrete Applied Mathematics, 100:1-15,2000.

[4] A.R. Bharambe, C. Herley, and V.N.Padmanabhan, “Analyzing
and Improving a BitTorrent Network’s Performance Mecha-
nisms,” IEEE INFOCOM 2006.

[5] E.W. Biersack, P. Rodriguez and P. Felber, “Performance Anal-
ysis of Peer-to-Peer Networks for File Distribution,” In pro-
ceedings of Quality of Future Internet Services (QOFIS04),
September 2004.

[6] Cachelogic, “http://www.cachelogic.com/research”
[7] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron

and A. Singh, “SplitStream: High-bandwidth multicast in a coop-
erative environment,” ACM Symposium on Operating Systems
Principles (SOSP), October 2003.

[8] L. Cherkasova and J. Lee, “FastReplica: Efficient Large File
Distribution within Content Delivery Networks,” 4th USENIX
Symposium on Internet Technologies and Systems, March 2003.

[9] B. Cohen, “Incentives Build Robustness in BitTorrent,” First
Workshop on Economics of Peer-to-Peer Systems, May 2003.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“ Introduction to Algorithms,” Second Edition, MIT Press and
McGraw-Hill, 2001.

[11] C. Gkantsidis, P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” IEEE INFOCOM 2005, March 2005.

[12] http://www.download-it-free.com/azureus/
[13] http://www.itnews.com.au/newsstory.aspx?CIaNID=31480
[14] R. Kumar, and K.W. Ross, “Optimal Peer-Assisted File Distri-

bution: Single and Multi-class Problems,” Submitted.
[15] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding

BitTorrent: An Experimental Perspective,” Technical Report,
INRIA, Sophia Antipolis, November 2005.

[16] L. Massoulié and M. Vojnović, “Coupon Replication Systems,”
ACM SIGMETRICS 2005.

[17] J. Mundinger, R. R. Weber and G. Weiss, “Analysis of Peer-to-
Peer File Dissemination,” To appear in Performance Evaluation
Review, Eighth Workshop on Mathematical Performance Mod-
eling and Analysis (MAMA 2006) Issue.

[18] D. Qiu and R. Srikant, “Modeling and Performance Analysis
of BitTorrent-Like Peer-to-Peer Networks,” ACM SIGCOMM,
September 2004.

[19] R. Sherwood, R. Braud and B. Bhattacharjee, “Slurpie: A
cooperative bulk data transfer protocol,” IEEE INFOCOM 2004.

[20] Swarmcast, “http://swarmcast.net
[21] X. Yang and G. Veciana, “Service Capacity of Peer-to-Peer

Networks,” IEEE INFOCOM 2004.
[22] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips,

“The Bittorrent P2P File-Sharing System: Measurements And
Analysis ,” 4th International Workshop on Peer-to-Peer Systems
(IPTPS’05), Feb 2005.

[23] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al
Hamra, and L. Garces-Erice, “Dissecting BitTorrent: Five Months
in a Torrent’s Lifetime,” Passive and Active Measurements,
Antibes Juan-les-Pins, France, April 2004.

