
Peer-Driven Video Streaming:
Multiple Descriptions versus Layering
Yanming Shen†, Zhengye Liu†, Shivendra S. Panwar†, Keith W. Ross‡, Yao Wang†

Department of Electrical and Computer Engineering†
Department of Computer and Information Science‡

Polytechnic University

Abstract— We propose a peer-driven video streaming system
that provides a reliable and high-performance video on-demand
service. We encode each video into multiple low bit-rate sub-
streams and distribute copies of the sub-streams from the
participating peers. Each client receives the constituent multiple
sub-streams from different serving peers, and combines them into
the original video stream. When a server peer disconnects, the
system attempts to find a replacement peer that has a copy of the
missing sub-stream and has sufficient available uplink bandwidth.
We consider using multiple description coding and layered coding
to generate the multiple sub-streams. We develop a traffic
theory for peer-driven video streaming, and examine the system
performance analytically and via simulation. We show that peer-
driven video distribution can provide excellent performance even
if peers disconnect from the network frequently. We also compare
the performance of layered coding with multiple description
coding.

I. INTRODUCTION

Today, much of the streamed video in the Internet is
managed and distributed by Content Distribution Networks
(CDNs) such as Akamai. Recall that a CDN deploys dedicated
servers for storing and distributing content to clients. When a
user requests a video, the CDN redirects the client to one or
more of its dedicated servers, which stream the stored video
to the client. CDNs have significant infrastructure costs, not
only for the dedicated servers they deploy, but also for the
access bandwidth they consume.

In this paper we propose and study peer-driven video
streaming, which is an alternative architecture to CDNs for
video distribution. In peer-driven streaming, peers – that is,
nodes owned and operated by ordinary users – are commis-
sioned to do the streaming. As an example, a news company
(such as CNN.com) may directly commission thousands of
peers to act as servers and stream video to clients on the
behalf of the news company. As a second example, there
may be a third-party company that sells video distribution
to numerous publishers but delegates the actual streaming to
commissioned peers. In this second example, the third-party
company has a role similar to a CDN; the primary difference
is that a CDN owns and operates the streaming servers,
whereas here the third-party distribution company outsources
the video streaming to the hired peers. In both examples, the
hired peers might receive micropayments for their streaming
services. Because there is an abundant supply of potential
server peers with excess unused bandwidth and storage, peer-

driven architectures should have fixed and recurring costs that
are significantly less than those of CDNs.

Although peer-driven video streaming potentially provides
huge cost savings over CDNs, it presents a new set of design
challenges. First, in a peer-driven video streaming system, the
server peers are not permanently connected to the Internet, as
with CDN servers, but are instead intermittently connected.
Second, although some of these server peers might be con-
nected via high-speed Ethernet access, many peers would have
DSL or cable access with relatively low upstream bandwidth.
These two salient characteristics of the server peers need to
be carefully taken into consideration when designing a peer-
driven video streaming system. Other issues for peer-driven
video streaming, which are beyond the scope of the current
paper, include payment systems, dispute resolution, digital
rights management and security.

One strategy for peer-driven streaming is, for each client
request, to stream the complete video from one of the server
peers to the client. The problem with this “one-server” ap-
proach is twofold. First, because of limited upstream access
rates, many peers would be incapable of streaming the video
at its full rate. Second, when the server disconnects, the
client will lose service until a new server peer can be found
and begin streaming. It may be possible to partially mitigate
this last problem by prefetching video into a client buffer
before and during playback; however, not all clients have
the potential for significant buffering (e.g., many hand-held
devices), and a server’s limited upstream bandwidth and a
client’s limited downstream bandwidth may hinder or fully
preclude prefetching.

We introduce and explore a promising sub-stream design
for peer-driven video streaming. In this design, each video
is encoded into multiple sub-streams, and copies of the sub-
streams are stored in the server peers. When a client wants
to see a video, it receives multiple sub-streams, each from a
different server peer. As the sub-streams arrive to the client,
the client combines the sub-streams, decodes and displays the
video. Because each sub-stream typically has a rate that is a
fraction of the combined stream, the server peers can more
easily accommodate sub-streams with their limited upstream
bandwidth. Furthermore, if the system is designed properly,
the loss of one stream due to a server failure or disconnect
will not seriously impair video quality while waiting for a
replacement sub-stream.



In this paper, we examine two sub-stream approaches:
Multiple Description (MD) video system, for which the
sub-streams (called descriptions) have equal importance; and
layered video system, for which the sub-streams (called
layers) have varying importance. For both of these approaches,
we examine coding, distribution and substream placement.
This paper makes several contributions, including:

• It proposes peer-driven video streaming with multiple
sub-streams as an alternative to CDN video streaming.

• For MD video coding, we use MD-FEC for creating
the substreams. We develop a traffic theory for MD
video coding. In particular, we formulate and solve the
problem of finding the optimal video parameters (number
of descriptions and their rates). We prove (for a somewhat
simplified model) that it is optimal to deploy and stream
the maximum number of descriptions for each video.
We also develop a dynamic programming scheme to
determine the optimal number of sub-stream replicas for
each video, and propose simple mechanisms for placing
the replicas in the server, for selecting servers, and for
admission control.

• For layered coding, we use Fine-Grained Scalable (FGS)
video to create the layers, and we again consider the
problems of video coding, optimal replication, sub-stream
placement, server selection and admission control.

• We simulate peer-driven video streaming for both MD
and layered coding, using the optimal coding and optimal
replication strategies. In our simulations, we use rate
distortion functions derived from real videos. We compare
the MD and layered approaches, gaining insight into
which scheme provides better performance for different
peer behaviors and traffic conditions.

We briefly mention that as an alternative to streaming
video, a user can download a video and watch it at his
or her convenience. Many P2P file-sharing architectures can
be employed for video downloading, including BitTorrent,
FastTrack, Gnutella and the DHT architectures. However, there
will be a continued demand for video streaming solutions.
Users who either wish to browse videos or see a video instantly
prefer streaming. Furthermore, many hand-held devices will
continue to have modest storage capabilities and will be
incapable of downloading entire videos.

This paper is organized as follows. In Section II, we describe
the overall system design. In Section III and Section IV,
we discuss the MD and layered coding systems respectively.
Section V compares the performance of the MD and layered
designs. The related work is described in Section VI and
Section VII concludes this paper.

II. OVERVIEW OF SYSTEM DESIGN

Streaming is performed from a pool of server peers. Server
peers are typically non-NATed and have been “hired” to stream
video to client peers. Although peers in the pool connect and
disconnect from the Internet, the total number of peers in
the pool (either connected or disconnected) is assumed to be
approximately constant over the time frame of interest (say,

Cloud

1

2 2 3

4

6 5

Fig. 1. In this example, peers 4 and 5 are each receiving a video. Initially,
peer 4 receives sub-streams from peers 2 and 3, and peer 5 receives from
peers 1 and 4. Then peer 2 disconnects, and the system recovers by assigning
peer 6 as a replacement. While locating and establishing a replacement, visual
quality at peer 4 is degraded. We use a fat pipe to indicate the downlink of
each peer, and a thin pipe to illustrate the uplink of each peer. Generally, a
peer can function as a client only, a server only, or simultaneously as a server
and a client (e.g., peer 4).

one day). Client peers, which watch the videos, are arbitrary
Internet-connected hosts, some of which may be handheld
wireless devices. Client peers may be non-NATed or NATed.

