
Efficient Substream Encoding for
P2P Video on Demand

Zhengye Liu†, Yanming Shen†, Shivendra Panwar†, Keith W. Ross‡ and Yao Wang†
†Department of Electrical and Computer Engineering
‡Department of Computer and Information Science
Polytechnic University, Brooklyn, NY, USA 11201

Abstract— In a P2P VoD system, the rate at which peers
receive video fluctuates due to peer churn. Although scalable
video coding has the potential to cope with rate fluctuation,
existing scalable video schemes have not been designed for P2P
systems for which substreams emanate from different supplier
peers. In this paper we propose a new multi-stream coding
and transmission scheme, Redundancy Free Multiple Description
(RFMD) Coding and Transmission, that has been specifically
designed for P2P VoD systems. Unlike layered video, with
RFMD all substreams have equal importance. Thus, video quality
gracefully degrades as substreams are lost, independently of
which particular substreams are lost. Furthermore, only the
source bits are collectively transmitted by the supplying peers,
allowing more substreams to be simultaneously transmitted in
the system. Finally, RFMD can be used to create any number of
descriptions. We conduct an extensive and fair simulation study,
comparing single-layer coding with high-rate erasure coding,
scalable layered encoding, multiple-description encoding, and
RFMD. The simulations show that RFMD performs best in a
variety of representive scenarios.

I. I NTRODUCTION

Video-on-demand (VoD) over the Internet has become very
popular in recent years. VoD is currently being provided by
numerous television networks and news sites, as well as by
video sharing sites such as YouTube [1] and Google Video
[2]. Most of the VoD being delivered today is short-length, low
bit-rate clips; for example, YouTube videos today are typically
less than 10 minutes in length and have a bit rate under 200
kbps. In the near future, we expect a high demand for higher-
bit rate (potentially DVD quality) and longer videos (including
full length movies) streamed over the Internet.

The vast majority of the VoD being delivered today over
the Internet emanates from dedicated infrastructure servers.
But as the demand, bit-rates, and video lengths increase, it
will become costly to meet the demand, both in terms of
bandwidth costs and server hardware costs. Thus, much of the
Internet VoD will likely be streamed via P2P architectures, in
which the consumers of the VoD content are also the suppliers
of the content. Since, in P2P VoD architectures, each peer
contributes its own storage and network bandwidth resources
to the system, the upload capacity of the system scales as the
demand increases.

Most P2P file distribution systems today, including BitTor-
rent [3] and eDonkey [4], employswarmingfor downloading.
With swarming, the downloader obtains different pieces of the
file in parallel from multiple peer sources and reassembles

the entire file once it has all the pieces. Swarming can
significantly improve download performance, particularly if
the downloader’s download bandwidth exceeds the upload
bandwidths of individual uploading peers. P2P live video
streaming systems, such as PPLive [5] [6] and ppstream [7],
also employ swarming. Swarming is critical for live video
since the video rate often exceeds the upload capacity of a
residential peer.

Swarming is also useful for P2P VoD. When a peer makes
a request for a video, it can receive video substreams from
multiple peers in parallel, reassemble and decode the sub-
streams, and playback the video to the user. Just as in P2P
live streaming systems, swarming is critical in P2P VoD, since
individual supplying nodes may not be able to upload the video
at the video rate. But in order to receive multiple streams, at
the time of request there must be multiple peers that(i) have
portions of the requested video, and(ii) have available upload
capacity. Indeed, even though a peer may store a portion of
the requested video, all of its upload capacity may currently
be exhausted by other ongoing video streaming sessions.

In a P2P VoD system, the receiving peer would like to
receive the video from all of its supplying peers at an aggregate
rate (averaged over a short time scale) that exceeds the
compressed video rate, which we denote byr. However, the
rate at which a peer receives video will fluctuate and may
drop below r. These fluctuations will not likely be due to
congestion in the upper-tier ISPs, but instead to the peer churn
in the system [8]. Indeed, every active peer in the system
is both a consumer and supplier of upload bandwidth, with
different peers (residential peers, institutional peers, and so
on) contributing different amounts of upload bandwidth and
different peers making available portions of different videos.
As peers come and go, the ratio of the upload-bandwidth-
supply to the upload-bandwidth-demand for a given video
fluctuates. Thus the rate at which a peer can receive a video
will fluctuate because of the churn.

As with traditional client-server streaming, buffering and
playback delays can be used to mitigate the effects of short-
term variations in bandwidth availability. However, if the
demand for upload bandwidth exceeds the supply for a long
period of time, buffering is ineffective. Even with buffering,
one or more of the receiving peers will receive the compressed
video at a rate less thanr during the bandwidth deficit period.

As with traditional client-server streaming, to deal with

long-term fluctations in available bandwidth, it is natural to
consider multi-stream coding techniques where receiving a
few substreams can lead to an acceptable quality, and receiving
more streams can lead to better quality. Such multi-stream cod-
ing techniques include layered coding and multiple description
coding. However, because the receiving node receives video
from multiple sources (and not just from one, as in client-
server systems), the design of multi-stream coding and delivery
schemes for P2P VoD brings forth many new challenges. In
particular, layered coding is vulnerable to peer disconnects
due to the recursive dependency of layers. And MDC, while
giving equal importance to each stream, typically introduces
significant redundancy across streams.

In this paper we propose a new multi-stream coding and
delivery scheme that has been specifically designed for P2P
VoD systems. We refer to this scheme as Redundancy-Free
Multiple Description Coding and Transmission, or more sim-
ply as RFMD. With the RFMD, all substreams have equal
importance, unlike layered video. Thus, video quality grace-
fully degrades as substreams are lost, independently of which
particular substreams are lost. Furthermore, with RFMD, only
source bits contributing to reducing video distortion are trans-
mitted by the supplying peers, so that there is no redundancy
as is in conventional MDC. This lack of redundancy can
significantly increase the streaming capacity of the P2P VoD
system.

