Computing $A^{-1}B$

Let A be an n by n matrix, and x and B be both n by m matrices. Supposed matrices A and B are given, and we want to solve the linear system of equations

$$AX = B$$

for X. In component form this equation is

$$\sum_{j=1}^{n} A_{ij} X_{jk} = B_{ik}.$$
Therefore the problem is basically the same as the linear system

$$Ax = b$$

where x and b are n-vectors, except that we now have m copies of the problem, each having the same A but having vectors x and b taken from each of the corresponding columns of X and B respectively. Therefore LU factorization using Gaussian elimination can be used efficiently to find matrix X without first explicitly finding A^{-1} and then multiply by B (a very inefficient process). We only need to perform LU
factorization of A once, then forward and backward substitution can then be done for each columns of B to obtain the corresponding column of X.
Centered Difference Formula for first derivative
Trade-off between Truncation & Roundoff Errors

Total Computational Error
Step Size, h
Truncation dominated
Roundoff dominated

Roundoff dominated
Truncation dominated