Our approach to peer-driven video streaming is to encode
each video into multiple sub-streams and store copies of
the sub-streams in the pool of server peers. When a client
wants to see a video, multiple server peers are selected,
each currently connected to the Internet and having sufficient
available upstream bandwidth. Each of these server peers sends
a different sub-stream to the client. After a short initial delay,
the client combines, decodes, and displays the video as the
multiple sub-streams are being delivered. When a server peer
disconnects in the middle of a streaming session, the client
peer loses one sub-stream until a replacement peer begins to
send the missing sub-stream. Figure 1 illustrates the system
architecture.

In this paper, we examine two sub-stream approaches: MD
coding and layered video coding. With MD coding, all sub-
streams have equal importance; if a client loses any one of
the many sub-streams, then video quality should not severely
degrade before a replacement stream arrives at the client. With
layered coding, the sub-streams have varying importance; the
layered system must be designed so that the more important
layers are delivered with high probability. An MD system
design will be simpler but, in the absence of packet loss,
its source codec requires a higher bit rate to reach the same
target decoding quality as with a layered system. Thus, in the
absence of packet loss, the layered approach is more efficient
in utilizing the peer resources, i.e., it can serve more requests
for the same target decoding quality. But this higher efficiency
is obtained at higher design and operational cost.

The design of a peer-driven video streaming system has four



interacting components: video coding, sub-stream replication
and placement, server selection, and admission control. Each
of these components has important design issues:

• Video coding: Should the system employ MD coding
or layering? What MD codec or layer codec should be
used? How many sub-streams should a video have? What
should be the rates of each of the sub-streams?

• Sub-stream replication and placement: Given that each
server peer has limited storage and upstream bandwidth,
how should the copies of the sub-streams be distributed
over the pool of server peers? How many copies of each
sub-stream should be stored in the pool?

• Server selection: When establishing a new streaming
session, which server peers should be selected to stream
the sub-streams? When a client loses a sub-stream due
to a server disconnect, which peer should be chosen as a
replacement peer?

• Admission control: When a client makes a request,
should we admit the request and establish the streaming
session? Or will an additional streaming session signifi-
cantly compromise the quality of the existing streaming
sessions?

In the subsequent sections, we examine all four of these
components, for both MD and layered systems.

An additional component of a peer-driven video distribution
is sub-stream search, both during initial set-up and also in
response to server peer disconnects. Sub-stream search can
be done in a variety of different ways, depending on the
underlying architecture of the peer management system. For a
decentralized architecture, distributed hash tables (DHTs) can
be used to locate sub-streams [1]–[4]. The sub-stream search
problem is orthogonal to the coding/streaming/placement
problem and is beyond the scope of the current paper.

We also mention that one possible design strategy is to
use large client buffers, and prefetch during playback - that
is, transmit the sub-streams at a rate that is higher than the
encoded playback rate. In this manner, when a substream
is lost, the client may have a sufficient “reservoir” for that
sub-stream, so that playback continues without any quality
degradation [5], [6]. The disadvantages of this strategy include:
(i) the need for large client buffers, which may not be
feasible for many handheld devices; and (ii) the need to
transmit at rates higher than the encoded rate, which can
produce wasted traffic when the user ceases to watch the
video before completion or jumps forward into the video. We
feel that strategies with and without client prefetching during
playback merit investigation. In this paper we only allow for
a small amount of prefetching before the start of playback
and no prefetching during playback. We shall consider client
prefetching in greater detail in a subsequent paper.

A. Overall Design Criterion

In a peer-driven video distribution system, users request
videos for immediate viewing. After a user makes such a
request, the system attempts to set up a session, which consists
of multiple sub-streams sent from different server peers to

the user’s device. From the user’s perspective, there are two
critical performance measures:

• Acceptance probability: the likelihood the system will
locate the necessary sub-streams and establish a session.

• Video quality: the visual quality of the session, from
start to finish.

Because each admitted session consumes peer upstream
bandwidth resources, and because the number of commis-
sioned server peers is roughly constant over the time frame
of interest (say, 24 hours), as more sessions are admitted into
the system it becomes increasingly more difficult to provide
each on-going session with sufficient sub-streams for adequate
visual quality. Furthermore, once a server’s upstream pipe
becomes full, new session requests no longer have access to
any of the video sub-streams stored at that server. These simple
observations lead to our high-level design goal:

Design in an integrated fashion the components of
the system – the coding, sub-stream placement,
server assignment, and admission control – to
maximize the acceptance probability subject to the
constraint that each on-going video session meets
a target video quality constraint.

Currently, the end-to-end bandwidth bottleneck is in access
and not in the Internet core [7], [8]. We expect this trend
to continue for the foreseeable future. Furthermore, in most
residential broadband connections today (including cable mo-
dem and ADSL), the upstream rate is significantly less than
the downstream rate. Thus, it is not unreasonable to assume
that the bandwidth bottleneck between server and client is the
server’s upload rate.

Throughout this paper we use N to denote the number of
peers in the server pool and M to denote the number of sub-
streams in a video.

III. MD SYSTEM

Recall that peer-driven video streaming has four interacting
components: video coding, video placement, server selection,
and admission control. We examine each of these components
for MD coding in this section.

A. Video Coding

MD video coding has become an active research area
in the past few years. Although various coders have been
proposed [9]–[11], most coders generate a fairly small num-
ber of descriptions, with M = 2 being the most common
case. However, to fully explore the load balancing and error-
resilience benefit in peer-driven video streaming, a larger M
is desired.

Instead of designing the source encoder to yield multiple
descriptions directly, one can apply unequal FEC to different
parts of a scalable bitstream, commonly known as MD-FEC
[12], [13]. One of the advantages of MD-FEC is that it can
be used to generate any number of sub-streams M . For peer-
driven video distribution with MD coding, we use MD-FEC
throughout this paper.



R1 (R2-R1)/2 ... (Rk-Rk-1)/k ... (RM-RM-1)/M

FEC (R2-R1)/2 ... (Rk-Rk-1)/k ... (RM-RM-1)/M

FEC FEC ... FEC ... (RM-RM-1)/M

1 2 k M... ...

R1 R2 Rk RM

Description 1

Description 2

Description M

...

...

...

Fig. 2. MD-FEC algorithm.

We now briefly explain MD-FEC coding. As shown in
Figure 2, the original scalable bitstream from each group
of frames (GoF) is partitioned into M layers, with layer k
allocated Rk −Rk−1 bits. For k = 1, . . . , M , the kth layer is
further divided into k equal-length groups. An (M, k) Reed-
Solomon (RS) code is then applied to k groups to yield
M groups. Description m is formed by packing bits from
group m from all layers. At the receiver, if any m of the
M descriptions are received, the decoder can recover the
first m layers of the original bitstream. The rate and receiver
distortion for MD-FEC is controlled by varying the layer
partition (R1, R2, ..., RM ). (Throughout the paper, we use
mean square error (MSE) as the distortion measure.)

