HOMEWORK I

DUE: February 13, 2014

READ:
- Chapter 1
- Chapter 2

ASSIGNMENT: There are seven questions four of which are from Chapters I and II of the textbook

Solve all homework and exam problems as shown in class and past exam solutions

1) Solve Problem 1.5.

Can you think of an analog system that may stay as analog for some time to come in the future?

2) Solve Problem 2.5 (e).

Assume that the binary number is an unsigned binary number. Show manual calculations, indicating that you did not use a calculator.

3) Solve Problem 2.10 (b).

First, convert the hex digits to bit patterns. Second, by assuming that these bit patterns represent 2’s complement numbers, perform the addition in binary during which show all the carries. State if there is an overflow and why.

4) Solve Problem 2.18 (f).

The question asks about the radix of the following operation: \(\sqrt{(41)}_2 = (5)_2 \). Both sides of the equation have the same radix! Clearly describe how you arrive at the result.

Hint: Try to make use of the general conversion formula.

5) Perform the following operation in 2’s complement arithmetic, by using 12 bits per number:

\[(192)_{10} + (F08)_{\text{Hex}} = (?)_{10} \]

You will show all number conversions as done in class. Note that the Hex digits are for coding purposes. They represent a 2’s Complement number. Make observations on the addition.
6) Convert the following **fixed-point** decimal number to a **16-bit 2’s complement fixed-point** binary number: \((525.3125)_{10}\)

Use **four** bits for the fraction part of the 2’s complement number and **12** bits for the integer part.

7) Calculate the following logarithm: \(\log_2[(010000)_{2 \text{ 2's Complement}}] = (\ ?)_{10}\)

RELEVANT QUESTIONS AND ANSWERS

Q1) Convert the following decimal number to a 16-bit 2’s complement binary number, by using 7 bits for the integer portion: \((-26.75)_{10}\)

A1) First, we have to consider \((+26.75)_{10}\) since we cannot directly convert negative numbers. We know that the integer part is obtained by successive divisions and the fraction part is obtained by successive multiplications:

- **The integer part:**

 \[
 \begin{align*}
 26/2 &= 13 & \text{(lsb)} \\
 13/2 &= 6 & 1 \\
 6/2 &= 3 & 0 \\
 3/2 &= 1 & 1 \\
 1/2 &= 0 & 1 & (\text{msb})
 \end{align*}
 \]

 \((+26)_{10} \rightarrow (11010)_2\)

- **The fraction part:**

 \[
 \begin{align*}
 0.75*2 &= 1.5 \rightarrow 1 \\
 0.5*2 &= 1.0 \rightarrow 1 \\
 \end{align*}
 \]

 \((.75)_{10} \rightarrow (.11)_2\)

\((-26.75)_{10} = (0011010.110000000)_2\)
\((+26.75)_{10} = (0011010.110000000)_2\)

Q2) Hex digits are used to represent two numbers that are **16-bit** 2’s complement numbers:

\[
4AF8 - 1B5E = (\ ?)_{10}
\]

Perform the subtraction operation, by converting it to a **16-bit addition** operation. Show the result in decimal.

A2) First, we convert the digits to bit strings:
In order to convert the subtraction to an addition, we need to take the 2's complement of the second number:

\[(0001\ 1011\ 0101\ 1110)^2 = (1110\ 0100\ 1010\ 0010)\]

We calculate the corresponding decimal number:

\[0010\ 1111\ 1001\ 1010\]

By numbering the bit positions from right to left, starting at 0, we convert the binary number to a decimal number:

\[\Rightarrow 2^1 + 2^3 + 2^4 + 2^7 + 2^9 + 2^{10} + 2^{11} + 2^{13} = 2 + 8 + 16 + 128 + 256 + 512 + 1024 + 2048 + 8192 = (12186)_{10}\]

Observation: we added a negative number and a positive number, therefore, there cannot be any overflow.

Q3) Perform the following operation in 2's complement arithmetic: \(F6 + 49 = ?\)

The numbers are shown in the Hexadecimal notation. Thus, first convert the numbers to binary, and then add them. Make observations on the addition.