After describing and analyzing RFMD, we carry out an
extensive simulation study that compares single layer coding
with high-rate erasure codes, layered coding, a traditional
MDC scheme known as MD-FEC, and RFMD. Careful atten-
tion is placed on making the comparisons as fair as possible.
We find that RFMD provides the best overall performance as
compared to other coding schemes. The contribution of this
paper is twofold:
• A new multi-stream coding and transmission scheme

tailored for P2P streaming systems, dubbed RFMD.
• A fair simulation study involving heterogeneous peers

with peer churn, which compares single layer coding with
high-rate erasure codes, layered coding, MD-FEC, and
RFMD.

This paper is organized as follows. In Section II, we
briefly describe the P2P VoD context. Section III describes
the traditional substream schemes. Section IV proposes the
redundancy-free MDC design. We study the performance
of our proposed design via simulations in Section V, and
Section VI concludes this paper.

II. T HE P2P VOD CONTEXT

There are many possible business models for P2P VoD,
and for each of those models the distribution, replication, and
search for video substreams could be done differently. Here,
we describe a broad P2P VoD context that focuses on the
swarming and streaming, and should be applicable to most
P2P VoD designs.

As indicated in the Introduction, our focus is on multi-
stream video schemes, such as layered encoded video and

multiple-description video. Each video is coded into a number
of substreams and the substreams (or portions of the sub-
streams) are scattered over all the peers. (Depending on the
VoD design, the substreams may either be pushed into the
various peers in a coordinated fashion [9]–[13], or may be
pulled into the peers in an on-demand fashion [14], [15].)
Since a peer has limited storage, it does not store every
substream of every video.

When a peer wants to see a video (the receiving peer), the
“system” provides the peer with a list of peers containing one
or more substreams (supplier peers). The receiving peer then
requests and receives substreams from one or more of the
supplier peers. A supplying peer can service a receiving peer
if (i) it has the requested substream (or at least portions of it)
and (ii) it has sufficient available upload bandwidth to send
the substream at the substream rate. The receiving peer caches
the substreams it receives (or the portions of the substreams),
so that it can be a supplier of that video in the future. After a
small playback delay, the receiving peer decodes, assembles,
and playbacks the substreams it receives.

While the user is watching the video, the receiving peer
may lose or gain new substreams. It may gain new substreams
because it discovers a supplier peer that stores a missing
substream and also has sufficient available upload bandwidth
for delivery. It may lose a substream because the supplier peer
providing the substream may stop delivering it. Generally, as
the ratio of the available upload capacity of the supplier peers
to the demand of the receiving peers increases, the receiving
peers should be able to gain new substreams; similarly, as this
ratio decreases, the receiving peers should lose substreams.

When a receiving peer loses a substream, it will naturally
attempt to find a replacement supplier peer that can provide the
lost substream. Even if such a supplier peer is present, there
will be a delay until receiver peer receives the replacement
substream, since the appropriate substitute peer must be found
and then instructed to deliver the substream to the receiving
peer. Depending on the length of this delay, and whether
the receiving peer has a reservoir of pre-fetched substream
content, there may be a “gap” in the playback of the substream.
We note that, in some designs, it may be possible to find the
substitute peer almost immediately, as the system may be able
to continuously track the content and availability of all active
peers. The searching and tracking of peers is orthogonal to the
video delivery problem, and will not be considered further in
this paper.

In designing a multi-stream coding scheme for P2P VoD,
we therefore have the following objectives:
• The coding scheme should allow for smooth quality

variation as the peers churn (causing the supply and
demand for upload bandwidth to evolve over time).

• When a supplier peer suddenly stops providing a sub-
stream, and the receiving peer does not have a sufficient
reservoir of that substream buffered locally, quality degra-
dation should be minimal until a substitute supplier with
the same substream begins to deliver the substream.

• The coding should be efficient, that is, it should carry

little or no redundancy so that the system as a whole can
provide as many substreams as possible of the different
videos to all the receiving peers.

A. Related work

To date, a few different coding schemes have been proposed
and compared for P2P video streaming [9], [14], [16]–[18].
CoopNet uses MD-FEC to code the source into several sub-
streams [9]. It builds multiple multicast trees from sources to
receivers, with each tree disseminating a separate description
of the media content. CoopNet is a multicast service rather
than an encoding scheme, with all the multicast trees rooted
at a single server. The authors suggest employing MDC in P2P
multimedia streaming, but they do not really design an MD
coding scheme specifically for P2P VoD. In PeerStreaming
[14], the author proposes to use high-rate erasure coding
to generate parity substreams instead of replicating directly.
The media stream is broken up into “data units”, and each
“data unit” is encoded using a high-rate Reed-Solomon code.
Specifically, a data unit is divided intoK blocks, then RS
coding is employed to generateN − K parity blocks. The
receiving peer can recover the original data unit from any
K blocks. In PeerStreaming, the original media stream is
non-scalable, so that a data unit is non-decodable if less
thanK blocks are received. In [16], the authors compare the
performance of multiple description streaming in P2P network
and CDNs. But they only consider using two descriptions. In
our previous work [17], [18], we compare the performance of
MD-FEC and layered coding under different scenarios. To our
knowledge, the current paper is the first paper to develop an
multi-stream video coding and transmission scheme for P2P
VoD.