In this paper, we will use M to denote the number of
descriptions and r the bit rate of each description; thus the
total rate of a video with all descriptions is R = Mr. We
now briefly summarize the problem of optimally determin-
ing the layer partition (R1, R2, ..., RM ) for a given M , r
and the description loss distribution [14]–[16]. To this end,
suppose that a client is receiving the M descriptions from
M different server peers, and suppose that these server peers
can fail or disconnect from the network. Let Pm denote the
probability of receiving m out of M descriptions, and let P

denote the probability mass function Pm, m = 0, . . . , M . Let
Dm(R1, . . . , RM ), m = 1, . . . , M , denote the distortion when
m descriptions are received for partition (R1, R2, ..., RM ).
Then the expected distortion of the received video is

D(R1, . . . , RM ) =

M∑

m=0

PmDm(R1, . . . , RM ). (1)

Using the above notation, the MD-FEC optimization prob-
lem can be formulated for given M , r, and P as follows:
determine the optimal layer partition (R1, R2, ..., RM ) for

min D(R1, . . . , RM )

s.t.
∑M

m=1
(Rm−Rm−1)

m M =
∑M

m=1 Rm
M

m(m+1) = Mr

R0 = 0.
(2)

This is a non-linear optimal resource allocation problem. Fast
algorithms for solving this optimization problem have been
presented in [14]–[16]. Throughout this paper we suppose
that the multiple descriptions are created with MD-FEC, and

that the partition (R1, R2, ..., RM ) for a given M , r and P is
obtained by solving the optimization problem (2).

We now proceed to develop a traffic theory for peer-driven
video streaming using descriptions created with MD-FEC.

1) Optimal Coding Parameters: For each video, we would
like to to determine the optimal coding parameters, that is, the
optimal values of M and r. Unfortunately, we cannot solve
this problem in isolation, but must instead solve this problem
in the context of our overall design criterion (see Section II-A).

To this end, we measure video quality in terms of the
distortion between the original video and the reconstructed
video at the client, and translate the target quality into a
target distortion Dmax. Let Q denote the number of ongoing
video sessions (with each session consisting of multiple sub-
streams). Let D(M, r,P) denote the optimal expected distor-
tion for a given number of descriptions M , a given description
rate r, and given probability mass function P. This probability
in general depends on the rate r, the number of on-going
sessions Q and the video substream placement over peers,
collectively denoted by φ. To make this dependency explicit,
we use the notation P (m, M ; r, Q, φ) instead of Pm and write
D(M, r, Q, φ) for D(M, r,P). Recall that our overall design
problem is to maximize the number of sessions subject to the
constraint that on-going video sessions meets the target quality
constraint. This problem can now be restated as find M , r, Q
and φ that solves:

max Q
s.t. D(M, r, Q, φ) ≤ Dmax

(3)

The challenge in solving this problem lies in the fact that
the distortion is affected by the video encoding parameters
M, r and video sub-stream placement φ. To shed some insight
on this complex problem, we now formulate and solve a
simplified and idealized model. After gaining some insights,
we will then return to the original problem.

Consider a homogeneous system with N peers, each with
Bu bps of uplink bandwidth. Each peer is connected with
probability µ and peer connectivity is independent from peer
to peer. Each peer can simultaneously send γ = Bu/r
descriptions (for this illustrative analysis, we ignore the integer
constraint). In this simplified model, we do not consider the
storage limitation at the peers and assume that all descriptions
of all videos are stored in every peer. We can therefore
remove φ from P (m, M ; r, Q, φ) and D(M, r, Q, φ) in this
section. With these simplifications, the problem (3) reduces
to choosing M and r to maximize Q while meeting the
distortion constraint D(M, r, Q) ≤ Dmax. The solution of this
problem determines the optimal coding parameters along with
the optimal admission policy.

To solve this problem, we need to calculate the average
distortion D(M, r, Q) for a given M , r, and Q. To this end, we
first calculate P (m, M ; r, Q) and then apply the optimization
problem (2) to get the optimal average distortion D(M, r, Q).
So we now turn our attention to calculating P (m, M ; r, Q).

Let X be a random variable denoting the total number of
peers in the network that are up at any time; X is binomial



with parameters N and µ. The total number of descriptions
that the system can send at any time is γX . For a given X ,
the number of descriptions that can be sent to each session
is m = γX/Q, with m ranging from 0 to mmax = γN/Q.
In other words, m descriptions are available to each of the Q
sessions when the number of connected peers is X = k =
Qm/γ with γ = Bu/r. This occurs with probability

P (X = k) =

(
N

k

)
µk(1 − µ)N−k, k = 0, . . . , N.

The number of descriptions available to any one session is
at most M . When m < M , we need to use all the available
servers to send m descriptions to each client. When m ≥

M , we only need to send M descriptions to each client
by selecting M out of possible m servers. Therefore, the
probability of having m out of M descriptions available for a
client is

P (m, M ; r, Q) =





P (X = Qm/γ),
m = 0, 1, . . . , M − 1∑γN/Q

l=M P (X = Ql/γ),
m = M

(4)

In summary, under the assumptions of this subsection, for
each given M , r, and Q we can determine if a given parameter
triple (M, r, Q) is feasible as follows:

1) Calculate P (m, M ; r, Q), m = 1, . . . , M , using (4).
2) From P (m, M ; r, Q), m = 1, . . . , M , calculate the

optimal MD-FEC partition (R1, . . . , RM ) and the cor-
responding average distortion D(M, r, Q) from the sub-
optimization problem (2).

3) If D(M, r, Q) ≤ Dmax, then the triple (M, r, Q) is
feasible.

To find the maximum number of sessions, we can search
over all triples (M, r, Q) to find the feasible triple with the
largest value of Q. Because the number of such triples is very
large, we now show that it is optimal to set M = Mmax,
where Mmax is the largest number of descriptions permitted.
Define Q∗(M, r) as the maximum number of sessions that
the network can support to meet the distortion criterion Dmax

given the video parameters (M, r).
Theorem 1: For any given r, Q∗(M, r) is non-decreasing

with M .
Proof: Fix r and M . Let Q∗

1 := Q∗(M, r) and Q∗
2 :=

Q∗(M + 1, r). It suffices to show that Q∗
2 ≥ Q∗

1.
We first prove that the optimized average distortion

D(M, r, Q∗
1) is greater than or equal to the optimized average

distortion D(M + 1, r, Q∗
1). For M descriptions, the optimal

MD-FEC structure is given in the Figure 3(a). Each row
corresponds to one description. The white rectangles represent
the amount of source bits. The shaded rectangles represent the
amount of channel bits. We construct a MD-FEC structure for
M + 1 descriptions in Figure 3(b) as follows:

1) The first M rows in Figure 3(a) are copied to the first
M rows in Figure 3(b);

2) The last row in Figure 3(b) is filled with channel bits
only.

...

...

...

...

...

...

...

...

...


...


...


...


...


...


r r

M M+1

(a) (b)

Source bits

Channel bits

Fig. 3. MD-FEC bit allocation

Based on this construction, the distortion of receiving m
descriptions out of M in Figure 3(a) is equal to the distortion
of receiving m descriptions out of M + 1 in Figure 3(b) for
m ≤ M . Let D̃(m, M + 1, r) denote the distortion when
receiving m descriptions for this construction (which is not
optimized). Thus, we have

D̃(m, M + 1, r) = D(m, M, r), m = 1, . . . , M. (5)

Also, from Figure 3(b), we have

D̃(M + 1, M + 1, r) = D̃(M, M + 1, r). (6)

The probability in equation (4) implies:




P (m, M ; r, Q∗
1) = P (m, M + 1; r, Q∗

1),
m = 1, . . . , M
P (M, M ; r, Q∗

1) = P (M, M + 1; r, Q∗
1)

+P (M + 1, M + 1; r, Q∗
1).