A3) Replace each hexadecimal digit with four bits to convert them to 2's Complement numbers:

There is no overflow, since the two numbers added have different sign bits: one is negative and the other is positive. Thus, the result cannot exceed the limits for 8-bit 2's complement numbers: \((-128)_{10}\) and \((+127)_{10}\). The \(c_{out}\) bit is the carry out from the leftmost bit position and it is 1.

Q4) Consider the following subtraction on 2's Complement numbers represented in Hex coding:
Without using a calculator, perform the 8-bit 2's Complement Binary subtraction, by converting it to an 8-bit addition as shown in class. Make observations on the overflow. Then, convert the result to a decimal number as shown in class.

Note again that both Hex-coded numbers above are 2's Complement Binary numbers and so you will perform the subtraction via an addition.

A4) Since the numbers are Hex coded, first we replace the Hex coded digits with bits. Then, before we convert the subtraction to an addition in the 2's Complement Binary system, we perform a sign extension on the second number since it is shorter:

\[
\begin{array}{c}
\text{8 A} \\
\hline
\text{8}
\end{array}
\quad \begin{array}{c}
\text{1000} \\
\text{1010}
\end{array}
\quad \begin{array}{c}
\text{1000} \\
\text{1111}
\end{array}
\quad \begin{array}{c}
\text{1001} \\
\text{0010}
\end{array}
\]

We added two numbers with opposite signs. There cannot be an overflow. That is, the result is correct!

We can convert the result to decimal. Since the result is negative, we have to make it positive first:

\[
\begin{array}{c}
\text{1001 0010} \\
\hline
\text{0110 1110}
\end{array}
\]

\[
2^6 + 2^5 + 2^3 + 2^2 + 2^1 = 64 + 32 + 8 + 4 + 2 = (110)_{10} \Rightarrow (-110)_{10}
\]

Q5) Consider the following 8-bit addition on two 2's Complement Binary numbers where the first number is shown in Hex coding:

\[
\begin{array}{c}
\text{A 5}_{\text{Hex}} \\
\hline
\text{1110 1110}
\end{array}
\]

\[
\begin{array}{c}
\text{1110 1110} \\
\hline
\text{?}
\end{array}
\]

\[
\text{1110 0101} \quad \text{1}
\]

\[
\begin{array}{c}
\text{0000 0111} \\
\hline
\text{1001 0010}
\end{array}
\]

\[
\begin{array}{c}
\text{1001 0010} \\
\hline
\text{0110 1110}
\end{array}
\]

\[
2^6 + 2^5 + 2^3 + 2^2 + 2^1 = 64 + 32 + 8 + 4 + 2 = (110)_{10} \Rightarrow (-110)_{10}
\]
Without using a calculator, perform the 8-bit 2’s Complement Binary addition as shown in class. Make observations on the overflow. Then, convert the result to a decimal number as shown in class.

Note again that both numbers above are 2’s Complement Binary numbers and the first number is shown in Hex-coding.

A5) Since the first number is Hex coded, first we replace its Hex coded digits with bits. Then, we perform the addition in the 2’s Complement Binary system:

\[
\begin{array}{c}
\text{(A 5)_{Hex}} \\
1110 \\
\end{array} + \begin{array}{c}
1110 \\
\end{array} = \begin{array}{c}
0101 \\
0101 \\
\end{array}
\]

\[
\begin{array}{c}
1110 \\
\end{array} + \begin{array}{c}
1110 \\
\end{array} = \begin{array}{c}
1001 \\
0011 \\
\end{array}
\]

We added two negative numbers and the result is negative. Therefore, there is no overflow. That is, the result is correct!