III. T RADITIONAL SUBSTREAM GENERATION

In this paper we consider a number of different mechanisms
for generating substreams for P2P VoD systems. Throughout
this paper, letM denote the number of substreams of a video.
We now briefly review layered video and MD-FEC.

A. Layered coding

Layered coding generates multiple layers with recursive
dependency. Specifically, layerk + 1 can only be decoded if
layers 1 throughk are available. MPEG-4 Fine Grain Scalable
(FGS) [19] is a popular scheme for creating layered coding.
An FGS encoder encodes the video into a base layer and a
scalable enhancement layer. The enhancement layer is then
sliced intoM−1 substreams, creating a total ofM substreams.
The latest scalable coding standard, known as SVC [20], also
has a base-layer and a successfully refinable enhancement
layer. With FGS or SVC, the rate of the base layer must be
sufficiently high so that an acceptable quality can be recovered
from the base layer only. Compared to a single-layer coder,
the distortion achievable by a scalable coder at the same rate
(above the base layer) is typically higher. For example, FGS
(resp. SVC) has a significantly lower coding efficiency than
the MPEG-4 single layer coding (resp. H.264).

���

�����

������
	�������

�
		

�
	��

�����

����	

�����

����	

�����

����

�����

�����

��	��

(a)

(b)

(c)

��� �����	���

���

�����

�������	�������

��	�	

��	�

�����

����	

�����

Fig. 1: MD-FEC encoding procedure.

B. Multiple Description FEC

MD-FEC is a popular scheme for multiple description
encoding with many descriptions. Throughout this paper, we
will use MD-FEC for the multiple description video. We now
explain MD-FEC coding [21], as it forms the basis of our
novel scheme, described in the next section.

The first step of MD-FEC is to encode each Group of
Pictures (GOP) intoM layers, which can be accomplished
with a scalable video coder such as MPEG4 FGS or SVC.
This is shown in Fig. 1 (a) for the case of 4 layers. Denote by
L1, L2, L3, andL4 for the bits in these 4 layers. These layers
are in general of varying size. Thekth layer is then further
divided intok equal-length groups. Thus, as shown in Fig. 1
(b), layer two is broken into two equal-size groupsL21 and
L22; layer three is broken into three equal-size groupsL31,
L32 and L33; and layer four is broken into four equal-size
groupsL41, L42, L43 andL44. Then a(M, k) Reed-Solomon
(RS) code is applied to thek groups from layerk to yield M
groups. TheM2 groups are then arranged as in Fig. 1 (c). For
layer 1, the RS step creates three redundant groupsR11, R12,
andR13; for layer 2 it creates two redundant groupsR21 and
R22; and for layer 3 it creates 1 redundant groupR31. (For
layer 1,L1 = R11 = R12 = R13.) Thus, due to the RS code,
if any k of theM groups is received for layerk, then layerk
can be decoded.

After creating theM2 groups, the substreams are generated
by combining the groups across the rows in Fig. 1 (c). For
example, the first substream is created by combiningL1, L21,
L31 and L41; the fourth substream is created by combining
R13, R22, R31 andL44. From this construction, it is easy to
see that the substreams have the following desirable properties:
• Each substream has the same bit-rate;
• In order to recoverk layers from the original layer

encoded video, the receiver needs to receive anyk of the
M substreams. Thus each stream is of equal importance.

The number of bits assigned to each layer (in the first step of
the procedure) can be optimized to minimize distortion if the
characteristics of peer availability are known in advance. One
nice feature of MD-FEC as a multiple description technique is
that it can generate any number of substreams (anyM) from
a scalable stream generated by any scalable coder, which is
desirable for P2P VoD. When a supplying peer disconnects,

(a) (b)
(c)

(d)

Fig. 2: Comparison of different coding schemes for P2P VoD system (a) Layered coding; (b)MD-FEC; (c)Single layer; (d)
The desired scheme.

the video quality is not severely degraded while waiting for a
substitute peer to supply the substream.

Note that with MD-FEC, when a receiver receivesk of the
M substreams, only a fraction of bits are used (for all values
of k). For example, in the caseM = 4, suppose the receiver
receives only the first substream, which contains groupsL1,
L21, L31 and L41; then only L1 is of use (providing the
base layer of the layered video) and the remaining groups are
wasted transmissions. Similarly, suppose both substreams 1
and 4 are received, giving groupsL1, L21, L31, L41, R13,
R22, R31 andL44; then onlyL1, L21 andR22 are used and
the remaining groups are wasted. Thus, another property of
MD-FEC is that it is inefficient in that it wastes significant
upload bandwidth resources.

C. Inadequacies of existing schemes

Fig. 2 (a), (b) and (c) illustrate how layered coding, MD-
FEC and single layer coding schemes, respectively, work in a
P2P VoD system. In this comparison,M is set to 4 and we
assume that each supplying peer stores at most one substream.
For each scheme, we consider a scenario that only three
supplying peers are available in the system. The rectangles
with black background indicate that the substreams are not
available. The rectangles with the white background indicate
that the substreams are received but can not be decoded. The
green shadow in the rectangle indicates the portion of data
that can be used for decoding and has contribution to video
quality.

For layered coding, as shown in Fig. 2 (a), although the re-
ceiving peers can find three peers, since layer 2 is unavailable,
layer 3 and layer 4 are useless. As illustrated in Fig. 2 (b), for
MD-FEC, if the receiving peer can find three supplying peers
with different descriptions, no matter which descriptions they
are, each is able to contribute some video source data. But
since some redundancy is transmitted, only a portion of the
received data can be used for video source decoding.