(7)

The average distortion for M +1 descriptions, using relation-
ships (5), (6) and (7), is given by:

D̃(M + 1, r, Q∗
1)

=

M+1∑

m=1

P (m, M + 1; r, Q∗
1)D̃(m, M + 1, r)

=

M−1∑

m=1

P (m, M + 1; r, Q∗
1)D̃(m, M + 1, r) +

[P (M, M + 1; r, Q∗
1) + P (M + 1, M + 1; r, Q∗

1)]

·D̃(M, M + 1, r)

=

M−1∑

m=1

P (m, M ; r, Q∗
1)D(m, M, r)

+P (M, M ; r, Q∗
1)D(M, M, r)

=
M∑

m=1

P (m, M ; r, Q∗
1)D(m, M, r)

= D(M, r, Q∗
1).

Therefore, the optimized average distortion for M descrip-
tions is equal to the average distortion for M +1 descriptions
using the above construction.



The optimal design of MD-FEC for M + 1 descriptions
has an average distortion no greater than the design just
constructed for M + 1. Therefore,

D(M + 1, r, Q∗
1) ≤ D(M, r, Q∗

1) ≤ Dmax. (8)

Finally, by definition of Q∗
2 we have

D(M + 1, r, Q) ≤ Dmax iff Q ≤ Q∗
2. (9)

Thus, from (8) and (9), we have Q∗
1 ≤ Q∗

2.
It follows from the theorem that we should use the highest

possible value of M . In a real network, since we stream
M descriptions from different peers, the total number of
descriptions should be less than the total number of peers in the
network. Furthermore, as M becomes larger, we need to set up
more connections for each streaming session, which consumes
more network and nodal computation resources. Therefore,
within system constraints, there is a practical upper limit on
M .

In summary, in the simplified model, we set M to its max-
imum possible value for each video. We then find the optimal
sub-stream rate r and the maximum number of sessions Q∗

by searching over tuples (r, Q) as described earlier.
2) Average Distortion Analysis for a Gaussian Source: In

this subsection, to gain further insight into fundamental design
issues, we consider the performance limit for an i.i.d Gaussian
source with variance σ2. It is well known that this source has
the following rate-distortion (R-D) function [17]:

Dm(R1, . . . , RM ) = D(Rm) = σ2 · 2−2Rm . (10)

For simplicity, let Pm denote P (m, M ; r, Q). Then the average
distortion of the Gaussian source is :

D(R1, . . . , RM ) =

M∑

m=0

Pmσ2 · 2−2Rm

= P0σ
2 +

M∑

m=1

Pmσ2 · 2−2Rm .

Recall the MD-FEC optimization problem in equation (2).
The optimal solution can be found using the theory of La-
grange Multipliers. Introducing the Lagrange multiplier λ, we
obtain

L(R1, . . . , RM , λ) = P0σ
2 +

M∑

m=1

PmD(Rm)

+λ(

M∑

m=1

αmRm − Mr),

where

αm =
M

m(m + 1)
, m = 1, . . . , M − 1

and
αM = 1.

20 30 40 50 60 70 80 90 100 110 120
101

102

103

104

r (kbps)

D
is

to
rti

on

Q=25
Q=35
Q=55

Fig. 4. Average distortion vs. r with fixed M=32 for a Gaussian source

At optimality, the partial derivatives of the Lagrangian
function with respect to Rm, m = 1, . . . , M , and λ equal
zero. This yields the optimal bit allocation:

Pm

αm

dD(Rm)

dRm
+ λ = 0. (11)

Substituting (10) in (11), we can explicitly determine the
optimal values for MD-FEC partition:

Rm = − log2(
λβm

c
)/2, (12)

where

λ =

[
2−2Mr

∏M
m=1(

βm

c )αm

] 1∑
M

m=1

αm

,

and βm = αm/Pm, c = 2σ2 ln 2.
Based on (12), we can get an explicit expression for (10),

then calculate the average distortion as follows:

D(M, r, Q) = σ2

[
P0 +

λ

c

M∑

m=1

αm

]
. (13)

From (13), the average distortion can be calculated for a
given (M, r, Q). As an example, consider a network with N =
100 peers. Suppose the uplink bandwidth at each peer is Bu =
250 kbps and the peer connectivity probability is µ = 0.9. We
investigate how the average distortion changes as a function
of Q and r for a given M . (We have already proved that the
average distortion decreases with increasing M .) We search
over rates r from 15 kbps to half of the peer uplink bandwidth
125 kbps, and the number of sessions Q from 10 to 100.

From Figure 4, we see that the average distortion is min-
imized at an intermediate rate r. (The actual optimal rate
depends on the number of sessions Q.) This is because the
rate r has two opposite effects: increasing r will increase
the quality improvement due to each received description, but
it will also decrease the number of deliverable descriptions
(Recall that m = XBu/Qr). The optimal r depends on the
actual R-D curve of the source. Typically this occurs at the
point when the R-D curve is in the flat tail region.



101 102 103
10

20

30

40

50

60

70

80

90

100

Dmax

Q
*

M=8
M=32

r=30

r=25

r=20

r=20

r=20
r=20

r=20

r=20

Fig. 5. Dmax vs. Q∗ for a Gaussian source

Recall that Q∗ denotes the maximum number of sessions for
a given target distortion Dmax. For given Dmax and M , we
can search the space of r and Q together to find the maximum
Q. In Figure (5) we plot Q∗ as a function of the distortion
constraint. As we would expect, Q∗ increases with Dmax. For
a given Dmax, when M is larger, the Q∗ is also greater. This
is consistent with the theorem we proved earlier. In Figure 5,
when Dmax = 102, for M = 8, Q∗ is around 10, but for
M = 32, Q∗ is around 55. Thus the number of descriptions,
M , can have a dramatic impact on performance. However,
when Dmax is greater than about 103, the curves for different
M converge.

B. Video Placement

Video placement is another important component for peer-
driven streaming system. Given that each peer has limited
storage, one needs to decide how many copies of a sub-
stream should be made and how to distribute these copies.
Intuitively, the more popular videos should be replicated more
aggressively. Next, we present an optimization procedure to
find the optimal number of copies for a video. Then, we
propose a natural heuristic to place the sub-stream copies in
the server peers.

Assume a homogeneous system with N server peers, each
with uplink bandwidth Bu and connectivity probability µ.
Now, each peer also has a limited storage capacity S. There
are J videos in the network and each video is encoded into
M descriptions. Video j has a size bj (thus a description has a
size of rj = bj/M ) and a demand rate λj . Assuming that the
server selection and placement policy is such that the load on
each server is roughly the same, the load on a server peer is
such that each peer is evenly loaded, thus the average request
rate for a peer is

λ̄ =

∑
j λj

N

Given the request rate λ̄ for a peer, peer uplink bandwidth
Bu and the rate of a sub-stream r, we can model a server
peer with an Erlang-B model, where the number of channels

in the model is Bu/r. From this model, we can calculate the
probability that no channels are available at the server, denoted
by Pblock. Let µ̂ denote the probability that a peer is connected
and also has sufficient uplink bandwidth, then µ̂ = µ(1 −

Pblock).
Suppose Cj copies of each description of video j are stored

on different server peers. The probability pj that a server is
available with a specific description for video j is

pj = 1 − (1 − µ̂)Cj .