We can convert the result to decimal. Since the result is negative, we have to make it positive first:

\[
10010011 = 11101101 \\
\text{7 6 5 4 3 2 1 0} \\
\]

\[
2^6 + 2^5 + 2^3 + 2^2 + 2^0 = 64 + 32 + 8 + 4 + 1 = (109)_{10}
\]

\[
\Rightarrow (-109)_{10}
\]

Q6) Without using a calculator, perform the following addition in binary as shown in class:

\[
\begin{array}{c}
01010010 \\
\end{array} + \begin{array}{c}
1010 \\
\end{array}
\]

2’s complement numbers

Make observations on the addition. Finally, convert the result to decimal.

A6) We are given the following addition:

\[
\begin{array}{c}
01010010 \\
\end{array} + \begin{array}{c}
1010 \\
\end{array}
\]

2’s complement numbers

Since it is the 2’s complement system and the second number is shorter than the first, we sign extend the second number so both numbers have eight bits. The sign bit of the second number is 1 (it is negative), so we have to concatenate 1s to the left of it:

\[
1010 \quad \rightarrow \quad 11110101
\]
Now we have the following addition:

\[
\begin{array}{c}
\begin{array}{c}
0 1 0 1 0 1 0 0 1 0
+ 1 1 1 1 1 1 0 1 0
\end{array}
\end{array}
\]

Observation: we know that there cannot be any overflow since we added a positive number (the first number) and a negative number (the second number). We convert the result to decimal directly since the result is positive:

\[
\begin{array}{c}
0 1 0 0 1 1 0 0
\end{array}
\rightarrow 2^6 + 2^3 + 2^2
\rightarrow 64 + 8 + 4
\rightarrow (76)_{10} \text{ the result}
\]

Q7 Perform the following subtraction operation on the two 8-bit 2’s complement binary numbers below, by converting it to an 8-bit addition operation. Also, determine the missing bits and show the result in decimal:

\[
\begin{array}{c}
\begin{array}{c}
0 1 0 0 1 1 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 1 1 1 1 0 1 0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0 1 0 0 1 1 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 1 1 1 1 0 1 0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0 1 0 0 1 1 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 1 1 1 1 0 1 0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0 1 0 0 1 1 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 1 1 1 1 0 1 0
\end{array}
\end{array}
\]\n
A7

\[
\begin{array}{c}
\begin{array}{c}
1 0 1 1 1 0 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \ ? \ ? \ ? \ 0 \ 0 \ 1 \ 1
\end{array}
\end{array}
\]

We need to take the 2’s complement of \((b)\) to convert the subtraction to an addition first:

\[
(\ b \) = (1 \ ? \ ? \ ? \ 0 \ 0 \ 1 \ 1)^2 = 0 \ ? \ ? \ ? \ 1 \ 1 \ 0 \ 1 = (-b)
\]

\[
\begin{array}{c}
\begin{array}{c}
(-b)
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 0 1 1 1 0 0 0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
0 0 1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
1 1 0 1 0 1 0 1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 1 0 1 0 1 0 1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
c_{out}
\end{array}
\end{array}
\]

The sum is a negative number.

We cannot convert it to decimal directly.

We will convert the negative of the sum to decimal:

\[
(-\text{sum}) = (11010101)^2 = 0010 \ 1011 = 2^0 + 2^1 + 2^3 + 2^5 = 1 + 2 + 8 + 32 = (+43)_{10} \text{. The sum is } (-43)_{10}
\]

Number \(b\) is also a negative number. We will convert its negative to decimal first:

\[
(-b) = 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1
\]

\[
7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0
\]

\[
= 2^0 + 2^2 + 2^3 + 2^4 = 1 + 4 + 8 + 16 = (+29)_{10} \Rightarrow b = (-29)_{10}
\]

Note that we added a negative number \((a)\) and a positive number \((-b)\), therefore, there **cannot** be any overflow.
Q8) Without using a calculator, perform the following 8-bit 2’s Complement Binary subtraction, by converting it to an 8-bit addition as shown in class:

\[
\begin{array}{c}
1 0 0 0 \\
- 1 0 1 1 0 1 \\
\hline
? \\
\end{array}
\]

Make observations on the overflow. Then, convert the result to a decimal number and also code the result in Hexadecimal as shown in class.