For the single layer scheme, we assume the video is encoded
into a single layer, and each GOP is divided sequentially into
four blocks, so that earlier blocks contain data from earlier
frames in the GOP. Each peer holds one block from each GOP.
As shown in Fig. 2 (c), the second block is not available, so
that frames contained in following blocks are not decodable
either (assuming the video is coded using temporal prediction),
and only the frames contained in the first block can be decoded
and frozen until the next GOP.

Fig. 2 (d) shows the ideal coding scheme. If the receiving
peer can locateany m (m < M) peers holding the requested

����������

�	��
�������������� ���

��� ���������������

������ ���

�!��"�����"�#$��%�&

Fig. 3: The redundancy and unhelpful bits in MD-FEC when
only two descriptions are available.

video, it can decode the firstm layers. Moreover, all of the
bits transmitted by the supplying peers are useful; so that there
is no wasted bandwidth. In the next section, we design such
an ideal coding scheme for P2P VoD.

IV. REDUNDANCY-FREE MD-FEC SCHEME

Our RFMD scheme is based on three observations.

• First, for MD-FEC, to make each description have equal
importance,redundant bitsare transmitted. Also, some
unhelpful bitsare transmitted. For example, whenM = 4,
and only two descriptions are available for a receiving
peer, the redundant and unhelpful bits are marked in
Fig. 3.

• Second, the unhelpful bits are not useful for handling
sudden peer disconnects. When one supplying peer dis-
connects, more unhelpful bits are introduced. Therefore,
the unhelpful bits should not be transmitted until some
additional supplying peers are connected.

• Third, although the redundant bits are useful when a
supplying peer disconnects during the streaming session
and the substitute streams can not be quickly found, it
does not have to be always transmitted. VoD does not
have as rigid delay constraints as interactive multimedia
applications. When a supplying peer disconnects, the
receiving peer can detect it quickly and then instruct the
remaining supplying peers to adjust their transmissions.

In summary, in P2P VoD, which does not have stringent
delay constraints, it is not necessary to always transmit all the
encoded bits; the amount of redundancy and unhelpful bits
that are transmitted should adapt to the number of available
supplying peers.

We now describe new MDC scheme, which we dub
Redundancy-Free MD coding and transmission (RFMD). This
scheme is derived from traditional MD-FEC coding (see
Section III-B). The coding procedure is as follows:

• We adopt MD-FEC coding to generateM descriptions.
• If m supplying peers are available, then each supplying

peer only transmits a fractionk/m portion of the data
for layer k, wherek = 1, . . . , m; each supplying peer
transmits different portion of layerk data.

���
�����

������
	�������

�
	�	
�
	�

�����
����	
�����

����	
�����
�����

�����
�����

��	��

���
��������� �"!$#
%&!(')��!*�,+�-
+�!$.*+0/�.*�

%1�2+��3� 45!6%7%&!$�
8

%"�9+)� �34:!;%<%=!$�
8

>�? ':������� �=!$#�%&!('0�
�@+��9�:+�-
+�!$.*+0/�.*�

>BA �2���:�������3�=!C#�%=!6'0�
�@+��9�:+D-�+�!$.*+E/.(�

F ')G������������"!$#�%=!*'����H+��9�:+�-
+)!C.*+0/�.*�

IKJMLNF0OQP �
'��!$� 8

(a)

(b)

(c)

(d)

(e)

Fig. 4: Redundancy-free transmission of MD-FEC data (M=4):
(a) shows the stored data in each description, with purple color
representing the source bits and gray color the redundancy bits;
(b-e) shows the portion of the data (purple) delivered by each
supplying node.

����� ����� ����� �����

����� ����� �����

����� ����� �����

����� ����� �����

�����	��
�����

�����������

�����	��
������

�����������

�������
!�"�#�

�����$�#�!%

�&�'���
!�"�(�

�����$�#��)

�����

�����

�����

���+*-,'��.�/0�.1��23�

���+*-,'��.�/0�.1��24)

���+*-,'��.�/0�.1��2�%

���+*-,'��.�/0�.1��25�

Fig. 5: Segmentation for redundancy-free transmission

• The receiving peer combines the receivedm substreams
and obtains layerk (k = 1, . . . , m) by (M, k) FEC
decoding; hence, the lowestm layers are recovered.

Fig. 4 shows an example whenM = 4. The shaded
areas indicate the portion of data that will be transmitted.
For example, if three descriptions are available, then for each
description, one-third of the data from the first layer (original
data or parity data of the first layer), two-thirds of the data
from the second layer, and all data from the third layer are
transmitted. Thus, all first three layers can be recovered. Note
that each description has equal importance and the same bit
rate, and neither redundancy nor unhelpful bits are transmitted.

Because the portion of data transmitted at each supplying
peer depends on how many peers are available, generally, the
transmission rate at each peer is not constant. Constant bit rate
can be achieved with the appropriate rate partitioning for the
different layers before MD-FEC encoding. Specifically, given
a scalable stream, we truncate the encoded bits intoM layers,
each with equal rateRk −Rk−1 = R for eachk = 1, . . . , M .
Note that, in each MD-FEC encoded description, the bit rate
for the data from layerk is R/k. Thus, no matter how many
supplying peers are available in the system, the transmission

rate for one substream is always constant:
m∑

k=1

R

k

k

m
= R m = 1 . . . M (1)

Based on this rate partition, when the transmission rate for
one substream is equal toR, the storageS used to store the
substream is:

S = T
M∑

k=1

R

k
= RT

M∑

k=1

1
k

(2)

whereT is the length of the video.
As discussed above, for RFMD, when the number of

available supplying peers changes, the portion of data that
is transmitted from the remaining peers should also change
correspondingly. This is achieved by segmentation and select-
ing different sets of segments for transmission at each of the
supplying peers.