The probability that m of M descriptions for video j are
available is

Pjm =

(
M

m

)
pm

j (1 − pj)
(M−m).

Let Dj denote the average distortion for video j, then

Dj =

M∑

m=0

PjmDjm,

where Djm is the distortion of video j when receiving only m
descriptions. Our objective is to determine C1, . . . , CJ in order
to minimize the average distortion, that is, solve the following
optimization problem:

min

J∑

j=1

λjDj

s.t.

J∑

j=1

bjCj ≤ NS (14)

We can solve this optimization problem using dynamic
programming. Let fi(s) =

∑i
j=1 λjDj , where s is the total

storage capacity allocated to video 1 to i. Let f ∗
i (s) denote

the minimum value of fi(s). Then we have

f∗
i (s) = min

0≤Ci≤
s
bi

[λiDi + f∗
i−1(s − biCi)].

The detailed procedure is as follows:

1) At step i, for all values of Ci within [0, s/bi], calculate
Di.

2) Calculate λiDi + f∗
i−1(s− biCi), where f∗

i−1(s− biCi)
is obtained in the previous step (f ∗

0 (s) = 0).
3) Choose the minimum, which is f ∗

i (s). Go to the next
step.

4) The last step is f∗
J (NS) = min0≤CJ≤NS

bJ

[λJDJ +

f∗
J−1(NS− bJCJ )], from which, we can get C∗

J , which
is the optimal number of copies for video J .

5) Go backward to get the optimal value
C∗

J−1, C
∗
J−2, . . . , C

∗
1 .

As described above, the optimal profile (C∗
1 , C∗

2 , . . . , C∗
J )

solves the optimization problem (14).
After we obtain the number of copies of a sub-stream, we

sort the sub-streams in descending order by λi/C∗
i . We assign



an index I(j, m, i) to the ith copy of the mth description for
the jth video. The index is calculated as follows:

I(j, m, i) =

j−1∑

k=1

M · C∗
k + C∗

j · (m − 1) + i.

We put the description indexed by I(j, m, i) on the peer
I(j, m, i) mod N .

C. Admission Control and Server Selection

Recall that we assume a fixed number of peers in the server
pool, and these peers are intermittently connected. When the
number of on-going sessions becomes very large, then the
target video quality for each session cannot be sustained. To
meet the distortion constraint, we set the number of connec-
tions to Qmax. If the total number of sessions in the network
reaches Qmax, then new requests are blocked. A new request
is admitted into the system only if the current number of on-
going sessions is less than Qmax. For an admitted request, the
system will search for the sub-streams and establish as many
connections (up to M ) as possible.

In our peer-driven streaming system, each sub-stream is
stored on a different peer. When a peer requests a video with
M sub-streams, the system will try to find M serving peers
that have the M sub-streams of the video, with each peer
also having sufficient surplus uplink bandwidth to serve one
additional sub-stream. Recall that our overall design objective
is to maximize the acceptance probability while meeting the
distortion constraint. As more sessions are admitted into the
system, more peer upstream bandwidth is consumed. Once
a server peer’s uplink bandwidth is used up, new requests
have no access to any of the sub-streams stored at that server.
Thus, it is desirable to a newly admitted request be assigned
servers in order to even out the server transmission load.
Following this logic, in our simulations we apply the following
server selection policy: for a newly admitted client streaming
session, for each sub-stream in the video, if there are multiple
servers available, the system selects the server that has the
most available uplink bandwidth. We also apply this policy
when replacing a sub-stream after a server disconnect.

This server selection policy, although natural and intuitive,
admittedly leaves room for refinement in future research. In
particular, the selection policy should also take into account
current CPU and disk utilization of each server peer. It may
also take into account estimated future availability of the server
peers, in order to avoid choosing a peer that may, with high
probability, disconnect in the near future. Arguably, it may
also take into account the distance between the client and the
server peers, where distance could be defined in terms of RTT,
one-way delays, number of AS hops, and so on. However,
because we assume a small client buffer, delay variations from
the different servers, each contributing a different substream,
can be smoothed out.

D. Simulation Studies

The previous sections presented analytical models for the
MD system. We proved that the system performance will

improve as the number of descriptions for each video increases
and discussed an optimal scheme to find the number of
copies for each video. In this section, we perform extensive
simulations to study the performance of the peer-driven MD
scheme for real video sources.

1) Video Data: We have J = 50 videos. Each video
has the same size but not the same popularity. Generally,
the popularity of on-demand videos follows a heavy-tailed
distribution. In our simulation, we assume the video popularity
follows a Zipf distribution. Suppose the J videos are sorted
in descending order of their popularities, and the popularity
of video j is λj , where λj is now normalized by setting∑J

j=1 λj = 1. Then λj = j−(1−ρ)/I , where I is the
normalization factor with I =

∑J
j=1 j−(1−ρ), and ρ is a

control parameter. In our simulations, we chose ρ = 0.27
which is a commonly used factor for video on-demand services
[18]. The new requests are modeled as a Poisson process; we
change the rate to get different network loadings. The length
of each video is 2 hours. The number of copies Cj for each
video is obtained as in Section III-B. Each peer stores at most
one description for a particular video.

2) Video Coding: We coded the “Foreman” video sequence
in CIF (352x288) resolution into a scalable bit stream using
the MPEG-4 FGS codec [19], at a base layer rate of 150 kbps.
Each Group of Frames(GOF) has a duration of T = 1 second
and comprises 15 frames. The output bits from each GOF
are converted to M descriptions using the MD-FEC method
described in Section III-A, where M is varied from 4 to 32.
The total rate of a video after MD-FEC is set to be either 512
kbps, 576 kbps or 640 kbps. We precompute the operational
rate-distortion function for “Foreman” and assume that all
the 50 videos have the same characteristics as the “Foreman”
sequence.

3) Peer Parameters: In our simulation, we assume a ho-
mogeneous network with 300 peers. Each peer has the same
connectivity probability, uplink bandwidth and storage capac-
ity. We set the uplink bandwidth of each peer to 250 kbps
and the storage contributed by a peer to 1 GB. Another
important characteristic is the connectivity probability of the
peer. Each peer in the network alternates between “connect”
and “disconnect” status. We model the connected time as
an exponentially distributed random variable with mean α.
Similarly, the disconnected time is another exponentially dis-
tributed random variable with mean β. Then the probability
that a node is connected is α

α+β .
4) Performance Metrics: We use video quality to represent

the performance of service perceived by the requesting peers.
The video quality refers to the average peak signal to noise
ratio (PSNR) over all streaming sessions occurred during our
simulation time. To determine this value, we first determine the
loss probability Pm based on our network simulation for given
M , r, and Q. Then we compute the average distortion in terms
of MSE using the precomputed rate-distortion function for
“Foreman” and the loss probabilities using (1). Finally we con-
vert the MSE to PSNR with PSNR = 10 log10(2552/MSE).



