A Wacky Graph of a Simple Looking Function: The Problem

K. Ming Leung

Abstract: Plotting of a seemingly simple function can sometimes give unexpected wacky results that are due to the finiteness of the underlying floating-point system.
Suppose we are given a function

\[f(x) = \frac{1 - \cos(x)}{x^2}, \]

and we want to know how it looks like by plotting it for specific ranges of values for \(x \). One very easy way is to use the built-in function called `ezplot` in MATLAB. This can be done by typing the following at the command prompt:

```matlab
ezplot('(1-cos(x))./(x.*x)',[0,10]);
```

The function was specified by the first argument of the `ezplot` function, and the second argument gives the range of \(x \) values for the plot. The plot looks great and it was certainly very easy to make indeed.

Suppose we are more interested in the range where \(x \) is small. We can shorten the range and plot again by entering the command:

```matlab
ezplot('(1-cos(x))./(x.*x)',[0,1e-2]);
```

Here the number \(1e-2 \) means \(1 \times 10^{-2} \). The resulting graph looks rather uninteresting. However on closer inspection we notice a small blip in the curve near \(x = 0 \). Actually MATLAB’s `ezplot` function does not plot the end points of the given interval. It seems that the
\[
\frac{(1-\cos(x))}{(x \cdot x)}
\]
blip cannot be due to the potential singularity of the function at $x = 0$. One can do a closer inspection of the blip by using the zoom feature in MATLAB’s graphics window.

Re-plotting the function for an even small range of x values gives even wackier results. We want to find out what is really going on.
\[(1 - \cos(x)) / (x \cdot x)\]
\[\frac{(1-\cos(x))}{x \cdot x} \]
First let us use calculus to find out the proper behavior of the function for x at the origin. When $x = 0$ both the numerator and denominator of the function go to zero, so we need to use the l’Hôpital’s rule to get

$$\lim_{x \to 0} f(x) = \frac{\frac{d}{dx} (1 - \cos x)|_{x=0}}{\frac{d}{dx} (x^2)|_{x=0}} = \frac{\sin x|_{x=0}}{2x|_{x=0}}.$$

The numerator and denominator still both go to zero at $x = 0$, so we have use the l’Hôpital’s rule again to get

$$\lim_{x \to 0} f(x) = \frac{\frac{d}{dx} \sin x|_{x=0}}{\frac{d}{dx} 2x|_{x=0}} = \frac{\cos x|_{x=0}}{2|_{x=0}} = \frac{1}{2}.$$

Therefore we see that the function must approach the constant value of $1/2$ at $x = 0$. Thus the results we are seeing here are highly incorrect.

To try to understand the cause of the problem we need to write a program to compute the function and analyze the results ourselves. We concentrate on the interval $[0, 1 \times 10^{-7}]$ and obtain the result as shown in the following graph. The MATLAB program, `wackyPlot0.m`
is available on the course website. This result is clearly also incorrect.

The graph has a lot of prominent features and looks rather complicated. When we understand how real numbers are represented in a digital computer it turns out that we will be able to understand quantitatively every single feature exhibited in this graph.