A. Implementation of RFMD

Fig. 5 shows the segmentation procedure. For a description,
we segment the data generated from the same layer to sev-
eral MD segments. One MD segment cannot cross the data
from two different layers. We assign each MD segment a
segment number (denoted asSegNum) and a layer number
(LayerIdx), which indicates which layer the segment belongs
to. The corresponding segments (covered with a red oval in
Fig. 5) in different descriptions have the sameSegNum.

During a video session, the receiving peer informs each
of its supplying peers the number of currently available
supplying peers (NumPeer). Furthermore, the receiving
peer assigns a description number (DespIdx) for each of
its supplying peers. For example, if a receiving peer has
NumPeer available supplying peers, then theDespIdx for
each supplying peer ranges from1 to NumPeer. When one
supplying peer goes down, if the receiving peer can find a
replacement supplying peer quickly, the receiving peer simply
assigns that supplying peer the same index used for the one
that just disconnected, while keeping the same index for
other peers; if the receiving peer can not find a replacement
supplying peer in time, then the receiving peer re-assigns
NumPeer as NumPeer − 1 and re-assigns theDespIdx
to its supplying peers from1 to the newNumPeer. For
a supplying peer, it can use the following algorithm to
determine whether a MD segment should be transmitted or
not.

SegmentSelect(NumPeer,DespIdx,SegIdx,LayerIdx)
if (NumPeer<=LayerIdx)

&& ((SegNum+DespIdx)mod NumPeer<LayerIdx)
the segment will be transmitted

else
the segment will not be transmitted

Note that as compared with traditional MD-FEC, RFMD
trades off storage for upload bandwidth usage. In order to

���������
	��������������� ������	���� � ����	 ��! � �"�#	$��%

� �&�#	���'

...

(��
�&�)+*��)���,-�

(��.�&�/+*"�)0� ,1!�232

4 !52�2�67!&8:9:�;�.�3<$=,?>

4 !�232$6@'38A9:�B�
�3<$+,">

Fig. 6: Coding instead of replicating to generate substreams
(M = 4, N = 255): collision avoidance

make each substream have equal importance and eliminate
transmission redundancy, the RFMD scheme shifts the
transmission redundancy of MD-FEC to the storage. Since
today upload bandwidth is a scarcer resource than storage
(and will likely remain so for the foreseeable future), this
tradeoff is appropriate. Compared with the trivial solution of
having each peer holdM layers, RFMD consumes much less
storage. In the case of the trivial solution, the storage used
in a peer isMRT ; but in the case of RFMD, the storage
is RT

∑M
k=1 1/k. As M increasing, the relative savings

increases.

B. Distinctive RFMD

In general, with a substream coding scheme (layered coding,
MD-FEC, and so on), the peers will collectively store multiple
copies of the substreams. Consider a peer that wants to view
a particular video. At any instant of time, there will be a
number of potential supplier peers that have both substreams
for this video and available upload bandwidth. However, not
all of these suppliers can be used, since some of them may
contain identical copies of the substreams. When this situation
occurs, we say there are “collisions”. In this subsection, we
show RFMD can be extended so that collisions are virtually
eliminated.

The idea is illustrated in Fig. 6. To generate the parity block
from layer k, instead of applying an (M, k) Reed-Solomon
(RS) code tok groups of source data to yieldM−k groups of
parity data, we propose to apply an (N, k) RS code to generate
N −k groups of parity data, whereN is much larger thanM .
Therefore, even ifM is small, we can obtainN distinctive
descriptions. Instead of replicating theM descriptions to peers
as with traditional MD-FEC, we distribute theN distinctive
descriptions, so that ifany m (with m not larger thanM)
descriptions can be found, the firstm layers can be decoded.
We refer to this technique asdistinctive RFMD.

With a largeN , this distinctive RFMD can greatly reduce
the collision probability. If we choose a very largeN (equal to
the maximum number of supplying peers), we can avoid colli-

TABLE I: Distribution of peer bandwidth

Network type Uplink bandwidth Percentage
Ethernet 1 5 Mbps 10%
Ethernet 2 2 Mbps 7%

Cable 220 kbps 62%
DSL 120 kbps 21%

sion completely. But a largerN also means higher complexity
in RFMD encoding and decoding.

In addition to virtually eliminating replicas and collisions,
there is an additional benefit to distinctive RFMD: It makes
it easier for the receiving peer to locate a replacement peer.
In a P2P VoD system, a receiving peer (or the “system” on
the behalf of the receiving peer) can track back-up supplying
peers that can be quickly summoned when substreams are
lost. Suppose a receiving peer tracksB back-up supplying
peers. Without applying distinctive RFMD coding, we would
naturally attempt to assign theB back-up supplying peers
evenly to M substreams, in which case there would only
be B/M back-up supplying peers for each substream. (For
layered coding, we would assign more back-up supplying
peers to more important layers.) In contrast, with RFMD, any
of the back-up supplying peers can be used as replacements
for any substream. Therefore, with RFMD coding, a receiving
peer needs to track fewer back-up supplying peers. Henceforth,
we will take RFMD to designate distinctive RFMD.

V. SIMULATION STUDY

In this section, we perform extensive simulations to study
the performance of the P2P VoD systems for different coding
schemes.