60 80 100 120 140 160 180
18

20

22

24

26

28

30

32

34

Qmax

V
id

eo
 q

ua
lit

y 
(d

B
)

Video bit rate=576
Video bit rate=512

Fig. 6. Video quality vs. Qmax for M = 32

5) Simulation Results: We first examine how the admission
control parameter Qmax affects the system performance. As
expected, the video quality will decrease as Qmax increases.
Figure 6 shows how the video quality changes as Qmax

increases for M = 32 descriptions. We simulated with two
different total rates: 512 kbps and 576 kbps. From the figure,
we can see that when Qmax is small, a higher total rate gives a
better video quality. This is because when Qmax is small, the
network is lightly loaded, which means that the descriptions
are less likely to be lost, and the increase in total rate gives
a better video quality. However, when Qmax is large, as seen
from Figure 6, a smaller total rate provides a better video
quality. As the total rate of each video increases, the overall
video size increases as well. Since the total storage is fixed,
the number of copies for each video will decrease. Also, the
number of sub-streams served per uplink goes down for a
fixed M . Therefore, the overall serving capacity for each video
decreases. If during the streaming interval, a peer goes down, it
is less likely to find a replacement peer. Although the increase
in total rate gives a better video quality, for a higher rate,
each session receives, on the average, a smaller number of
descriptions. Therefore, when the network is heavily loaded,
a smaller total rate has a better video quality. This result is
consistent with the result shown earlier for Gaussian sources.

Figure 7 shows how the video quality varies with the
number of descriptions for a fixed total rate of 512 kbps. We
can see that the PSNR improves as the number of descriptions
increases, but the improvement gradually levels off as M
becomes very large. Note that this is consistent with the
theorem in Section III-A.1, which assumed an idealized model.
One reason that increasing the number of descriptions is
always better is that the MD-FEC redundancy (defined as
the ratio of the total bits divided by data bits) is optimally
determined based on the description loss distribution deter-
mined from the network simulation. When M is large, MD-
FEC can apply unequal error protection with finer granularity
(because the same number of bits is split into more layers),
thus requiring lower total redundancy and leaving more bits for

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

M

V
id

eo
 q

ua
lit

y 
(d

B
)

Qmax=80 
Qmax=120

Fig. 7. Video quality vs. M with a fixed total rate of 512 kbps

5 10 15 20 25 30 35
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

M

R
ed

un
da

nc
y

Fig. 8. Redundancy vs. M

source coding. Figure 8 shows the total redundancy determined
by MD-FEC for different values of M . Another reason is
that when M is small, the rate r is large; since the uplink
bandwidth is limited, some of the bandwidth will be wasted.
For example, in our simulations with uplink bandwidth 250
kbps, when the total rate is 512 kbps and M = 4, the r is 128
kbps. Thus each peer can only serve one streaming session
and the rest of the bandwidth 250 - 128 = 122 kbps is wasted.

IV. LAYERED SYSTEM

In the previous section, we focused on peer-driven video
streaming system using MD-encoded video. With MD coding,
each sub-stream has the same importance. One alternative to
MD coding is layered video. With layered video, the sub-
streams (called layers) have varying importance. For the client
to be able to make use of sub-stream m + 1, the client must
also be receiving sub-streams 1 through m. Thus, with layer-
encoded video, the lower layers are more important than the
upper layers.

As with MD peer-driven streaming system, the design of
a peer-driven streaming system with layered video has four



interacting components: video coding, sub-stream placement,
admission control, and sub-stream server selection. However,
the design for the layered-case is significantly different. We
examine each of these components for layered video in this
section.

A. Video Coding

We encode each video into multiple layers using a MPEG-4
FGS Coder [20]. The FGS coding technique encodes a video
into two layers, a base layer and a scalable enhancement layer.
The base layer contains the most essential quality information.
The enhancement layers provide quality enhancements. FGS
allows the user to adjust the relative sizes of the base layer
and enhancement layer and further allows the enhancement
layer to be broken up into an arbitrary number of hierarchical
layers. As with MD system simulations, we set the base layer
rate to 150 kbps and vary the rate of the enhancement layer.
Given M , we divide the video bits from each GOF into M
identically-sized hierarchical layers. When decoding up to m
layers, denote the associated distortion by Dm = D(R1 +
· · · + Rm), where D(R) is the rate distortion function of the
underlying scalable coder. Let qm denote the probability of
receiving all layers up to layer m. Then the expected distortion
of the received video is

D =

M∑

m=0

Dmqm. (15)

B. Video Placement

In section III-B, we presented the video placement scheme
for the MD system. With the MD system, since each descrip-
tion has the same importance, the same number of copies
should be created for all descriptions of a particular video.
However, for the layered system, since the layers have varying
importance, we should create more copies of the lower layers
than the upper layers in order to increase the likelihood of
delivering the more important lower layers. This way, when a
peer serving a more important lower layer disconnects from
the network, it is more likely to find another peer having the
same layer that is connected to the network and has available
uplink bandwidth to serve this layer. Therefore, the problem
of video placement for the layered system is fundamentally
different as compared to the MD system. In this section, we
describe how to replicate the layered video and place these
copies.

1) Single Video Case: First, we consider the problem of
finding, given the storage capacity constraint, how many
copies should be created for each layer of a particular video.
Consider video j, encoded into M layers with each layer
having size bj . The total storage capacity allocated to this
video is Sj , that is,

M∑

m=1

bjCjm ≤ Sj , (16)

where Cjm, m = 1, 2, . . . , M , is the number of copies of layer
m.

For the layered video, the probability of receiving first m
layers but not the m + 1 layer qjm is,

qjm =

m∏

k=1

pjk(1 − pj(m+1)), m = 0, . . . , M − 1,

and

qjM =

M∏

k=1

pjk,

where pjm is the probability of receiving layer m and, as in
section III-B, is given by pjm = 1−(1−µ̂)Cjm . Then the video
placement problem for a single layered video is to decide the
number of copies for each layer given the constraint in (16),
such that the average distortion is minimized:

min Dj =

M∑

m=0

Djmqjm

s.t

M∑

m=1

bjCjm ≤ Sj (17)

This optimization problem can also be solved by dynamic
programming. Actually, we can rewrite Dj =

∑M
m=0 Djmqjm

as

Dj = ∆0 + ∆1pj1 + ∆2pj1pj2 + . . . + ∆Mpj1pj2 . . . pjM

= ∆0 + pj1[∆1 + pj2[∆2 + . . .] . . .],

where ∆m = Djm − Dj(m−1). Let fm(s) = pjm[∆m +
pj(m+1)[∆m+1 + pj(m+2)[∆m+2 + . . .] . . .], where s is the
storage capacity allocated to layer m up to M , 0 ≤ s ≤ Sj .
Let f∗

m(s) denote the minimum value of fm(s), then we have

f∗
m(s) = min

0≤Cjm≤ s
bj

pjm[∆m + f∗
m+1(s − bjCjm)],

and
f∗

M (s) = ∆MpjM (
s

bj
),

where 0 ≤ s ≤ Sj . The last step gives us

f∗
1 (Sj) = min

0≤Cj1≤
Sj

bj

pj1[∆1 + f∗
2 (Sj − bjCj1)]. (18)

From (18), we obtain C∗
j1, which is the optimal number of

copies of the first layer. Then we can go backward to get
C∗

j2, C
∗
j3, . . . , C

∗
jM . The optimal profile (C∗

j1, C
∗
j2, . . . , C

∗
jM )

solves the optimization problem.
2) Multiple Videos Case: In this section, we consider how

to obtain the optimal number of replicas of a sub-stream for
the multiple videos case. Using the same notation as in the
previous sections, the storage constraint is:

J∑

j=1

M∑

m=1

bjCjm ≤ NS.