Note again that both numbers above are 2’s Complement Binary numbers and so you will perform the subtraction via an addition.

A8) Before we convert the subtraction to an addition in the 2’s Complement Binary system, we perform a sign extension on the second number since it is shorter and both numbers are 2’s Complement numbers:

\[1 0 0 0 \quad 1 0 0 0 \]
\[\begin{array}{c}
1 0 1 1 0 1 \\
\hline
? \\
\end{array}\]
\[1 0 0 1 \quad 1 0 1 1 \]
\[\begin{array}{c}
1 0 0 1 \quad 0 0 1 0 \\
\hline
0 \quad 1 0 0 1 \quad 1 0 1 1 \\
\end{array}\]
\[1 0 0 1 \quad 1 0 1 1 \]

We added two numbers with opposite signs. There cannot be an overflow. That is, the result is correct!

We can convert the result to decimal. Since the result is negative, we have to make it positive first:

\[1 0 0 1 \quad 1 0 1 1 \]
\[= 0 1 1 0 \quad 0 1 0 1 \]
\[2^6 + 2^5 + 2^2 + 2^0 = 64 + 32 + 4 + 1 = (101)_{10} \Rightarrow (-101)_{10}\]

The result of the addition in terms of Hex digits:

\[\begin{array}{c}
1 0 0 1 \\
9 \\
1 0 1 1 \\
B \\
\hline
(9B)_{Hex}
\end{array}\]

Q9) Consider the following fixed-point subtraction on two 2’s Complement Binary numbers:

\[
\begin{array}{c}
1 1 1 1 \quad . \quad 1 1 1 1 \\
- 1 0 1 0 \quad . \quad 1 0 1 0 \\
\hline
? \\
\end{array}
\]

Remember:
These numbers are fixed-point numbers!

Without using a calculator, perform the fixed-point 2’s Complement Binary subtraction by converting it to an 8-bit addition as shown in class. Make observations on the overflow.

Then, convert the result to a decimal number and also code the result in Hexadecimal as shown in class.
A9) We convert the subtraction to an addition in the 2’s Complement Binary system:

\[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & . & 1 & 1 & 1 \\
\text{out} & & & & & & &
\end{array} \quad \begin{array}{cccccccc}
+ & 0 & 1 & 0 & 1 & . & 0 & 1 & 0 & 1 \\
c_{in} & & & & & & &
\end{array} \begin{array}{cccccccc}
\text{out} & & & & & & &
\end{array} \]

We added two numbers with opposite signs. There cannot be an overflow. That is, the result is correct!

Q10) Consider the following fixed-point addition on two Unsigned Binary numbers:

\[\begin{array}{cccccccc}
1 & 0 & 1 & 1 & . & 0 & 1 \\
\text{out} & & & & & & &
\end{array} \quad \begin{array}{cccccccc}
+ & 0 & 0 & 1 & 1 & . & 1 & 0 \\
c_{in} & & & & & & &
\end{array} \begin{array}{cccccccc}
\text{out} & & & & & & &
\end{array} \]

Without using a calculator, perform the fixed-point Unsigned Binary addition as shown in class. Make observations on the overflow. Then, convert the result to a decimal number and also code the result in Hexadecimal as shown in class.

A10) We perform the fixed-point unsigned binary addition below:

\[\begin{array}{cccccccc}
1 & 0 & 1 & 1 & . & 0 & 1 \\
\text{out} & & & & & & &
\end{array} \quad \begin{array}{cccccccc}
+ & 0 & 0 & 1 & 1 & . & 1 & 0 \\
c_{in} & & & & & & &
\end{array} \begin{array}{cccccccc}
\text{out} & & & & & & &
\end{array} \]

The \(c_{out} \) bit is 0. Therefore, there is no overflow. That is, the result is correct!