A. Simulation setup

In our simulation, we use a pool of 3000 heterogeneous
peers. At any given instant, some of these peers are active
(viewing the video) and the remainder are inactive. We assume
the end-to-end bandwidth bottleneck is at the access links and
not in the Internet core. Furthermore, in most residential broad-
band connections today (including cable modem and ADSL),
the upstream rate is significantly less than the downstream
rate. Thus, it is not unreasonable to assume that the bandwidth
bottleneck between peers is the supplying peer’s upload rate.
Table I shows the bandwidth distribution in our simulation.
The distribution is based on the findings reported in [22], but
we do not include the dial-up users.

We haveJ = 30 videos. Each video has the same size
but not the same popularity. Generally, the popularity of on-
demand videos follows a heavy-tailed distribution. In our
simulation, we assume the video popularity follows a Zipf
distribution. Suppose theJ videos are sorted in descending
order of their popularities. Denote the probability that the
jth video is requested byλj = j−(1−ρ)/I, where I is the
normalization factor andρ is a control parameter. In our
simulations, we choseρ = 0.27 which is a commonly used
factor for video on-demand services [23]. The new requests are
modeled as a Poisson process with constant rateλ; we change

the rate to get different average numbers of active peers. The
length of each video isT . We assume that user’s watching time
for a video is uniformly distributed in[0, T]: thus the average
number of active peersn in the system roughly equalsλT/2.
We assume a peer only contributes its uplink bandwidth to
serve other peers when it is viewing a video; when a peer
finishes viewing, it leaves the system.

For scalable coding, we code the “Foreman” video sequence
in CIF (352x288) resolution with a frame rate of 30 frame/sec
into a FGS bit stream using the most advanced SVC codec
[24], at a base layer rate of 70 kbps. Each GOP has a duration
of 4 seconds. The output bits from each GOP are converted
to M substreams for layered coding, MD-FEC and RFMD.
To make a fair comparison, each substream has the same
transmission rateR. For the single layer coding scheme, we
code this “Foreman” sequence into a single layer bit stream
with bit rateRM using the H.264 codec JM9.6 [25]. Then we
divide each GOP intoM blocks and generateM substreams.
We pre-compute the operational rate-distortion function for
“Foreman” based on SVC and H.264 respectively, and assume
that all the 30 videos have the same characteristics as the
“Foreman” sequence.

In our simulations, we compare MD-FEC, layered coding,
single layer, and RFMD. For MD-FEC, the optimal rate
partition [21] is applied to adapt to the node availability
(description loss rate) by varying the RS code rate for different
segments of the video stream; for layered coding, we give
more protection to the more important layers by storing more
copies of important layers [18]; for single layer coding, we
assume high rate erasure coding is applied to generate a large
number of distinctive substreams, so that if a peer gathers
any M substreams, it can recover the entire bit stream [14].
The number of parity substreams we assign to each video is
proportional to the video popularities. For simplicity, we call
this scheme SLRS in our simulation.

For RFMD, each peer only stores one description. Recall
that for RFMD, if the transmission rate for one substream is
R, the storage for one substream isRT

∑M
k=1 1/k. For all the

other schemes, if the transmission rate for one substream isR,
the storage consumed is equal toRT . To make the comparison
fair, for MD-FEC, layered coding and single layer, we place
d∑M

k=1 1/ke different substreams of one video on each peer.
In our simulation, the video lengthT is set to 60 minutes,

representing TV shows and movies. The test time is 3 hours.
For the performance metric, we compare both playback conti-
nuity and decoded video quality. For playback continuity, we
define the discontinuity ratio, denoted byα, as the percentage
of undecodable GOPs for all video sessions:

α =
number of undecodable GOPs

Total number of GOPs
(3)

For the schemes using scalable coding (MD-FEC, layered
coding, RFMD), if the base layer is received, we consider
the GOP as decodable and playable. To represent decoded
video quality, we use average PSNR averaged over all video
sessions. For average PSNR calculation, we assume PSNR=0

for GOPs that are not decodable. We define average PSNR as

average PSNR=
M∑

m=1

p(m)PSNR(m), (4)

where p(m) is the probability of receivingm substreams;
PSNR(m) is the average PSNR over a GOP whenm
substreams are received. Note that for single layer coding,
whenm < M , PSNR(m) = 0. Typically an average PSNR
gain of 1dB is visually distinguishable.

B. Simulation results

In the simulations, we compare the performance of different
coding schemes in several different scenarios. In the first
scenario, we suppose that whenever there is an available
supplying peer with sufficient uplink bandwidth, the receiving
peer can always find it and start streaming before the playback
deadline. In this simulation, we setM = 8 andR = 70 kbps.
For RFMD,N is set to 255. For single layer coding with high-
rate erasure coding, we assume all substreams are distinctive. It
is important to investigate the system performance for different
system scales. We vary the request rateλ to change the average
number of active peersn in the system.

Fig. 7 (a) shows the discontinuity ratioα versus average
number of active peersn. As expected, for all the schemes, as
n increases,α decreases, which means fewer discontinuities
occur. This indicates that for the upload distributions in Table
I, P2P VoD is scalable, with more active peers giving better
system performance and individual video quality. Note that
RFMD outperforms the other schemes, especially when the
average number of active peers is small. The reason is that
for RFMD (i) a substream at any available peer can be
used to recover the base layer; and(ii) there are no wasted
transmission bits (as with MD-FEC). In the case of layered
coding, even though we make more copies for the lowest
layer, there is no guarantee that the base layer is available to
all peers. For single layer coding, allM blocks are required
for decoding; when the total available uplink bandwidth of a
video is not sufficient to support all the active video sessions,
some video sessions will experience severe video quality
degradation.