The average distortion over all videos is

D =

J∑

j=1

λjDj .



where Dj =
∑M

m=0 Djmqjm. Like before, our objective is to
minimize the average distortion while satisfying the storage
constraint,

min D =

J∑

j=1

λjDj

s.t.

J∑

j=1

M∑

m=1

bjCjm ≤ NS (19)

Similarly to the MD system, we can solve this optimization
problem using dynamic programming. The only difference is
that for the MD system, given the storage capacity allocated
to video j, we can calculate Dj directly. But for the layered
system, Dj should be optimized as in the single video case.

Since the layers have varying importance, the placement
policy for the layered video is different from the MD system.
In order to balance the load, clearly the more important lower
layers should not be stored on the same peer. Therefore, at the
beginning, we place the first layer of all videos onto different
peers, then the second layer, and so on. To this end, we sort
the videos in descending order by λj , and assign an index to
the ith copy of the mth layer for the jth video. The index is
given by

I(j, m, i) =

J∑

k=1

m−1∑

t=1

C∗
kt +

j−1∑

k=1

C∗
km + i.

The layer indexed by I(i, m, j) is placed on the peer
I(i, m, j) mod N . However, note that we have the natu-
ral restriction that no two layers from the same video are
stored on the same peer, for a given layer m, if the peer
I(i, m, j) mod N already stores a lower layer of video j,
then we go to the next peer that does not store a layer for
video j.

C. Admission Control and Server Selection

As in MD system, we use the same admission control and
server selection policy (described in Section III-C) for peer-
driven streaming system with layered video in our simulations.
When a new request arrived, if the current number of on-
going sessions is less than Qmax, the request is admitted.
For an admitted request, the system searches for all layers
of this video. However, for a layered video, if layer m is
not available, then all layers high than this layer are useless,
which means that the system does not need to search for layers
higher than m. For each layer in the video, the system selects
the server with the most available uplink bandwidth. During
the streaming session, if a peer serving layer m disconnects
and the system cannot find a replacement peer, then the
connections streaming layers higher than m are terminated.

V. COMPARISON OF THE MD AND THE LAYERED SYSTEM

In the previous sections, we studied two classes of systems:
systems which use multiple description coding in which all
sub-streams (called descriptions) have equal importance; and
systems which use layered coding, in which the sub-streams

(called layers) have varying importance. As we have seen,
the design for the layered-case is significantly different from
the MD system. With the MD system, all sub-streams can
be treated equally. This greatly simplifies the system design.
On the other hand, the layered system must provide unequal
treatment to the sub-streams, to increase the likelihood of de-
livering the more important sub-streams. For example, for sub-
stream placement, for the MD encoded video, each description
has the same number of replicas. By contrast, the optimal
scheme replicates more aggressively the lower layers than the
upper layers for the layered video. In this section, we compare
the performance of the MD system using the MD-FEC codec
and the layered system with the same simulation settings as
described in Section III-D. The total rate for both MD and
layered video is set to be 512 kbps.

Figure 9 shows the comparison between MD-FEC and lay-
ered system with varying peer connect probability, where each
plot represents one combination of Qmax and replacement
time. We fix the mean of the average connected time α to
be 4 hours and obtain different peer connect probability by
changing the mean of the average disconnected time β. The
replacement time is defined to be the time to find a replacement
peer if a server peer disconnects during the streaming session,
and the video quality is degraded during this time. In both
MD-FEC and layered systems, we use the video placement,
admission control and server selection policies described in
Section III and Section IV. Then we choose the optimal M
which achieves the best video quality.

As we would expect, the video quality improves as the
peer connect probability increases, for both MD-FEC and
layered system. When the peer connect probability is small,
the performance of the MD-FEC system is much better than
the layered system. As peer connect probability increases,
the performance of the layered system increases at a rate
faster than the MD system. With zero replacement time, as
the peer connect probability increases beyond a certain point,
the layered system outperforms the MD system. As we know,
layered coding requires a lower bit rate to reach the same video
quality as a MD-FEC codec. Therefore, when the network
is more reliable, layered coding is more efficient than MD-
FEC. However, when the replacement time increases (4 s),
the performance of the MD system is always better than the
layered system. Therefore, the time to find a replacement
peer has a bigger impact on the layered system than the MD
system. The reason is that MD-FEC has inherent protection
against sub-stream loss. When a single sub-stream is lost for
MD-FEC, the video quality is only slightly affected. But for
layered coding, all layers higher than this sub-stream cannot
be decoded at the receiver.

VI. RELATED WORK

Several schemes have been proposed for peer-driven muti-
cast streaming [21]–[26]. Most of these schemes build multi-
cast trees over the peers for streaming the video content stored
in a central server; the peers relay the video originating from a
central server. Of these research efforts, CoopNet [22], which



0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
26

27

28

29

30

31

32

33

34

Peer connect probability

V
id

eo
 q

ua
lit

y 
(d

B
)

MD−FEC
Layered coding

(a) Replacement time = 0 s, Qmax = 80

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
20

22

24

26

28

30

32

34

Peer connect probability

V
id

eo
 q

au
lit

y 
(d

B
)

MD−FEC
Layered coding

(b) Replacement time = 4 s, Qmax = 80

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
24

25

26

27

28

29

30

31

32

33

Peer connect probability

V
id

eo
 q

au
lit

y 
(d

B
)

MD−FEC
Layered coding

(c) Replacement time = 0 s, Qmax = 120

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
18

20

22

24

26

28

30

32

Peer connect probability

V
id

eo
 q

ua
lit

y 
(d

B
)

MD−FEC
Layered coding

(d) Replacement time = 4 s, Qmax = 120

Fig. 9. Comparison between MD-FEC and layered system with varying peer connect probability

uses MD coding to code the source into several sub-streams,
has some similarities with our scheme. It builds multiple
distribution trees from sources to receivers, with each tree
disseminating a separate description of the media content.
A receiver can receive all descriptions with best quality in
the best case. A peer failure only causes its descendant peers
to lose a few descriptions with graceful quality degradation.
CoopNet is multicast service, with all the multicast trees
rooted at a single server. Our system, which does not employ
multicast trees, provides a fundamentally different video-on-
demand service.

In P2Cast [27], [28], peers arriving close in time form a
session or a multicast tree. For clients that arrive later than
the first client in the session, the missing initial part can be
retrieved or patched from the server or other peers that have
already cached the initial part. Thus, peers help each other
when they watch the same video. To join a session, a peer
needs to traverse the tree peers downward from the source until
finding one patch server and base stream server with enough
bandwidth and/or small delay. Unlike our scheme, P2Cast does
not employ sub-streams to distribute videos.