We can convert the result to decimal:

\[2^3 + 2^2 + 2^1 + 2^{-1} + 2^{-2} = 8 + 4 + 2 + 0.5 + 0.25 = (14.75)_{10} \]

We code the result in Hexadecimal:

\[1110 . 1100 \Rightarrow \text{(E.C)}_{Hex} \]
Q11) Calculate the minimum number of bits necessary to represent the following decimal number in the 2’s complement system: \((92)_{10}\)

A11) First, as we discussed in class we have to check if the number is 0 or \(-2^x\). It is neither. Therefore, we use the formula discussed in class to determine the minimum number of bits needed to represent the decimal number in the unsigned binary system:

\[
\left\lfloor \log_2(92 + 1) \right\rfloor = \left\lfloor \log_2 93 \right\rfloor = \left\lfloor 6.53 \right\rfloor = 7
\]

In the 2’s complement system, one additional bit is needed as the sign bit. Therefore, we need at least 8 bits to represent \((92)_{10}\) in the 2’s Complement system.

Q12) Determine the base (radix) of the numbers used in the following addition: \(13 + 6 = 21\)

A12) There are several ways to solve the problem. One that uses the general conversion formula is as follows:

È First we have to see if “6” in the unknown radix is equal to “6” in decimal. By using the general conversion formula we see that:

\[
(6)_r = (6)_{10} = 6 \times r^0 = 6 \times 1 = (6)_{10}
\]

È Then, we do the addition by using the general conversion formula to obtain the unknown radix “r”:

\[
\begin{align*}
13 & \quad + \quad 6 \\
21 & \quad = (1 \ 3)_r + (6)_{10} = (2 \ 1)_r = (1 \times r^1) + (3 \times r^0) + 6 = (2 \times r^1) + (1 \times r^0) \\
& \Rightarrow r + 3 + 6 = 2r + 1 \Rightarrow r + 9 = 2r + 1 \Rightarrow r = 8
\end{align*}
\]

Q13) Consider the Ppm term project. The flowchart of the playing strategy of a machine player is below:

Assume that the code is 6A.

Consider the table below that shows the random digit, position displays before and after the machine player plays, whether the random digit is played directly or added, the number of adjacencies, the points earned by the machine player and whether the machine player plays again.
The first row shows how the random digit is played by the machine player. A circle is drawn on a position if it is played on. The meaning of D/A is Direct/Add which is whether the player plays the random digit directly on a position or by adding to a position. Note that the cases are independent of each other. That is, they do not necessarily follow each other with respect to time. Continue with the remaining rows.

A13)

<table>
<thead>
<tr>
<th>RD</th>
<th>Displays Before Play</th>
<th>Displays After Play</th>
<th>D/A</th>
<th>The Adjacency</th>
<th>Points Earned (Decimal)</th>
<th>Machine player plays again</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>F A A F</td>
<td>F A F F</td>
<td>A</td>
<td>1</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>C A C C</td>
<td>C C C C</td>
<td>A</td>
<td>3</td>
<td>96</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0</td>
<td>0 0 0 6</td>
<td>D</td>
<td>0</td>
<td>6</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>E E F E</td>
<td>E E F F</td>
<td>A</td>
<td>1</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>A 1 A 1</td>
<td>A A A 1</td>
<td>A</td>
<td>2</td>
<td>40</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note that the machine player does not check for code digits and so misses large reward points on rows 3 and 5. The random digits on these rows enable it to play the code digits.

Q14) Consider the Ppm term project. The flowchart of the playing strategy of a machine player is below:

![Flowchart]

Largest regular reward is ≤ 9 ?

Play on the rightmost largest regular reward position (directly if equal)

A display is 0 ?

Play on the rightmost largest adjacency position (directly if equal)
Assume that the code is \textbf{A3}.

Consider the table below that shows the random digit, position displays \textbf{before} and \textbf{after} the \textbf{machine} player plays, whether the random digit is played directly or added, the number of adjacencies, the points earned by the \textbf{machine} player and whether the \textbf{machine} player plays again.