Fig. 7 (b) compares the average PSNR. We see that RFMD
always outperforms the other schemes whenn is not large.
Whenn is small, video quality for single layer coding is very
poor. However, whenn is large, single layer achieves the best
PSNR performance. This is because single layer coding always
has a higher coding efficiency than scalable coding; given that
a receiving peer can always gather all data blocks, the decoded
video quality should be better.

Thus for this scenario, in terms of both video continuity
and decoded video quality, RFMD outperforms MD-FEC and
layered coding. While single layer coding has higher average
PSNR whenn is large, its discontinuity ratio is still higher than
the other three schemes. We argue that when PSNR reaches a
high level (e.g. above 30 dB), continuous playback becomes
more important.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

n

di
sc

on
tin

ui
ty

: α
MD−FEC
Layered coding
SLRS
RFMD

(a)

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

p
f

di
sc

on
tin

ui
ty

: α

MD−FEC
Layered coding
SLRS
RFMD

(c)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

ρ

di
sc

on
tin

ui
ty

: α

MD−FEC
Layered coding
SLRS
RFMD

(e)

0 500 1000 1500 2000

16

18

20

22

24

26

28

30

32

34

36

38

n

av
er

ag
e

P
S

N
R

(d
B

)

MD−FEC
Layered coding
SLRS
RFMD

(b)

0 0.005 0.01 0.015 0.02
30

31

32

33

34

35

36

p
f

av
er

ag
e

P
S

N
R

(d
B

)

MD−FEC
Layered coding
SLRS
RFMD

(d)

0 0.2 0.4 0.6 0.8 1
26

27

28

29

30

31

32

33

34

35

36

37

ρ

av
er

ag
e

P
S

N
R

(d
B

)

MD−FEC
Layered coding
SLRS
RFMD

(f)

Fig. 7: Comparison of different schemes. (a-b) performance vs. number of active users, assumingtr = pf = 0; (c-d) performance
vs. pf , assumingtr = 4 seconds,n = 1500; (e-f) impact of mismatch between actual video popularity (ρ) and expected
popularity (ρp), assumingtr = pf = 0, ρp = 0.27, n = 1500.

In the second scenario, we investigate the robustness of
the schemes when, with some probability, a receiver can no
longer receive the substream that is being supplied by one of
its supplying peers (for example, due to congestion, network
outage, and so on). We introduce a parameterpf to represent
the supplying peer failure probability. A higherpf means
a receiving peer needs to look for replacement peers more
frequently. In this scenario, we also assume a receiving peer
cannot find a replacement peer immediately. We introduce
another parameter,tr, to represent the additional time after
the playback deadline required to locate a replacement sup-
plying peer and establish the connection.tr depends on the
buffer lengths as well as the technique employed to locate a
replacement supplying peer. In this scenario, we settr = 4
seconds and varypf .

Figures 7 (c) and (d) compare the four schemes whentr = 4
seconds under different supplying peer failure probabilities.
For this scenario, the average number of active peers is fixed
at 1500. Under this scenario, RFMD significantly improves the
system performance. It is almost constant when varyingpf .
This indicates that the RFMD scheme is robust to supplying
peer failures. In terms of discontinuity, the performance of
MD-FEC is similar to RFMD; however, its average PSNR is
much lower. The reason is that unlike MD-FEC, the RFMD
does not transmit any redundant bits. Therefore, for similar
transmission rates, RFMD achieves better video quality. In
contrast, the performance of layered coding and single layer

coding becomes much worse whenpf increases. The reason
is that for both layered coding and single layer coding,
substreams are highly dependent. When one substream is lost
and a replacement is being sought, the decoding of other
substreams will be affected and more substreams become
undecodable, thus reducing the video quality dramatically.

In all our simulations so far, we have assumed the system
knows the popularity of each video precisely and creates
the copies (or distinct parity substreams) for the substreams
accordingly. However, the popularities of videos are always
changing, and the system cannot adapt the number of copies of
videos to their popularities immediately. In this third scenario,
we want to investigate the robustness of the schemes to the
mismatch, where the number of copies of a video does not
truly reflect their popularities. In this simulation, we assume
the number of copies of each video is Zipf distributed with
ρp = 0.27 but the request rate of each video is varying with
different ρ values.

Figures 7 (e) and (f) compare the four schemes when there
is a mismatch between video placement and video request
popularity. The average number of active peers is 1500. Here
we fix ρp = 0.27 and varyρ. Whenρ is larger, it means the
request rates for different videos are more even. One obser-
vation is whenρ is close toρp, all four schemes can achieve
their best performance, both in the sense of video continuity
and average PSNR. However, when video placement does not
match the current video request popularity well, such as when

TABLE II: Comparisons between various schemes

SLRS Layered coding MD-FEC RFMD
Bandwidth adaptation

√ √ √
No collisons

√ √
Redundancy free

transmission
√ √ √

Equal importance N/A
√ √

ρ is increasing, the different schemes have different behaviors.
We see that RFMD is the most robust to the mismatch, so
that the performance drops smoothly both with respect toα
and to average PSNR. In contrast, the single layer scheme is
most sensitive to the mismatch, with performance dropping
dramatically. The layered coding scheme is better than the
single layer scheme, but is still not as good as RFMD. The
reason is that when the mismatch occurs, for some particular
videos with more requests than expected, the receiving peers
cannot find sufficient upload bandwidth. The adaptive coding
schemes can adapt and stream some substreams to handle this
situation. The reason why RFMD outperforms layered coding
is that for RFMD every substream can be used for decoding,
so that the available bandwidth for the requested video can be
fully utilized; but for layered coding, when the bandwidth for
the lower layers is not sufficient in the system, the available
upload bandwidth of higher layers cannot be utilized.