However, many of these multicast approaches, if applied
using edge peers, may not feasible with the current Internet.

Current residential Internet access is typically asymmetric
in the upstream and downstream bandwidth, with a peer
having more downstream than upstream bandwidth. Upstream
bandwidth of a peer determines its out-bound bandwidth. Al-
though this asymmetry is beneficial for downloading content,
it severely limits the bandwidth of a server peer. Since these
peers, which may be part of multicast trees, have large out-
going bandwidth requirements, they may not be able to satisfy
the bandwidth requirements of video streaming.

The Peersreaming [29] video-on-demand system has some
similarities to our system. In Peersreaming [29], the media
stream is broken up into “data units,” and each “data unit” is
encoded using a high-rate Reed-Solomon code. The client peer
first searches for other peers that have a copy (or a portion
of a copy) of the desired video. Then the client peer sets
up TCP connections to the discovered peers and, for each
data unit, the client determines which blocks to download
from the connected peers. In our schemes, with MD coding
and layered coding, there is graceful degradation of quality
when substreams are lost, whereas with Peerstreaming there
is complete loss of video if the client does not receive all
blocks. Our work is complementary to Peerstreaming in that
we explore different forms of coding, for which we develop a



traffic and placement theory.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel video streaming scheme. Unlike
an infrastructure-based architecture, our approach is based on
a peer-driven architecture, where each peer stores and streams
videos to the requesting client peers. We encode each video
into multiple sub-streams and place each sub-stream on a
different peer. If a serving peer disconnects in the middle of a
streaming session, the system searches for a replacement peer
that stores the same video sub-stream and has sufficient uplink
bandwidth. We have developed a teletraffic and placement
theory for optimizing the performance of both MD and layered
systems, compared the performance via simulation of the two
optimized schemes, and obtained insights into the range of
parameters for which one system performs better than the
other.

We have not considered the effect of pre-fetching on either
the MD or the layered system. By pre-fetching, the system
can avoid the loss of a sub-stream upon a peer disconnect.
One could think of a system that uses a proactive buffering
strategy where the streaming rate is increased to ensure that
a minimum amount of buffer space is occupied at all times.
By maintaining a certain buffer size clients could easily cope
with churn since they have enough time to react in case of peer
disconnects. But prefetching will increase the play-out delay,
increase the memory requirement at the client, and complicate
the overall system design. As an extension of the current work,
we plan to investigate the design and performance evaluation
of the system with pre-fetching.

Acknowledgment: This work is supported in part by the
National Science Foundation under Grant CNS-0435228, and
also in part by the New York State Center for Advanced
Technology in Telecommunications (CATT).

REFERENCES

[1] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in Proc.
of 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), Heidelberg, Germany, November 2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc.of ACM SIGCOMM’01,
San Diego CA, USA, August 2001.

[3] I. Stoica, R. Morris, M. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” in Proc.
of ACM SIGCOMM’01, San Diego, CA, USA, August 2001.

[4] B. Y. Zhao, J. D. Kubiatowicz, and A. Joseph, “Tapestry: An infrastru-
ture for fault-tolerant wide-area location and routing,” UCB, Tech. Rep.
CSD-01-1141, Apr. 2000.

[5] P. Decuetos and K. Ross, “Adaptive rate control for streaming fine-grain
scalable video,” in International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV) 2002, Miami,
May 2002.

[6] D. Saparilla and K. Ross, “Optimal streaming of layered encoded video,”
in IEEE Infocom 2000, Tel Aviv, March 2000.

[7] [Online]. Available: http://ipmon.sprint.com/delaystat
[8] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft, “POP-Level and

Access-Link-Level Traffic Dynamics in a Tier-1 POP,” in ACM SIG-
COMM Internet Measurement Workshop (IMW), San Francisco, Nov.
2001.

[9] Y. Wang, R. Reibman, and S. Lin, “Multiple description coding for video
delivery,” Proceedings of the IEEE, vol. 93, pp. 57–70, 2005.

[10] A. Reibman, H. Jafarkhani, Y. Wang, and M. Orchard, “Multiple
Description Coding for Video using Motion Compensated Prediction,”
IEEE Trans. Circuit and System for Video Technology, pp. 193–204,
Mar. 2002.

[11] Y. Wang and S. Lin, “Error resilient video coding using multiple
description motion compensation,” IEEE Trans. Circuit and System for
Video Technology, vol. 12, pp. 438–453, June 2002.

[12] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,” IEEE Trans. Inform. Theory, vol. 42, pp. 1737–
1744, Nov 1996.

[13] G. Davis and J. Danskin, “Joint source and channel coding for image
transmission over lossy packet networks,” in Proc. SPIE Conf. Wavelet
Applications to Digital Image Processing, Denver, CO, August 1996.

[14] R. Puri and K. Ramchandran, “Multiple description source coding
through forward error correction codes,” in 33rd Asilomar Conf. Signals,
Systems and Computers, Oct. 1999.

[15] A. E. Mohr, R. E. Ladner, and E. A. Riskin, “Approximately optimal
assignment for unequal loss protection,” in Proc. IEEE Int. Conf. Image
Processing, Vancouver, BC, September 2000.

[16] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Packet loss protection of
embedded data with fast local search,” in Proc. IEEE Int. Conf. Image
Processing, Rochester, NY, September 2002.

[17] T. M. Cover and J. Thomas, Elements of Information Theory. John
Wiley and Sons, Inc, 1991.

[18] J. Chu, K. Labonte, and B. Levine, “Availability and popularity measure-
ments of peer-to-peer file systems, Tech. Rep. Technical report 04-36,
June. 2004.

[19] M. code, “MPEG4 verfication model version 18.0,” in ISO/ IEC
JTC1/SC29/WG11 Coding of Moving Pictures and Audio, January 2001.

[20] H. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-grained
scalable video coding method for multimedia streaming over ip,” IEEE
Trans. on Multimedia, March 2001.

[21] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media
over a peer-to-peer network,” Stanford University, Tech. Rep., 2001.

[22] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in Proceedings of NOSSDAV, 2002.

[23] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth content distribution in a
cooperative environment,” in Proc. of 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, February 2003.

[24] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in Proceedings of ACM Sigcomm, August 2002.

[25] D. Tran, K. Hua, and T. Do, “ZIGZAG: an efficient peer-to-peer scheme
for media streaming,” in Proceedings of IEEE INFOCOM 2003, San
Francisco, CA, USA, March 30-April 3 2003.

[26] X. Zhang, J. Liu, B. Li, and P. Yum, “DONet: A data-driven overlay
network for efficient live media streaming,” in Proc. of IEEE INFOCOM,
2005.

[27] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: peer-to-peer
patching scheme for VoD service,” in Proceedings of the 12th World
Wide Web Conference (WWW-03), Budapest, Hungary, May 2003.

[28] ——, “A peer-to-peer on-demand streaming service and its performance
evaluation,” in Proceedings of 2003 IEEE International Conference on
Multimedia and Expo (ICME 2003), Baltimore, MD, July 2003.

[29] J. Li, “Peerstreaming: A practical receiver-driven peer-to-peer media
streaming system,” Microsoft Research, Tech. Rep. MSR-TR-2004-101,
September 2004.