<table>
<thead>
<tr>
<th>RD</th>
<th>Displays Before Play PD3 PD2 PD1 PD0</th>
<th>Displays After Play PD3 PD2 PD1 PD0</th>
<th>D/A</th>
<th>The Adjacency</th>
<th>Points Earned (Decimal)</th>
<th>Machine player plays again</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C 8 C C</td>
<td>C C C</td>
<td>A</td>
<td>3</td>
<td>96</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>1 0 0 1</td>
<td>1 0 7 1</td>
<td>D</td>
<td>0</td>
<td>7</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>F F 3 F</td>
<td>F F 3 3</td>
<td>D</td>
<td>1</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>6 0 1 3</td>
<td>F 0 1 3</td>
<td>A</td>
<td>0</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>2 A 2 5</td>
<td>2 A 5</td>
<td>A</td>
<td>1</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1 7 7 1</td>
<td>1 7 7 7</td>
<td>A</td>
<td>2</td>
<td>28</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The first row shows how the random digit is played by the \textbf{machine} player. A circle is drawn on a position if it is played on. The meaning of \textbf{D/A} is \textbf{Direct/Add} which is whether the player plays the random digit \textbf{directly} on a position or by \textbf{adding} to a position. Note that the cases are \textbf{independent} of each other. That is, they do not necessarily follow each other with respect to time. \textbf{Continue with the remaining rows}.

\textbf{A14)}

<table>
<thead>
<tr>
<th>RD</th>
<th>Displays Before Play PD3 PD2 PD1 PD0</th>
<th>Displays After Play PD3 PD2 PD1 PD0</th>
<th>D/A</th>
<th>The Adjacency</th>
<th>Points Earned (Decimal)</th>
<th>Machine player plays again</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C 8 C C</td>
<td>C C C</td>
<td>A</td>
<td>3</td>
<td>96</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>1 0 0 1</td>
<td>1 0 7 1</td>
<td>D</td>
<td>0</td>
<td>7</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>F F 3 F</td>
<td>F F 3 3</td>
<td>D</td>
<td>1</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>6 0 1 3</td>
<td>F 0 1 3</td>
<td>A</td>
<td>0</td>
<td>15</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>2 A 2 5</td>
<td>2 A 5</td>
<td>A</td>
<td>1</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1 7 7 1</td>
<td>1 7 7 7</td>
<td>A</td>
<td>2</td>
<td>28</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The machine player does not check for code digits and misses a large reward point on row 4. But, the machine player earns a large amount of reward points on rows 3 and 5 by playing code digits accidentally.

\textbf{Q15)} Consider the \textbf{Ppm} term project. The graph of the playing strategy of an imaginary machine player is as follows:
Consider the following table that shows the random digit, position displays before and after the machine player plays, whether the random digit is played directly or added, the number of adjacencies, the points earned by the machine player and whether the machine player plays again:

<table>
<thead>
<tr>
<th>RD</th>
<th>Displays Before Play</th>
<th>Displays After Play</th>
<th>D/A</th>
<th>The Adjacency</th>
<th>Points Earned (Decimal)</th>
<th>Machine player plays again?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F E D E</td>
<td>F E (E) E</td>
<td>A</td>
<td>2</td>
<td>168</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>5 F 6 7</td>
<td>5 5 6 7</td>
<td>D</td>
<td>1</td>
<td>10</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>Skip</td>
<td>Skip</td>
<td>Skip</td>
<td>Skip</td>
</tr>
<tr>
<td>8</td>
<td>2 2 2 2</td>
<td>2 2 2 (8)</td>
<td>D</td>
<td>0</td>
<td>72</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>2 4 4 6</td>
<td>4 4 4 6</td>
<td>A</td>
<td>2</td>
<td>16</td>
<td>Y</td>
</tr>
</tbody>
</table>

Assume that the code is **E8**.

The meaning of **D/A** is Direct/Add which is whether the machine player plays the random digit directly on a position or by adding to a position. A **circle** is drawn on a position if it is played on. Note that the cases are independent of each other. That is, they do not necessarily follow each other with respect to time. **Work on the rows.**

A15)

The machine player strategy does **not** check for code digits and so misses to earn code reward points when the random digit is 2 above. On the other hand, by chance it earns code reward points when the random digit is 1 and 8.