Problem 6

We want to consider the integrals of the functions

\[f(x; k) = x^k, \]

from 0 to 1 for \(k = 0, 1, \ldots \).

1. This family of integrals can be done easily by hand. What is the solution as a function of \(k \)?

2. Compute this family of integrals for \(k = 0, 1, \ldots \) numerically using a 4-point Gauss-Legendre Quadrature rule. Two of the roots are

\[\frac{\sqrt{525 - 70\sqrt{30}}}{35} \quad \frac{\sqrt{525 + 70\sqrt{30}}}{35}, \]

and their corresponding weights are

\[\frac{(18 + \sqrt{30})}{36} \quad \frac{(18 - \sqrt{30})}{36}. \]

Recall that for any even-point Gauss-Legendre Quadrature rule, the roots are even and for each positive root there is a root of opposite sign, and they both have the same weights. Plot the absolute value of the relative error as a function of \(k \). Explain your finding in detail.