We summarize the properties of the four coding schemes in
Tab. II. As shown, only RFMD provides adaptation to available
bandwidth, no collisions, no redundancy, and equal importance
substreams.

VI. CONCLUSION

In a P2P VoD system, the rate at which peers receive a video
fluctuates due to peer churn. Because of this rate fluctuation
and because of unexpected supplier peer disconnects, it is
natural to consider multi-stream video coding. In this paper
we proposed a new multi-stream coding and adaptive transmis-
sion scheme, RFMD, that has been specifically designed for
P2P VoD systems. RFMD has the following three beneficial
features:
• Unlike layered video, all substreams have equal im-

portance. Thus, video quality gracefully degrades as
substreams are lost, independently of which particular
substreams are lost.

• Only the source bits are collectively transmitted by the
supplying peers, so that there is no transmission redun-
dancy. This allows more substreams than what can be
supported by other multiple-description schemes.

• When combined with high-rate erasure coding, any com-
bination ofM or fewer substreams stored in the system
can be used in reconstructing video.

In our simulations, we compared MD-FEC, layered coding,
single layer with high-rate erasures, and distinctive RFMD.
The single-layer scheme performs poorly whenever there is
significant fluctuation in available upload bandwidth or when
the number of parity substreams per video is not properly
matched to video popularity. Among the scalable schemes,

we found that RFMD offers significant advantages in all the
representative scenarios.

REFERENCES

[1] “Youtube.” [Online]. Available: http://www.youtube.com/
[2] “Google video.” [Online]. Available: http://http://video.google.com/
[3] “Bittorrent.” [Online]. Available: http://www.bittorrent.com/
[4] “edonkey.” [Online]. Available: http://www.edonkey2000.com/
[5] “pplive.” [Online]. Available: http://www.pplive.com/
[6] X. Hei, C. Liang, Y. Liu, and K. W. Ross, “Insights into pplive: A

measurement study of a large-scale p2p iptv system,” inWorkshop on
Internet Protocol TV (IPTV) services over World Wide Web, Edinburgh,
Scotland, May 2006.

[7] “ppstream.” [Online]. Available: http://www.ppstream.com/
[8] R. Kumar and Y. Liu and K.W. Ross, “Stochastic fluid theory for p2p

streaming,”submitted.
[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,

“Distributing streaming media content using cooperative networking,”
in Proceedings of NOSSDAV, 2002.

[10] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “A peer-to-peer on-demand
streaming service and its performance evaluation,” inProceedings of
2003 IEEE International Conference on Multimedia and Expo (ICME
2003), Baltimore, MD, July 2003.

[11] T.T.Do, K.A.Hua, and M.A.Tantaoui, “P2vod: providing fault tolerant
video-on-demand streaming in peer-to-peer environment,” inProc. of
IEEE ICC, vol. 3, June 2004, pp. 1467–1472.

[12] Y. Cui, B. Li, and K. Nahrstedt, “ostream: Asynchronous streaming
multicast in application-layer overlay networks,”IEEE Journal on
Selected Areas in Communication (JSAC), vol. 22, no. 1, pp. 91–106,
January 2004.

[13] Q. Zhang and H. Chi, “Efficient search in p2p-based video-on-demand
streaming service,” inIEEE International Conference on Multimedia
and Expo (ICME), Toronto, Canada, July 2006.

[14] J. Li, “Peerstreaming: A practical receiver-driven peer-to-peer media
streaming system,” Microsoft Research, Tech. Rep. MSR-TR-2004-101,
September 2004.

[15] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
peer-to-peer media streaming using collectcast,” inProc. of ACM Mul-
timedia 2003, Berkeley, CA, November 2003, pp. 45–54.

[16] S. Khan, R. Schollmeier, and E. Steinbach, “A performance comparison
of multiple description video streaming in peer-to-peer and content
delivery networks,” inIEEE International Conference on Multimedia
and Expo (ICME), Taipei, Taiwan, June 2004.

[17] X. Xu, Y. Wang, S. S. Panwar, and K. W. Ross, “A peer-to-peer video-on-
demand system using multiple description coding and server diversity,”
in IEEE International Conference on Image Processing (ICIP), Oct.
2004.

[18] Y. Shen, Z. Liu, S. S. Panwar, K. W. Ross, and Y. Wang, “Streaming
layered encoded video using peers,” inIEEE International Conference
on Multimedia and Expo (ICME), Amsterdam, The Netherlands, July
2005.

[19] W. Li, “Overview of fine granularity scalability in mpeg-4 video
standard,”IEEE Trans. Circuit and System for Video Technology, vol. 11,
pp. 301–317, Mar., 2001.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Mctf and scalability extension
of h.264/avc,” inProceedings of PCS, Francisco, USA, December 2004.

[21] R. Puri and K. Ramchandran, “Multiple description source coding
through forward error correction codes,” in33rd Asilomar Conf. Signals,
Systems and Computers, Oct. 1999.

[22] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasi-
bility of supporting largescale live streaming applications with dynamic
application endpoints,” inProceedings of ACM Sigcomm, Portland, USA,
August 2004.

[23] J. Chu, K. Labonte, and B. Levine, “Availability and popularity measure-
ments of peer-to-peer file systems, Tech. Rep. Technical report 04-36,
June. 2004.

[24] H. Schwarz, D. Marpe, and T. Wiegand, “Joint scalable video model
(jsvm) 2,” Joint Video Team, Doc. JVT-O202, April 2005.

[25] A. Tourapis and K. Sühring and G. Sullivan, “Revised h.264/mpeg-4 avc
reference software manual,”Joint Video Team, Doc. JVT-Q042, October
2005.

